The present disclosure relates generally to compact heat exchangers, and more specifically to microtube heat exchangers manufactured using additive manufacturing techniques.
Heat exchangers transfer heat between fluids. For instance, an automobile radiator operates to transfer heat from circulating radiator fluid to forced air, a gaseous fluid. The automobile radiator is an example of a compact heat exchanger, designed to realize a large transfer surface area per unit volume.
Recently three-dimensional (3D) printing, also referred to as additive manufacturing, has presented new opportunities to efficiently build material structures including, but not limited to, automobiles, airplanes, boats, motorcycles, and the like. Additive manufacturing avails different complex geometries not previously available in traditional manufacturing processes; also, conventional techniques for joining parts, such as welding, may not be viable alternatives for use with some of these new materials. Accordingly, there is a need to discover and develop new ways to assemble components, including heat exchangers, using additively manufactured parts and techniques.
Further, applying additive manufacturing processes to industries that build material structures has proven to produce structurally more efficient products and also help the environment. As compared to traditional manufacturing processes, 3D printing does not significantly contribute to the burning of fossil fuels; therefore, applying 3D printing to other components, including heat exchangers, is an environmentally worthwhile pursuit.
Several aspects of additively manufacturing heat exchangers will be described more fully hereinafter with reference to three-dimensional (3D) printing techniques.
In one aspect a method for manufacturing a heat exchanger comprises receiving a data model of the heat exchanger and additively manufacturing the heat exchanger based on the data model. The modelled heat exchanger comprises a microtube array and at least one header. The header is coupled to and integrated with the microtube array at a base plate. The at least one header is for directing a fluid through a plurality of tubes of the microtube array to transfer heat between the fluid and a medium external to the plurality of tubes.
The step of additively manufacturing the heat exchanger can comprise forming a continuous solid body comprising the microtube array and the at least one header. Additionally, the step of additively manufacturing the heat exchanger can further comprise additively manufacturing the microtube array and the at least one header integrated with the microtube array in a single three-dimensional (3D) rendering step. Also, a diameter of each of the plurality of tubes can be equal to or less than two millimeters (mm).
The step of additively manufacturing the heat exchanger can comprise additively manufacturing a first surface of the at least one header, the first surface including a microtube array interface disposed substantially parallel to the base plate. The step of additively manufacturing the heat exchanger can comprise additively manufacturing a second surface of the at least one header, the second surface being coupled to, and angled relative to, the first surface; and the step of additively manufacturing the heat exchanger can comprise additively manufacturing a third surface of the at least one header, the third surface connecting the first surface and second surface so as to form a cross section. The fluid can be configured to flow through the at least one header in a direction substantially perpendicular to the cross section. The cross-section can be substantially triangular.
The step of additively manufacturing the heat exchanger can further comprise depositing a plurality of layers including support material on the base plate. The support material can form an angled support structure configured to provide support to the second surface of the at least one header. The second surface of the at least one header can be additively manufactured atop the angled support structure.
The step of additively manufacturing the heat exchanger can further comprise depositing a plurality of layers including support material on the base plate. The support material can form a support structure having a plurality of angles relative to the base plate. The support structure can be configured to provide support to the second and third surfaces of the at least one header. The second and third surfaces can be additively manufactured atop different angled portions of the support structure.
The step of additively manufacturing the heat exchanger can further comprise adding a lattice structure between at least two surfaces of the at least one header. The lattice structure can be configured to provide structural support for the at least one header.
The step of additively manufacturing the heat exchanger can further comprise adding a lattice structure between the second and first surfaces of the at least one header. The lattice structure can be configured to provide structural support for the at least one header.
The step of additively manufacturing the heat exchanger can comprise forming a microtube array arranged in a curved or pleated pattern relative to a direction of incoming air flow. The step of additively manufacturing the heat exchanger can comprise forming a microtube array comprising a pleated arrangement of microtubes. Also, the step of additively manufacturing the heat exchanger can comprise forming fins between microtubes in one or more columns of microtubes. Each fin can connect a microtube to an adjacent microtube in each of the one or more columns.
The method for manufacturing the heat exchanger can further comprise additively manufacturing the heat exchanger at an angle relative to the base plate and adding to each microtube at least one fin connecting the microtube to another microtube. The fin can extend from the base plate to the top of the microtubes to which it is connected.
In another aspect an additively manufactured heat exchanger comprises a microtube array and a header. The microtube array comprises a plurality of microtubes forming a substantially parallel array extending from a base plate. The plurality of microtubes comprises a first plurality of microtubes and a second plurality of microtubes. The header comprises a plurality of header sections. The plurality of header sections comprises a first header section and a second header section. The first header section is integrated with the first plurality of microtubes at the base plate; and the second header section is integrated with the second plurality of microtubes at the base plate. The first header section is configured to direct a first fluid through the first plurality of microtubes so as to exchange heat with an external fluid; and the second header section is configured to direct a second fluid through the second plurality of microtubes so as to exchange heat with the external fluid.
The microtube array can have a non-planar configuration relative to a plane normal to the base plate. The external fluid can comprise a gas. The microtube array, the base plate, and the header collectively can form a solid and continuous body. A diameter of each of the plurality of microtubes can be equal to or less than two millimeters (mm). The external fluid can flow substantially orthogonal to a flow direction of the first and second fluids.
At least one of the plurality of microtubes can be curved. At least one of the plurality of microtubes can be pleated.
The header can comprise a top surface at the base plate or a section thereof, and at least one surface coupled longitudinally to the top surface at an angle relative to the top surface. Also, the header can comprise a channel having a cross-sectional surface. The cross-sectional surface can be substantially triangular. The channel can be substantially orthogonal to the microtube array.
