The present invention relates to apparatus and methods for performing an anastomosis. The apparatus may be used to perform a single or multiple anastomosis with the ability of maintaining fluid flow (e.g., blood) through the anastomosis vessel.
The occlusion of the arteries can lead to insufficient blood flow resulting in discomfort and risks of angina and ischemia. Significant blockage of blood flow in the coronary artery can result in damage to the myocardial tissue or death of the patient. In most cases, occlusion of the artery results from progressive long term deposits of plaque along the artery wall. While such deposits may be concentrated and occlude the artery at a particular site, the deposits are most certainly present throughout the arteries and the vascular system.
Coronary artery bypass graft (CABG) surgery is a surgical procedure performed in severe cases of coronary blockages. CABG procedures involve anastomosing an artery to a vascular graft which restores the flow of blood by establishing another pathway around the occluded vasculature. One problem encountered in the procedure is the need of performing the procedure while simultaneously maintaining sufficient function of the patient's circulatory system.
A CABG procedure may involve arresting the heart so that blood flow is diverted from the vessel to be anastomosed. The patient's blood circulation is maintained by a cardiopulmonary bypass (CPB). This bypass is accomplished by diverting the blood flow at selected arterial locations. The blood is diverted to the bypass system for release of carbon dioxide and subsequent oxygenation. Then, the blood is returned to the patient via a pump. Examples of these procedures are found in U.S. Pat. No. 5,799,661 to Boyd et al. which discloses a device and method for performing CABG surgery for multi-vessel coronary artery disease through port-access or closed-chest thorascopic methods; and U.S. Pat. No. 5,452,733 to Sterman et al. which discusses performing grafts with an efficacy equal to or greater than conventional open surgical bypass techniques.
Another CABG procedure involves operating on a beating heart and eliminates the need for a CPB. However, the procedure still requires diverting blood flow for a proximal anastomosis, such as one which attaches graft material (e.g., a graft vessel) to the ascending aorta.
First, the blood flow may be diverted by aortic clamping. Among the drawbacks associated with aortic clamping are an increased chance of trauma to the arteries caused by ligatures at the clamped site and the possible dislodging of plaque within the clamped vessel wall. As mentioned above, the arterial bypass may be required due to the deposits of plaque which have occluded the vessel. However, the plaque is typically present throughout the artery and is not limited to the occluded location. Clamping the artery creates a risk of plaque being released into the blood stream. This release of plaque has the potential of causing a stroke, occlusion of a smaller peripheral vessel, or other vascular trauma. In a beating heart procedure, full clamping (i.e., cross clamping) of the aorta for graft attachment at the proximal anastomosis is not feasible. Therefore a side biting clamp is used to clamp off only a portion of the cross-section of the aorta, where the proximal anastomosis is performed. This type of clamping procedure poses the same risks described above with regard to cross clamping, e.g., the risk of release of plaque and resultant cause of a stroke, occlusion of a smaller peripheral vessel, or other vascular trauma.
Second, the blood flow may be diverted by the use of a balloon catheter within the aorta, such as described in U.S. Pat. No. 5,868,702, for example. Drawbacks of using a balloon catheter in creating a seal to divert blood flow include the possibility of disturbing plaque deposits and creating particles in the blood stream, the chance that the balloon catheter may move within the aorta disrupting the seal and resulting in blood loss, and trauma to aortic tissue caused by the pressure needed to create the seal.
PCT Patent WO 98/52475 to Nobles et al. attempts to address problems associated with diverting the blood flow. Nobles et al. provides a method and device for creating an area of hemostasis within a blood vessel without interrupting the flow of blood through the vessel which eliminates the need to clamp the vessel. However, the Nobles et al. device requires the withdrawal of the hemostasis device prior to obtaining a tight seal between the graft and vessel. Therefore, since the area of hemostasis is lost upon the retrieval of the hemostasis device, the artery is open and blood is lost until the sutures are tightened.