The header can comprise a first surface, a second surface, and a third surface The first surface can be substantially parallel to the base plate. The second surface can be coupled longitudinally to the first surface at a first angle; and the third surface can be coupled longitudinally to the second surface at a second angle. The first, second, and third surfaces can define the channel.
The microtube array can have a non-planar configuration relative to a plane normal to the first fluid flow. The microtube array can comprise a curved configuration. Also, the microtube array can comprise a pleated configuration.
The heat exchanger can further comprise a fin disposed between each adjacent microtube in at least one column of microtubes. The fin can be disposed from the base plate to a surface of the connected microtubes, and the fin can be configured to provide structural support to the column of microtubes.
The heat exchanger can further comprise a fin disposed between each adjacent microtube in at least one row of microtubes in the array.
The heat exchanger can be additively manufactured at an angle relative to the base plate; and each of the plurality of microtubes can include at least one fin connected to an adjacent microtube. The at least one fin can be configured to provide the microtube array with structural support.
In another aspect an additively manufactured compact heat exchanger comprises a base plate, a first plurality of microtubes, and a first header section. The first plurality of microtubes form an array. The first plurality of microtubes are substantially parallel, and they extend from the base plate. The first header section is integrated with the first plurality of microtubes at the base plate and configured to direct a first fluid through the first plurality of microtubes so as to exchange heat with an external fluid.
The additively manufactured compact heat exchanger can further comprise a second plurality of microtubes and a second header section. The second plurality of microtubes can form an array. The second plurality of microtubes can be substantially parallel, and the second plurality of microtubes can extend from the base plate. The second header section can be integrated with the second plurality of microtubes at the base plate and configured to direct a second fluid through the second plurality of microtubes so as to exchange heat with the external fluid.
At least one of the first plurality of microtubes can be curved. At least one of the first plurality of microtubes can be pleated; and the external fluid can comprise a gas.
In another aspect a transport vehicle comprises an additively manufactured (AM) support structure. The AM support structure comprises an AM microtube lattice array; the AM microtube lattice array is configured to transfer heat between a first fluid and a second fluid.
The microtube lattice array can comprise a plurality of microtubes and a plurality of interstitial paths. The microtubes can be configured to carry the first fluid, and the interstitial paths can be configured to carry the second fluid. Heat can be transferred from the first fluid to the second fluid; also, heat can be transferred from the second fluid to the first fluid. The first fluid can be a liquid, and the liquid can be engine oil. The second fluid can be engine coolant. Also, the second fluid can be a gas, and the gas can be forced air.
In another aspect a method of manufacturing a heat exchanger comprises additively manufacturing a hollow support structure and additively manufacturing a microtube lattice array within the hollow support structure.
Different complex geometries and different microtube shapes may be used that were not previously available in traditional manufacturing processes. It will be understood that other aspects of additively manufacturing heat exchangers will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described in only several embodiments by way of illustration. As will be appreciated by those skilled in the art, the additive manufacturing of heat exchangers using 3D printed components can be realized with other embodiments without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of apparatus and methods for additively manufactured heat exchangers will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The detailed description set forth below in connection with the drawings is intended to provide a description of exemplary embodiments of manufacturing heat exchangers using additively manufacturing techniques, and it is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.
A heat exchanger's purpose is to exchange heat between fluids. A fluid can include liquids or gases, such as air. For instance, when one fluid is a gas and another fluid is a liquid, the heat exchanger can be referred to as a gas-to-liquid heat exchanger.
More generally, heat exchangers can be classified according to a variety of attributes including, but not limited to, the fluid type, the number of fluids, the direction or configuration of fluid flow, physical construction, and surface compactness. For instance, one construction classification or type of a heat exchanger is a shell-and-tube heat exchanger. Shell-and-tube heat exchangers contain a large number of tubes arranged inside a shell. The axes of the tubes are arranged parallel to that of the shell, and heat transfer takes place as one fluid flows inside the tubes while the other fluid flows outside the tubes within the shell. However, despite their use in numerous industrial applications, shell-and-tube heat exchangers can be poorly suited for transport vehicles, such as automobiles or aircraft, because shell-and-tube heat exchangers typically have a large size and weight.
A type or classification of heat exchanger better suited for applications such as transport vehicles is the compact heat exchanger. The compact heat exchanger is designed to realize a large transfer surface area per unit volume, sometimes referred to as transfer area density or surface area density. For instance, a gas-to-liquid heat exchanger is referred to as a compact heat exchanger when it has a heat transfer surface having a surface area density above about 700 meters squared per meters cubed (m2/m3). A liquid-to-liquid fluid heat exchanger can sometimes be referred to as a compact heat exchanger if its surface area density on any one fluid side is above about 400 m2/m3. By comparison, a typical shell-and-tube exchanger may only have a transfer surface area density of less than 100 m2/m3 on one fluid side. And the human lungs, another form of gas-to-liquid heat exchanger, provide the supreme transfer surface area density of about 20,000 m2/m3.
In addition to surface area density, compact heat exchangers can also be characterized by heat transfer effectiveness Eff. Heat transfer effectiveness Eff is a dimensionless figure of merit which can be expressed in terms of fluid temperature ratios.
Traditional compact heat exchangers are generally made of sheet metal construction, with fluid pipes and headers bonded and sealed to each other via adhesive or brazing. For heat exchange with low thermal capacity fluids, generally the heat exchange rate can be limited by the surface area exposed to that fluid so additional fins are added to conduct heat to the higher heat capacity fluid. Metal construction of compact heat exchangers is generally favored due to metal's high strength and thermal conductivity, allowing thinner wall sections, lower mass, and reduced cost. Compact heat exchangers can also use microtubes for improving performance. Microtubes are smaller and have smaller diameters than traditional tubes. For instance, a typical tube may have a diameter of greater than 0.5 inches while a microtube may have a diameter of 0.1 inches or less. Microtubes can advantageously hold very high pressures, be robust to damage, and provide a higher surface area density compared to traditional tubes.
Another construction type of compact heat exchanger is a printed circuit heat exchanger (PCHE). A PCHE can be constructed using a solid state process known as diffusion bonding. Due to manufacturing constraints, both the PCHE and traditional compact heat exchangers have only achieved transfer surface area densities of about one tenth the supreme value of 20,000 m2/m3 with heat transfer effectiveness Eff values of less than ninety percent. Accordingly, there is a need to design high performance compact heat exchangers capable of achieving higher values of transfer surface area density and higher values of heat transfer effectiveness Eff.
Apparatus and methods for additively manufacturing microtube heat exchangers are disclosed herein. A heat exchanger header is additively manufactured with high density microtube arrays to achieve an integrated structure having values of heat transfer effectiveness Eff up to ninety percent and values of transfer surface area densities up to 20,000 m2/m3. The heat exchanger header can be printed with the high density microtube array to separate different types of fluids or liquids into different microtubes and to form a high quality seal. Additionally, microtubes and/or microtube arrays can be curved or pleated; and microtube lattice arrays can be compactly positioned within hollow support structures.
Unlike conventional processes which use sheet metal construction metallic braze tubes to sheet and affix headers, additively manufacturing the header 102 with the divider 107 allows for fluid-tight division between the header sections 108 and 110. Advantageously, this can allow dissimilar fluids to flow in the header sections 108 and 110. Structures allowing fluids to be closely brought together in the same structure can have reduced mass, and hence realize improved heat transfer effectiveness Eff.
The microtube array 103 has a plurality of microtubes separated into a first microtube array 112 and a second microtube array 116. Microtubes from the first microtube array 112 can carry a first liquid or fluid, and microtubes from the second microtube array 116 can carry a second liquid or fluid. For instance, microtubes including microtube 114 can carry a liquid such as oil, and microtubes including microtube 118 can carry a liquid such as a water-based coolant, although numerous other fluids are possible depending on the application.
As described herein, an AM microtube heat exchanger can be used to manufacture the header 102 so that it is integrated with the microtube array 103. This can be accomplished without traditional brazing techniques, and the header 102 can be configured as a fluid distribution manifold for fluids.
The AM microtube heat exchanger can cool the fluids flowing within the microtubes of microtube array 102 by exchanging heat to air flowing perpendicular, or substantially perpendicular, to the microtubes. For instance, as shown in
Although the AM microtube heat exchanger 100 shows a header having two header sections 108, 110 and first and second microtube arrays 112, 116, other configurations are possible. For instance, an AM microtube heat exchanger can be manufactured with a header having greater or fewer than two header sections; and more or fewer microtube arrays can be separated for carrying different types of liquids. Also, by using a 3D manufacturing process, the header 102 can have internal chambers (not shown) with any desirable high performance shape. For instance, the header 102 can be formed in the shape of a triangle or to have triangular features.
The header 102 can be additively manufactured from a base plate (not shown) at the interface 105. In this way the header 102 can be additively manufactured with the microtube array 103 to be continuous.
Microtubes can be arranged as a planar web connecting a separation distance between tubes arranged parallel to the flow path of liquids flowing inside. This can advantageously allow support material to connect to a row, referred to as a datum row, to provide support during the additive manufacturing process.
In some embodiments microtubes can be manufactured so that the microtube or tube axis is substantially parallel to the force due to gravity; in other embodiments microtubes can be manufactured so that a microtube or tube axis is substantially normal to the force due to gravity. When manufactured with a tube axis normal to the gravitational force, microtubes can be arranged so that they are secured or tied back to a datum (single supporting) row. When manufactured with a tube axis parallel to the gravitational force, microtubes can be free-standing.
In other embodiments rows and columns can be positioned using simple linear vectors allowing for a simplified analysis and design procedure. Configurations of rows and columns that provide an integral support structure can also be lighter than those that need additional material when constructed largely normal to the gravity vector. Also, hollow beam elements can be fluid passages, and appropriately designed unit cells can propagate and transport fluid across spans.
Advantageously, additively manufacturing a header, such as the header 102 of
Advantageously, 3D printing allows for superior compact manufacturing of microtube arrays by creating an integrated seal. The integrated seal allows for the creation of an AM microtube array 300 having less mass than one created by traditional brazing techniques. This in turn can allow for improved heat exchanger effectiveness Eff and improved surface transfer area.
As described above, heat exchanger effectiveness Eff can be a figure of merit for analyzing and designing a microtube heat exchanger. Effectiveness Eff, which is the generally accepted figure of merit for a heat exchanger, can also be defined as the fraction of minimum temperature difference of fluid outlet over fluid inlet.
In a two fluid heat exchanger such as a gas and liquid system where the liquid flows through a microtube array (hot fluid) exchanging heat to the gas (the cold fluid), a simplified analysis based on concepts of energy balance give Equation 1, below. Equation 1 relates the heat transfer effectiveness Eff in terms of temperatures of the hot and cold fluids measured at heat exchanger inlet/outlet ports. In Equation 1 the port temperatures are as follows: Tcold,out, the temperature of the cold fluid flowing out of the cold fluid outlet (port), Tcold,in, the temperature of the cold fluid flowing into the cold fluid input inlet (port), Thot,out, the temperature of the hot fluid flowing out of the hot fluid outlet (port), and Thot,in, the temperature of the hot fluid flowing into the hot fluid input inlet (port). As expressed in Equation 1, the heat transfer effectiveness Eff is a dimensionless figure of merit, and temperature can have dimensions of degrees (deg C.).