Yet another problem related to CABG procedure lies in the procedure of suturing the vessels to create a tight seal. To ensure the integrity and patency of the anastomosis, the graft and vessel to be joined must be precisely aligned with respect to each other. If one of the tissues is affixed too close to its edge, the suture can tear through the tissue and impair both the tissue and the anastomosis. Another problem is that, even after proper alignment of the tissue, it is difficult and time consuming to pass the needle through the tissues, form the knot with the suture material, and ensure that the suture material does not become entangled. These difficulties are exacerbated by the small size of the artery and graft. Another factor contributing to the difficulty of the CABG procedure is the limited time available to complete the procedure. The surgeon must complete the graft in as little time possible due to the absence of blood flowing through the artery. If blood flow is not promptly restored, sometimes in as little as 30 minutes, the tissues the artery supplies may experience significant damage or necrosis. As mentioned above, surgeons are under pressure to reduce the cross-clamp time, yet, an incomplete suture may result in a leak in the tissue approximation between the vessel and graft. Moreover, the tissue approximation must be smooth and open. Hence, the suture cannot be hastily performed.
Additionally, the difficulty of suturing a graft to an artery using minimally invasive surgical techniques, where the surgeon uses ports to access the internal organs to perform the procedure, has effectively prevented the safe use of complicated suturing technology in cardiovascular surgical procedures. Accordingly, many procedures are performed invasively and require a stemotomy, an opening of the sternum. As a result, the recovery times for patients is significantly increased. U.S. Pat. No. 5,868,763 to Spence et al. attempts to circumvent the suturing process by attaching the vessels to a cuff device. Spence et al. utilizes a passageway for continued blood flow so there is no clamping of the artery.
Houser et al., in U.S. Pat. No. 5,989,276, discloses various devices and techniques for performing bypass, one of which includes a device which can be intralumenally originated. Various other clamping arrangements are provided for securing a graft to a vessel without the use of sutures or other fasteners.
All of the problems discussed above are multiplied in those cases where a multiple anastomosis is required. In those cases where multiple bypass procedures are performed, the patient will naturally be subject to increased risks as multiple grafts must be sutured to perform the bypass.
There remains a need for improved anastomosis systems.
The present invention involves apparatus and methods for connecting tissue. This invention may, for example, be used to secure one vessel to another, such as in a vascular anastomosis while maintaining blood flow within the vessel.
According to one aspect of the invention, an anastomosis apparatus is provided comprising a tubular member having an end with an edge adapted to form an opening in a vessel wall and an anchor member, which comprises a flexible shaft and a piercing member, slidably coupled to the tubular member. Preferably, a generally circular centering disk with a plurality of spikes is also provided to slide down along the flexible shaft of the anchor member.
During the surgery, a physician pushes the shaft of the anchor member to insert the piercing member through the vessel wall. The piercing member is then pulled back against the vessel wall. Once the piercing member is in place against the inner wall of the vessel, the centering disk is put in place and pushed against the outer wall of the vessel, thereby clamping the vessel wall between the centering disk and the piercing member. The tubular member is then moved over the shaft, centered by the disk and rotated to cut an opening through the vessel wall. Thereafter, the piercing member is used to coordinate with the centering disk to retain and retrieve the tissue cut by the tubular member. Next, an occlusion member is advanced within the tubular member through the opening in the vessel wall in order to substantially occlude such opening and form an area of hemostasis. The tubular member can then be retrieved, leaving the occlusion member in place, after which a graft is slid down along the occlusion member shaft for creating an anastomosis with the vessel.
According to one embodiment, the occlusion member comprises a cannula. According to another embodiment, the occlusion member comprises a radially expandable member, which can be an expandable brush-like member, an umbrella, a flexible cup or an inflatable balloon.
According to another aspect of the invention a cannula having an end portion adapted to pierce through a vessel is provided. The cannula may be passed through a vessel wall and a graft secured to the vessel adjacent to the cannula to facilitate an anastomosis without clamping the vessel, thereby avoiding the risk of dislodgment of plaque from the inner wall of the vessel which is incurred with clamping.
According to another aspect of the invention, a trocar adapted to receive the cannula and allow it to pivot is provided. The cannula, thus, may be repositioned to pierce the vessel wall at different locations and perform multiple anastomoses without relocation of the trocar in the vessel wall.
According to another aspect of the invention, a surgical fastener or clip cartridge is provided. One or more surgical fasteners may be loaded in the cartridge with ends of each fastener selectively releasable from the cartridge to anchor in either the graft or vessel to which the graft is to be attached. According to one cartridge embodiment, first and second tubular members are slidably coupled to one another and at least one surgical fastener placed therein with one end of the fastener engaging the first tubular member and another end of the fastener engaging the second tubular member.
According to yet another aspect of the invention, a dual-stage release fastener is provided which includes a clip movable between an open and a closed configuration and having a memory biased to the closed configuration. A first mechanical restraint is coupled to a first portion of the clip and is adapted to bias the first portion toward the open configuration. A second mechanical restraint is coupled to a second portion of the clip and is adapted to bias the second portion toward the open configuration.