In addition to Equation 1, a graphical procedure may be required to analyze a heat exchanger as a function of additional parameters including, but not limited to, the microtube length L as shown in
A high performance heat exchanger design can be achieved through 3D printing by preferentially transferring heat between hot and cold fluids using a reduced length scale. Because additive manufacturing can avail various geometries at a length scale of approximately 100 microns (0.1 mm), very high performance heat exchanger designs can be possible. This in turn can lead to heat exchanger surface area densities of up to the supreme value 20,000 m2/m3. Coincident with improved compactness is reduced mass which can avail performance heat capacity values of up to 10 Watts per kilogram per degree C.
Similar to the microtube array 103 of
Although the embodiment of
Three-dimensional (3D) printing can advantageously avail the construction of a fluid-tight geometry. Fluid-tight arrays can be constructed in a non-planar arrangement. In some embodiments, fluid to air heat exchangers (alternatively called radiators) can be configured with radiators placed normal to flow. In other embodiments, a frontal area exposed to the flow can be negative to improve a transport vehicles performance. For instance, the use of zig-zags can be used to reduce an aerodynamic drag and thereby improve performance of a vehicle.
Also, as shown by the shaded regions in
The microtubes 802a-d, 804a-c, and microtube segments 806a-c can advantageously provide mechanical lattice support to an interior, hollow structure of a transport vehicle while simultaneously functioning as microtubes to carry and circulate a first fluid. The first fluid can be a fluid such as engine oil. The flow direction of the first fluid flow can be along a microtube axis. For instance as shown in
The first fluid can exchange heat with a second fluid flowing in the interstitial paths. The flow direction of the second fluid can be along a direction perpendicular to the cross-sectional side view of
The microtubes and interstitial paths of the AM microtube lattice array 800 can be sealed such that the first fluid and the second fluid do not mix. Heat can be exchanged between the first fluid and the second fluid via the microtubes. The microtubes can be additively manufactured to advantageously provide a high surface area density and to achieve high values of heat transfer effectiveness Eff. Additionally, although the embodiment shows one embodiment of an AM microtube lattice array, other embodiments having fewer or greater microtubes, microtube segments, and interstitial paths are possible. Additionally, a transport vehicle can advantageously have one or more support structures additively manufactured with AM microtube lattice arrays, thereby availing a large number of microtubes and transfer surface area for heat exchange.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Applications of additively manufactured microtube heat exchangers can include heat transfer in transport vehicles such as automobiles. By using additive manufacturing techniques, microtubes can be pleated and/or curved to compactly fit within hollow structures of a car. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for additively manufacturing heat exchangers, compact heat exchangers, and/or microtube heat exchangers.
Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Number | Name | Date | Kind |
---|---|---|---|
4676305 | Doty | Jun 1987 | A |
4928755 | Doty et al. | May 1990 | A |
5203226 | Hongou et al. | Apr 1993 | A |
5690166 | Yamaguchi | Nov 1997 | A |
5742385 | Champa | Apr 1998 | A |
5990444 | Costin | Nov 1999 | A |
6010155 | Rinehart | Jan 2000 | A |
6096249 | Yamaguchi | Aug 2000 | A |
6140602 | Costin | Oct 2000 | A |
6250533 | Otterbein et al. | Jun 2001 | B1 |
6252196 | Costin et al. | Jun 2001 | B1 |
6318642 | Goenka et al. | Nov 2001 | B1 |
6365057 | Whitehurst et al. | Apr 2002 | B1 |
6391251 | Keicher et al. | May 2002 | B1 |
6409930 | Whitehurst et al. | Jun 2002 | B1 |
6468439 | Whitehurst et al. | Oct 2002 | B1 |
6554345 | Jonsson | Apr 2003 | B2 |
6585151 | Ghosh | Jul 2003 | B1 |
6644721 | Miskech et al. | Nov 2003 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6866497 | Saiki | Mar 2005 | B2 |
6919035 | Clough | Jul 2005 | B1 |
6926970 | James et al. | Aug 2005 | B2 |
7152292 | Hohmann et al. | Dec 2006 | B2 |
7344186 | Hausler et al. | Mar 2008 | B1 |
7500373 | Quell | Mar 2009 | B2 |
7586062 | Heberer | Sep 2009 | B2 |
7637134 | Burzlaff et al. | Dec 2009 | B2 |
7710347 | Gentilman et al. | May 2010 | B2 |
7716802 | Stern et al. | May 2010 | B2 |
7745293 | Yamazaki et al. | Jun 2010 | B2 |
7766123 | Sakurai et al. | Aug 2010 | B2 |
7852388 | Shimizu et al. | Dec 2010 | B2 |
7908922 | Zarabadi et al. | Mar 2011 | B2 |
7951324 | Naruse et al. | May 2011 | B2 |
8094036 | Heberer | Jan 2012 | B2 |
8163077 | Eron et al. | Apr 2012 | B2 |
8286236 | Jung et al. | Oct 2012 | B2 |
8289352 | Vartanian et al. | Oct 2012 | B2 |
8297096 | Mizumura et al. | Oct 2012 | B2 |
8354170 | Henry et al. | Jan 2013 | B1 |
8359744 | Drabe et al. | Jan 2013 | B2 |
8383028 | Lyons | Feb 2013 | B2 |
8408036 | Reith et al. | Apr 2013 | B2 |
8429754 | Jung et al. | Apr 2013 | B2 |
8437513 | Derakhshani et al. | May 2013 | B1 |
8444903 | Lyons et al. | May 2013 | B2 |
8452073 | Taminger et al. | May 2013 | B2 |
8599301 | Dowski, Jr. et al. | Dec 2013 | B2 |
8606540 | Haisty et al. | Dec 2013 | B2 |
8610761 | Haisty et al. | Dec 2013 | B2 |
8631996 | Quell et al. | Jan 2014 | B2 |
8675925 | Derakhshani et al. | Mar 2014 | B2 |
8678060 | Dietz et al. | Mar 2014 | B2 |
8686314 | Schneegans et al. | Apr 2014 | B2 |
8686997 | Radet et al. | Apr 2014 | B2 |
8694284 | Berard | Apr 2014 | B2 |
8720876 | Reith et al. | May 2014 | B2 |
8752166 | Jung et al. | Jun 2014 | B2 |
8755923 | Farahani et al. | Jun 2014 | B2 |
8787628 | Derakhshani et al. | Jul 2014 | B1 |
8818771 | Gielis et al. | Aug 2014 | B2 |
8873238 | Wilkins | Oct 2014 | B2 |
8978535 | Ortiz et al. | Mar 2015 | B2 |
9006605 | Schneegans et al. | Apr 2015 | B2 |
9071436 | Jung et al. | Jun 2015 | B2 |
9101979 | Hofmann et al. | Aug 2015 | B2 |
9104921 | Derakhshani et al. | Aug 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9128476 | Jung et al. | Sep 2015 | B2 |
9138924 | Yen | Sep 2015 | B2 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186848 | Mark et al. | Nov 2015 | B2 |
9244986 | Karmarkar | Jan 2016 | B2 |
9248611 | Divine et al. | Feb 2016 | B2 |
9254535 | Buller et al. | Feb 2016 | B2 |
9266566 | Kim | Feb 2016 | B2 |
9269022 | Rhoads et al. | Feb 2016 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9329020 | Napoletano | May 2016 | B1 |
9332251 | Haisty et al. | May 2016 | B2 |
9346127 | Buller et al. | May 2016 | B2 |
9389315 | Bruder et al. | Jul 2016 | B2 |
9399256 | Buller et al. | Jul 2016 | B2 |
9403235 | Buller et al. | Aug 2016 | B2 |
9418193 | Dowski, Jr. et al. | Aug 2016 | B2 |
9457514 | Schwärzler | Oct 2016 | B2 |
9469057 | Johnson et al. | Oct 2016 | B2 |
9478063 | Rhoads et al. | Oct 2016 | B2 |
9481402 | Muto et al. | Nov 2016 | B1 |
9486878 | Buller et al. | Nov 2016 | B2 |
9486960 | Paschkewitz et al. | Nov 2016 | B2 |
9502993 | Deng | Nov 2016 | B2 |
9525262 | Stuart et al. | Dec 2016 | B2 |
9533526 | Nevins | Jan 2017 | B1 |
9555315 | Aders | Jan 2017 | B2 |
9555580 | Dykstra et al. | Jan 2017 | B1 |
9557856 | Send et al. | Jan 2017 | B2 |
9566742 | Keating et al. | Feb 2017 | B2 |
9566758 | Cheung et al. | Feb 2017 | B2 |
9573193 | Buller et al. | Feb 2017 | B2 |
9573225 | Buller et al. | Feb 2017 | B2 |
9586290 | Buller et al. | Mar 2017 | B2 |
9595795 | Lane et al. | Mar 2017 | B2 |
9597843 | Stauffer et al. | Mar 2017 | B2 |
9600929 | Young et al. | Mar 2017 | B1 |
9609755 | Coull et al. | Mar 2017 | B2 |
9610737 | Johnson et al. | Apr 2017 | B2 |
9611667 | GangaRao et al. | Apr 2017 | B2 |
9616623 | Johnson et al. | Apr 2017 | B2 |
9626487 | Jung et al. | Apr 2017 | B2 |
9626489 | Nilsson | Apr 2017 | B2 |
9643361 | Liu | May 2017 | B2 |
9662840 | Buller et al. | May 2017 | B1 |
9665182 | Send et al. | May 2017 | B2 |
9672389 | Mosterman et al. | Jun 2017 | B1 |
9672550 | Apsley et al. | Jun 2017 | B2 |