The first and second mechanical restraints may be independently manipulatable to allow independent closure of the first and second portions of the clip.
According to still another aspect of the invention, an anastomosis apparatus is provided comprising a tubular member having an end with an edge adapted to form an opening in a vessel wall and an anchor member, which comprises a flexible shaft and a piercing member, slidably coupled to the tubular member. Preferably, a generally circular centering disk with a plurality of spikes is also provided to slide down along the flexible shaft of the anchor member. An adapter is mounted on the tubular member that forms the opening. The adapter includes wells in which needles are held in a predetermined orientation adapted for piercing through the vessel wall from the inside out, upon passing the adapter into the vessel and then pulling it back to perform the piercing action. Two-stage release fasteners may be used in conjunction with the adapter so as to affix the fasteners to the vessel after piercing it with the needles and then fixing the fasteners to a graft in a later operation.
The above is a brief description of some advantages of the present invention and deficiencies in the prior art. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, and claims.
The present invention generally involves methods and apparatus for performing an anastomosis and may be used, for example, in bypass procedures. As used herein, the term graft includes any of the following: hemografts, autologous grafts, xenografts, allografts, alloplastic materials, and combinations of the foregoing.
Referring to
According to one aspect of the invention, a cannula having a distal portion adapted to pierce at least one wall portion of a vessel and a proximal portion is provided. The cannula may be used, for example, to create an area of hemostasis within the vessel and facilitate an anastomosis while allowing blood to flow through the vessel. In a preferred method, the cannula is passed through a vessel wall from the interior to the exterior of the vessel to create a hemostasis area within the cannula and within the vessel hole created thereby, as will be described in more detail below.
Referring to
The cannula may be introduced endovascularly or passed through a vessel wall to position it within a vessel. In the latter case, a trocar may be used. According to another aspect of the invention, a trocar having a varying diameter lumen may be used to allow the angular position of the cannula to be changed. Referring to
Referring to
According to another aspect of the invention, a surgical fastener or clip cartridge or retainer is provided and may be used with any cannula described above to make an anastomosis. Referring to
Referring to
Referring to
Rod (610), which extends through the cannula proximal portion and out from its other end, is pulled to unlock and allow release of other ends of the fasteners (
According to another aspect of the invention as shown in
The shaft (707) may be formed from medically acceptable polymers, stainless steel or Nitinol, for example and is flexible, yet stiff enough to have sufficient column strength to push the piercing member through the vessel wall. For normal CABG surgery, the tubular punch (704) preferably has an inner diameter between about 3.0-6.0 mm and a wall thickness between about 0.150-0.200 mm.
Whether barbed, umbrella-like, or some other expanding configuration, the piercing member (708) is tapered, and preferably pointed, in its “pre-entry” configuration, in order to pierce the vessel wall (
Once piercing member (708) has pierced the wall of vessel (714) and the operator has either rotated the shaft (707) (barbed configuration) or expanded the piercing member and pulled it back against the inner wall of the vessel (714) (umbrella-like or other expanding configuration), a generally circular centering disk (720) may be slid down along the flexible shaft (707), as shown in
The centering disk (720) may also function to keep the flexible shaft (707) at the center of the tubular punch (704) and coordinate with the piercing member to retain and retrieve the tissue cut (734), as shown in
With regard to the operation procedure, after the physician pushes the shaft to insert the piercing member (708) through the vessel wall, and after the piercing member is deployed (when using an umbrella-type actuator), or the barb type piercing member has been rotated, he or she will twist the punch (704) to create an opening in the vessel wall. Thereafter, the severed tissue (734) is held in place between the piercing member (708) and the centering disk (720), and retrieved through the inner lumen of the punch.
After the retrieval of the severed tissue (734), an occlusion device is inserted in order to prevent blood loss through the opening in the vessel wall. The occlusion device comprises two coaxial cylinders (726, 727) as shown in
For normal CABG surgery, the outer diameters of the inner and outer cylinders are less than about 3 mm and about 6 mm respectively. Preferably, the inner cylinder comprises polymer (polethylenes, polyurethanes, polyamides, polypropylenes) or other acceptable preferred materials, or stainless steel) materials such that it is flexible enough to allow side-to-side movement, and yet has sufficient column strength for the physician to push or pull it through.