9676145 | Buller et al. | Jun 2017 | B2 |
9684919 | Apsley et al. | Jun 2017 | B2 |
9688032 | Kia et al. | Jun 2017 | B2 |
9690286 | Hovsepian et al. | Jun 2017 | B2 |
9700966 | Kraft et al. | Jul 2017 | B2 |
9703896 | Zhang et al. | Jul 2017 | B2 |
9713903 | Paschkewitz et al. | Jul 2017 | B2 |
9718302 | Young et al. | Aug 2017 | B2 |
9718434 | Hector, Jr. et al. | Aug 2017 | B2 |
9724877 | Flitsch et al. | Aug 2017 | B2 |
9724881 | Johnson et al. | Aug 2017 | B2 |
9725178 | Wang | Aug 2017 | B2 |
9731730 | Stiles | Aug 2017 | B2 |
9731773 | Gami et al. | Aug 2017 | B2 |
9741954 | Bruder et al. | Aug 2017 | B2 |
9747352 | Karmarkar | Aug 2017 | B2 |
9764415 | Seufzer et al. | Sep 2017 | B2 |
9764520 | Johnson et al. | Sep 2017 | B2 |
9765226 | Dain | Sep 2017 | B2 |
9770760 | Liu | Sep 2017 | B2 |
9773393 | Velez | Sep 2017 | B2 |
9776234 | Schaafhausen et al. | Oct 2017 | B2 |
9782936 | Glunz et al. | Oct 2017 | B2 |
9783324 | Embler et al. | Oct 2017 | B2 |
9783977 | Alqasimi et al. | Oct 2017 | B2 |
9789548 | Golshany et al. | Oct 2017 | B2 |
9789922 | Dosenbach et al. | Oct 2017 | B2 |
9796137 | Zhang et al. | Oct 2017 | B2 |
9802108 | Aders | Oct 2017 | B2 |
9809977 | Carney et al. | Nov 2017 | B2 |
9817922 | Glunz et al. | Nov 2017 | B2 |
9818071 | Jung et al. | Nov 2017 | B2 |
9821339 | Paschkewitz et al. | Nov 2017 | B2 |
9821411 | Buller et al. | Nov 2017 | B2 |
9823143 | Twelves, Jr. et al. | Nov 2017 | B2 |
9829564 | Bruder et al. | Nov 2017 | B2 |
9846933 | Yuksel | Dec 2017 | B2 |
9854828 | Langeland | Jan 2018 | B2 |
9858604 | Apsley et al. | Jan 2018 | B2 |
9862833 | Hasegawa et al. | Jan 2018 | B2 |
9862834 | Hasegawa et al. | Jan 2018 | B2 |
9863885 | Zaretski et al. | Jan 2018 | B2 |
9870629 | Cardno et al. | Jan 2018 | B2 |
9879981 | Dehghan Niri et al. | Jan 2018 | B1 |
9884663 | Czinger et al. | Feb 2018 | B2 |
9898776 | Apsley et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
9919360 | Buller et al. | Mar 2018 | B2 |
9931697 | Levin et al. | Apr 2018 | B2 |
9933031 | Bracamonte et al. | Apr 2018 | B2 |
9933092 | Sindelar | Apr 2018 | B2 |
9957031 | Golshany et al. | May 2018 | B2 |
9958535 | Send et al. | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9963978 | Johnson et al. | May 2018 | B2 |
9971920 | Derakhshani et al. | May 2018 | B2 |
9976063 | Childers et al. | May 2018 | B2 |
9987792 | Flitsch et al. | Jun 2018 | B2 |
9988136 | Tiryaki et al. | Jun 2018 | B2 |
9989623 | Send et al. | Jun 2018 | B2 |
9990565 | Rhoads et al. | Jun 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996890 | Cinnamon et al. | Jun 2018 | B1 |
9996945 | Holzer et al. | Jun 2018 | B1 |
10002215 | Dowski et al. | Jun 2018 | B2 |
10006156 | Kirkpatrick | Jun 2018 | B2 |
10011089 | Lyons et al. | Jul 2018 | B2 |
10011685 | Childers et al. | Jul 2018 | B2 |
10012532 | Send et al. | Jul 2018 | B2 |
10013777 | Mariampillai et al. | Jul 2018 | B2 |
10015908 | Williams et al. | Jul 2018 | B2 |
10016852 | Broda | Jul 2018 | B2 |
10016942 | Mark et al. | Jul 2018 | B2 |
10017384 | Greer et al. | Jul 2018 | B1 |
10018576 | Herbsommer et al. | Jul 2018 | B2 |
10022792 | Srivas et al. | Jul 2018 | B2 |
10022912 | Kia et al. | Jul 2018 | B2 |
10027376 | Sankaran et al. | Jul 2018 | B2 |
10029415 | Swanson et al. | Jul 2018 | B2 |
10040239 | Brown, Jr. | Aug 2018 | B2 |
10046412 | Blackmore | Aug 2018 | B2 |
10048769 | Selker et al. | Aug 2018 | B2 |
10052712 | Blackmore | Aug 2018 | B2 |
10052820 | Kemmer et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10058764 | Aders | Aug 2018 | B2 |
10058920 | Buller et al. | Aug 2018 | B2 |
10061906 | Nilsson | Aug 2018 | B2 |
10065270 | Buller et al. | Sep 2018 | B2 |
10065361 | Susnjara et al. | Sep 2018 | B2 |
10065367 | Brown, Jr. | Sep 2018 | B2 |
10068316 | Holzer et al. | Sep 2018 | B1 |
10071422 | Buller et al. | Sep 2018 | B2 |
10071525 | Susnjara et al. | Sep 2018 | B2 |
10072179 | Drijfhout | Sep 2018 | B2 |
10074128 | Colson et al. | Sep 2018 | B2 |
10076875 | Mark et al. | Sep 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10077944 | Hislop | Sep 2018 | B2 |
10081140 | Paesano et al. | Sep 2018 | B2 |