Disk (720) may have a friction feature or ratchet (e.g., like a tie wrap) or some type of self-locking mechanism against shaft (707) to frictionally engage or otherwise resist backwards movement of the disk along the shaft. Thus, once the disk is engaged against the tissue of the vessel wall, it sandwiches the tissue cut (734), in cooperation with the piercing member on the opposite side of the vessel wall.
According to one embodiment of the occlusion device illustrated in
Referring to
As shown in
Once an area of hemostasis is created with the bristles (702) in place, a graft (712) is brought down over the outer cylinder (726) in place to form an anastomosis (
After the anastomosis is formed, the outer cylinder (726) is brought down over the bristles (702) to force them back into a compressed state within the outer cylinder (
One embodiment of the bristles (702) comprises deformable wires made from a shape memory alloy. A nickel titanium (Nitinol) based alloy may be used, for example. The Nitinol may include additional elements which affect the yield strength or the temperature at which particular pseudoelastic or shape transformation characteristics occur. The shape memory alloy preferably exhibits pseudoelastic (e.g., superelastic) behavior when deformed at a temperature slightly above its transformation temperature. At least a portion of the shape memory alloy is converted from its austenitic phase to its martensitic phase when the wire is in its deformed configuration. As the stress is removed, the material undergoes a martensitic to austenitic conversion and springs back to its original undeformed configuration.
When the bristles are positioned within the outer cylinder (726) in their deformed configuration, a stress is present to maintain the bristles tightly therein. In order for the pseudoelastic bristles to retain sufficient compression force in their undeformed configuration, the bristles should not be stressed past their yield point in their deformed configuration to allow complete recovery of the bristles to their undeformed configuration. It is to be understood that the bristles may comprise other materials as well. Depending upon the size of the vessel and the graft, the length of the bristles extending from the distal end of the inner cylinder (727) can range from about 5 mm to about 20 mm.
According to another embodiment of the occlusion device as shown in
After the opening in the vessel wall is created, the anchor member (708) and the optional centering disk (720) are withdrawn from the vessel along with the severed tissue. The physician then inserts through the punch the occlusion member which comprises two generally coaxial cylinders (726, 727) and the membrane (800) in a deflated state. When the membrane (800) is at least substantially within the vessel (
Each of the fasteners used with this embodiment of the occlusion device has two needles (722, 725), one at each end. The fasteners are removably attached to the membrane and inserted into the vessel together with the membrane. The fasteners (721) can be glued to the membrane or attached to the membrane through a mechanical fitting such as a sliding or snap fit made of an acceptable material which may be mounted or insert molded into the membrane.
Each fastener is so removably attached to the membrane that only one needle (722) remains inside the vessel after the membrane (800) is inflated. As the membrane is slightly pulled back by the physician, the needle inside the vessel pierces through the vessel wall. Such needle (722) is then pulled completely out of the vessel. As the needle (722) is being so pulled, it causes the fastener to separate from the membrane and moves the suture (723) and the memory coil (721) along with it (
Referring to
As shown in
Referring to
Release mechanism members (121) have tapered ends (126), which are configured for positioning between coil (26) and fastener wire (34) as shown in
Flexible member (19) is threaded through channel (134) and between tapered member (3′) and annular member (115). When coil (26) is in a compressed state as shown in
As shown in
When coil (26) is in its free state (with the wire in its undeformed configuration), loops of the coil are generally spaced from one another and do not exert any significant force on the wire (34). When the coil (26) is compressed (with the wire (34) in its deformed configuration), loops of the coil on the inner portion of the coil are squeezed together with a tight pitch so that the loops are contiguous with one another while loops on the outer portion of the coil are spaced from one another. This is due to the compressed inner arc length of coil (26) and the expanded outer arc length of the coil. The compression of the loops on the inner portion of coil (26) exerts a force on the inner side of wire (34) which forces the wire to spread open (i.e., tends to straighten the wire from its closed configuration to its open configuration).
According to a further aspect of the occlusion device as shown in
In order to facilitate the expansion of the sheath (850) with the membrane to occlude the opening in the vessel wall, the sheath (850) overlaps itself in a roll-up fashion, as shown in
After occlusion of the opening by the membrane (800) and the sheath (850), the punch (704) and the outer cylinder (726) can be withdrawn and a graft (712) is slid down (
The sheath (850) may be made of superelastic materials such as Nitinol or stainless steel, etc. as described above. Alternatively, the sheath may be made of polymeric materials, e.g., thin polycarbonate, polyurethane, etc. In order to facilitate the expansion of the sheath with the membrane, it is preferable that the sheath has a wall thickness of less than about 0.5 mm.
According to another further aspect of the occlusion device as illustrated in
Each expansion member is attached to its adjacent members by a membrane (860). The membrane is held to the expansion member by e.g., glue, sandwich construction or other equivalent known techniques. The expansion members are arranged in a radially projecting pattern from the distal end of the inner cylinder (726) so that they can expand outwardly and form an umbrella when they exit the outer cylinder (726) (
The membrane (860) can be made in any suitable material which can block flow of fluid, particularly blood, therethrough. In choosing the material for the membrane, factors such as strength, flexibility, or bonding to the expansion elements should be considered. For example, the membrane may comprise latex, silicone, PET, etc.
In another example of the present invention shown in
The adapter (740), on the other hand, is preferably made of biocompatible plastics, such as ABS, polyurethanes, polycarbonates, or other medically compatible and acceptable polymers, for ease and less expense in manufacturing, although the adapter (740) may also be formed of the same metals used in making the cutting member (704′). The adapter (740) has about the same outside diameter as the tube of the cutting member (704′), or if slightly larger in diameter, is tapered (742) so as to facilitate the insertability of the adapter through the opening in the vessel (714). The walls of the adapter (740) are provided with bores or wells (744) that are dimensioned to snugly hold needles (725′) therein. The wells (744) may be mechanically formed in the adapter (740) as by boring, melting, electrodischarge machining, etc., or may be molded in during the formation of the adapter, for example. The wells (744) are formed so as to fit closely enough with the needles (725′) so as to maintain the needles at the desired angular orientation with respect to the longitudinal axis of the adapter (740), but not so tight as to form an impediment to their removal by hand or with a hand tool at the appropriate time during the procedure. The adapter orients the needles at an angle of between about 10 and 45 degrees. In one preferred example, the angle is about 30 degrees.
After formation of the opening in the vessel (714) wall and removal of the tissue plug (734) using anchor member (728) and disk (720), as shown in
In this embodiment, the needles (725′) preferably, although not necessarily, differ from needles (721) in that the needles (725′) are preferably substantially straight, while needles (721) are preferably curved. Further, this embodiment preferably, although not necessarily, uses two-stage release fasteners (821) for sequentially fastening the anastomosis as further described below.
Turning to
Coils (724′) are substantially the same as any of the coils (724) or (26) described above with the exception of being shorter to allow serial placement of two coils (724′) on a single wire (825) to enable separate and independent actuation and closing of opposite sides of the fastener (721). Release mechanisms (28a), which are preferably, but not necessarily the same, are releasably coupled to the respective enlarged ends (36) at opposite ends of the wire (825), and are, in turn coupled to the needles (722) and (725) by flexible members (18) and (19) respectively. The release mechanisms (28a) in this embodiment are preferably cable type release mechanisms, as described in copending application Ser. No. 09/259,705 entitled “Tissue Connector Apparatus with Cable Release”, and as shown above in
Assembly of the fastener (821) into the open position as shown in
A first coil (724′) is next slid over the wire (825) and an end of the coil (724′) is abutted against or placed adjacent to the enlarged portion (36). Next, a first retainer (836) is slid over the wire (825) and abutted against the opposite end of the coil (724′), after which a second retainer (836) is slid over the wire and placed adjacent the first retainer (836). A second coil (724′) is then slid over the wire (825) and a first end is abutted against the second retainer (836), while the second end of the second coil (724′) is used to determine where the wire (825) is cut to length. Generally, the wire (825) is cut so that it extends far enough, so that once the enlarged portion is formed at the end, the first and second portions are symmetric.
After cutting to length, the second end of the wire (825) is formed into an enlarged portion (836), preferably by electrodischarge. A first release mechanism (28a) is next fitted over the first enlarged portion (36), preferably according to the techniques described in copending application Ser. No. 09/259,705 with regard to the cable release. The first retainer (836) is then slid against the coil (724′) to compress it to a position that forces the first side of the fastener into its open configuration. The first retainer (836) is then swedged at its location to maintain the first portion of the fastener in the open position. Although swedging is preferred, welding or other equivalent methods of fixation may also be used to fix the retainer in place.