10081431 | Seack et al. | Sep 2018 | B2 |
10086568 | Snyder et al. | Oct 2018 | B2 |
10087320 | Simmons et al. | Oct 2018 | B2 |
10087556 | Gallucci et al. | Oct 2018 | B2 |
10099427 | Mark et al. | Oct 2018 | B2 |
10100542 | GangaRao et al. | Oct 2018 | B2 |
10100890 | Bracamonte et al. | Oct 2018 | B2 |
10107344 | Bracamonte et al. | Oct 2018 | B2 |
10108766 | Druckman et al. | Oct 2018 | B2 |
10113600 | Bracamonte et al. | Oct 2018 | B2 |
10118347 | Stauffer et al. | Nov 2018 | B2 |
10118579 | Lakic | Nov 2018 | B2 |
10120078 | Bruder et al. | Nov 2018 | B2 |
10124546 | Johnson et al. | Nov 2018 | B2 |
10124570 | Evans et al. | Nov 2018 | B2 |
10137500 | Blackmore | Nov 2018 | B2 |
10138354 | Groos et al. | Nov 2018 | B2 |
10144126 | Krohne et al. | Dec 2018 | B2 |
10145110 | Carney et al. | Dec 2018 | B2 |
10151363 | Bracamonte et al. | Dec 2018 | B2 |
10152661 | Kieser | Dec 2018 | B2 |
10160278 | Coombs et al. | Dec 2018 | B2 |
10161021 | Lin et al. | Dec 2018 | B2 |
10166752 | Evans et al. | Jan 2019 | B2 |
10166753 | Evans et al. | Jan 2019 | B2 |
10171578 | Cook et al. | Jan 2019 | B1 |
10173255 | TenHouten et al. | Jan 2019 | B2 |
10173327 | Kraft et al. | Jan 2019 | B2 |
10178800 | Mahalingam et al. | Jan 2019 | B2 |
10179640 | Wilkerson | Jan 2019 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183478 | Evans et al. | Jan 2019 | B2 |
10189187 | Keating et al. | Jan 2019 | B2 |
10189240 | Evans et al. | Jan 2019 | B2 |
10189241 | Evans et al. | Jan 2019 | B2 |
10189242 | Evans et al. | Jan 2019 | B2 |
10190424 | Johnson et al. | Jan 2019 | B2 |
10195693 | Buller et al. | Feb 2019 | B2 |
10196539 | Boonen et al. | Feb 2019 | B2 |
10197338 | Melsheimer | Feb 2019 | B2 |
10200677 | Trevor et al. | Feb 2019 | B2 |
10201932 | Flitsch et al. | Feb 2019 | B2 |
10201941 | Evans et al. | Feb 2019 | B2 |
10202673 | Lin et al. | Feb 2019 | B2 |
10204216 | Nejati et al. | Feb 2019 | B2 |
10207454 | Buller et al. | Feb 2019 | B2 |
10209065 | Estevo, Jr. et al. | Feb 2019 | B2 |
10210662 | Holzer et al. | Feb 2019 | B2 |
10213837 | Kondoh | Feb 2019 | B2 |
10214248 | Hall et al. | Feb 2019 | B2 |
10214252 | Schellekens et al. | Feb 2019 | B2 |
10214275 | Goehlich | Feb 2019 | B2 |
10220575 | Reznar | Mar 2019 | B2 |
10220881 | Tyan et al. | Mar 2019 | B2 |
10221530 | Driskell et al. | Mar 2019 | B2 |
10226900 | Nevins | Mar 2019 | B1 |
10232550 | Evans et al. | Mar 2019 | B2 |
10234342 | Moorlag et al. | Mar 2019 | B2 |
10237477 | Trevor et al. | Mar 2019 | B2 |
10252335 | Buller et al. | Apr 2019 | B2 |
10252336 | Buller et al. | Apr 2019 | B2 |
10254499 | Cohen et al. | Apr 2019 | B1 |
10257499 | Hintz et al. | Apr 2019 | B2 |
10259044 | Buller et al. | Apr 2019 | B2 |
10268181 | Nevins | Apr 2019 | B1 |
10269225 | Velez | Apr 2019 | B2 |
10272860 | Mohapatra et al. | Apr 2019 | B2 |
10272862 | Whitehead | Apr 2019 | B2 |
10275564 | Ridgeway et al. | Apr 2019 | B2 |
10279580 | Evans et al. | May 2019 | B2 |
10285219 | Fetfatsidis et al. | May 2019 | B2 |
10286452 | Buller et al. | May 2019 | B2 |
10286603 | Buller et al. | May 2019 | B2 |
10286961 | Hillebrecht et al. | May 2019 | B2 |
10289263 | Troy et al. | May 2019 | B2 |
10289875 | Singh et al. | May 2019 | B2 |
10291193 | Dandu et al. | May 2019 | B2 |
10294552 | Liu et al. | May 2019 | B2 |
10294982 | Gabrys et al. | May 2019 | B2 |
10295989 | Nevins | May 2019 | B1 |
10303159 | Czinger et al. | May 2019 | B2 |
10307824 | Kondoh | Jun 2019 | B2 |
10310197 | Droz et al. | Jun 2019 | B1 |
10313651 | Trevor et al. | Jun 2019 | B2 |
10315252 | Mendelsberg et al. | Jun 2019 | B2 |
10336050 | Susnjara | Jul 2019 | B2 |
10337542 | Hesslewood et al. | Jul 2019 | B2 |
10337952 | Bosetti et al. | Jul 2019 | B2 |
10339266 | Urick et al. | Jul 2019 | B2 |
10343330 | Evans et al. | Jul 2019 | B2 |
10343331 | McCall et al. | Jul 2019 | B2 |
10343355 | Evans et al. | Jul 2019 | B2 |
10343724 | Polewarczyk et al. | Jul 2019 | B2 |
10343725 | Martin et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10356341 | Holzer et al. | Jul 2019 | B2 |
10356395 | Holzer et al. | Jul 2019 | B2 |
10357829 | Spink et al. | Jul 2019 | B2 |
10357957 | Buller et al. | Jul 2019 | B2 |
10359756 | Newell et al. | Jul 2019 | B2 |
10369629 | Mendelsberg et al. | Aug 2019 | B2 |
10382739 | Rusu et al. | Aug 2019 | B1 |
10384393 | Xu et al. | Aug 2019 | B2 |
10384416 | Cheung et al. | Aug 2019 | B2 |
10389410 | Brooks et al. | Aug 2019 | B2 |
10391710 | Mondesir | Aug 2019 | B2 |
10392097 | Pham et al. | Aug 2019 | B2 |
10392131 | Deck et al. | Aug 2019 | B2 |
10393315 | Tyan | Aug 2019 | B2 |
10400080 | Ramakrishnan et al. | Sep 2019 | B2 |
10401832 | Snyder et al. | Sep 2019 | B2 |
10403009 | Mariampillai et al. | Sep 2019 | B2 |
10406750 | Barton et al. | Sep 2019 | B2 |
10412283 | Send et al. | Sep 2019 | B2 |
10416095 | Herbsommer et al. | Sep 2019 | B2 |
10421496 | Swayne et al. | Sep 2019 | B2 |
10421863 | Hasegawa et al. | Sep 2019 | B2 |
10422478 | Leachman et al. | Sep 2019 | B2 |
10425793 | Sankaran et al. | Sep 2019 | B2 |
10427364 | Alves | Oct 2019 | B2 |
10429006 | Tyan et al. | Oct 2019 | B2 |
10434573 | Buller et al. | Oct 2019 | B2 |
10435185 | Divine et al. | Oct 2019 | B2 |
10435773 | Liu et al. | Oct 2019 | B2 |
10436038 | Buhler et al. | Oct 2019 | B2 |
10438407 | Pavanaskar et al. | Oct 2019 | B2 |
10440351 | Holzer et al. | Oct 2019 | B2 |
10442002 | Benthien et al. | Oct 2019 | B2 |
10442003 | Symeonidis et al. | Oct 2019 | B2 |
10449696 | Elgar et al. | Oct 2019 | B2 |
10449737 | Johnson et al. | Oct 2019 | B2 |
10461810 | Cook et al. | Oct 2019 | B2 |
20060108783 | Ni et al. | May 2006 | A1 |
20080210413 | Hislop | Sep 2008 | A1 |
20100300666 | Hislop et al. | Dec 2010 | A1 |
20130233526 | Hislop | Sep 2013 | A1 |
20140251585 | Kusuda et al. | Sep 2014 | A1 |
20140277669 | Nardi et al. | Sep 2014 | A1 |
20150241131 | Katoh | Aug 2015 | A1 |
20160282061 | Veilleux, Jr. | Sep 2016 | A1 |
20170045313 | Fennessy | Feb 2017 | A1 |
20170113344 | Schönberg | Apr 2017 | A1 |
20170341309 | Piepenbrock et al. | Nov 2017 | A1 |
20180245853 | Sennoun | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1158408 | Sep 1997 | CN |
204830955 | Dec 2015 | CN |
105750545 | Jul 2016 | CN |
208920904 | May 2019 | CN |
2977701 | Jan 2016 | EP |
20160089 | Jun 2016 | GB |
201706431 | Apr 2017 | GB |
2559610 | Aug 2018 | GB |
2004353954 | Dec 2004 | JP |
1020150075037 | Jul 2015 | KR |
1996036455 | Nov 1996 | WO |
1996036525 | Nov 1996 | WO |
1996038260 | Dec 1996 | WO |
2003024641 | Mar 2003 | WO |
2004108343 | Dec 2004 | WO |
2005093773 | Oct 2005 | WO |
2007003375 | Jan 2007 | WO |
2007110235 | Oct 2007 | WO |
2007110236 | Oct 2007 | WO |
2008019847 | Feb 2008 | WO |
2007128586 | Jun 2008 | WO |
2008068314 | Jun 2008 | WO |
2008086994 | Jul 2008 | WO |
2008087024 | Jul 2008 | WO |
2008107130 | Sep 2008 | WO |
2008138503 | Nov 2008 | WO |
2008145396 | Dec 2008 | WO |
2009083609 | Jul 2009 | WO |
2009098285 | Aug 2009 | WO |
2009112520 | Sep 2009 | WO |
2009135938 | Nov 2009 | WO |
2009140977 | Nov 2009 | WO |
2010125057 | Nov 2010 | WO |
2010125058 | Nov 2010 | WO |
2010142703 | Dec 2010 | WO |
2011032533 | Mar 2011 | WO |
2013163398 | Oct 2013 | WO |
2014016437 | Jan 2014 | WO |
2014187720 | Nov 2014 | WO |
2014195340 | Dec 2014 | WO |
2015193331 | Dec 2015 | WO |
2016116414 | Jul 2016 | WO |
2017036461 | Mar 2017 | WO |
2018055325 | Mar 2018 | WO |
2018178619 | Oct 2018 | WO |
2019030248 | Feb 2019 | WO |
2019042504 | Mar 2019 | WO |
2019048010 | Mar 2019 | WO |
2019048498 | Mar 2019 | WO |
2019048680 | Mar 2019 | WO |
2019048682 | Mar 2019 | WO |
Entry |
---|
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn) |
US 9,809,265 B2, 11/2017, Kinjo (withdrawn) |
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn) |
International Search Report & Written Opinion dated Oct. 25, 2018, regarding PCT/US2018/041028. |
First Office Action dated Dec. 25, 2018, regarding China Application No. CN201821053501.6. |
European Supplemental Search Report for Application No. 18827392.4, dated Feb. 3, 2021. |
Chinese Office action for Patent Application No. 201810725759.4, dated Mar. 2, 2021, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190011187 A1 | Jan 2019 | US |