Likewise, a second release mechanism (28a) is fitted over the second enlarged portion (36), and the second retainer (836) is then slid against the second coil (724′) to compress it to a position that forces the second side of the fastener into its open configuration. The second retainer (836) is then swedged at its location to maintain the second portion of the fastener in the open position, which results in the entire fastener (821) now being in its open position, as shown in
Actuation of the first release mechanism (28a) is by squeezing or compression of a portion of the mechanism, which causes it to open, thereby releasing the enlarged portion (36). This, in turn allows a re-expansion of the coil (724′) thereby relieving the opening stresses against the first portion of the wire (825), thereby allowing the memory set of the wire (825) (and the memory set of the coil (724′) when a double memory configuration is used) to return the first portion of the wire (825) to the closed or memory position, as shown in
Actuation of the second release mechanism (28a) is performed independently of the first release mechanism, and therefor allows an independent closing of the second portion of the fastener (821), as shown in
Returning to
Once the fasteners (821) have been fixed into the wall of the vessel (714), the flexible sealing member (900) is expanded to establish the occlusion by removing the restraining sheath (950) from its restraining position, as shown in
After removal of the tube cutter assembly, a graft (712) is positioned over the restraining sheath (950) and into position at the anastomosis site as shown in
After all of the fasteners (821) have been fully closed to complete the approximation and anastomosis of the vessel (714) and graft (712), the restraining sheath (950) is slid back down over the flexible sealing member (900) to compress it and surround it as shown in
The above is a detailed description of particular embodiments of the invention. It is recognized that departures from the disclosed embodiments may be made within the scope of the invention and that obvious modifications will occur to a person skilled in the art. The full scope of the invention is set out in the claims that follow and their equivalents. Accordingly, the claims and specification should not be construed to unduly narrow the full scope of protection to which the invention is entitled.
This application is a continuation of U.S. patent application Ser. No. 09/540,636, entitled Apparatus and Methods for Anastomosis and filed Mar. 31, 2000, which application is incorporated by reference in its entirey and to which we claim priority under 35 U.S.C §120 and which application claims priority to U.S. Provisional Application No. 60/127,862, which was filed on Apr. 5, 1999, and which Provisional Application was incorporated therein, by reference thereto, in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
43098 | Cooper | Jun 1864 | A |
636728 | Kindel | Nov 1899 | A |
655190 | Bramson | Aug 1900 | A |
1087186 | Scholfield | Feb 1914 | A |
1167014 | O'Brien | Jan 1916 | A |
1539221 | John | May 1925 | A |
1583271 | Biro | May 1926 | A |
1625602 | Gould et al. | Apr 1927 | A |
1867624 | Hoffman | Jul 1932 | A |
2201610 | Dawson | May 1940 | A |
2240330 | Flagg et al. | Apr 1941 | A |
2256382 | Dole | Sep 1941 | A |
2264679 | Ravel | Dec 1941 | A |
2413142 | Jones et al. | Dec 1946 | A |
2430293 | Howells | Nov 1947 | A |
2505358 | Gusberg et al. | Apr 1950 | A |
2516710 | Mascolo | Jul 1950 | A |
2715486 | Marcoff-Moghadam | Aug 1955 | A |
2890519 | Storz, Jr. | Jun 1959 | A |
2940452 | Smialowski | Jun 1960 | A |
3055689 | Jorgensen | Sep 1962 | A |
3057355 | Smialowski | Oct 1962 | A |
3081786 | Miles | Mar 1963 | A |
3082426 | Miles | Mar 1963 | A |
3143742 | Cromie | Aug 1964 | A |
3150379 | Brown | Sep 1964 | A |
3180337 | Smialowski | Apr 1965 | A |
3249104 | Hohnstein | May 1966 | A |
3274658 | Pile | Sep 1966 | A |
3452742 | Muller | Jul 1969 | A |
3480017 | Shute | Nov 1969 | A |
3506012 | Brown | Apr 1970 | A |
3509882 | Blake | May 1970 | A |
3547103 | Cook | Dec 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3608095 | Barry | Sep 1971 | A |
3638654 | Akuba | Feb 1972 | A |
3656185 | Carpentier | Apr 1972 | A |
RE27391 | Merser | Jun 1972 | E |
3753438 | Wood et al. | Aug 1973 | A |
3776237 | Hill et al. | Dec 1973 | A |
3802438 | Wolvek | Apr 1974 | A |
3825009 | Williams | Jul 1974 | A |
3837345 | Matar | Sep 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3875648 | Bone | Apr 1975 | A |
3905403 | Smith et al. | Sep 1975 | A |
3908662 | Razqulov et al | Sep 1975 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3958576 | Komiya | May 1976 | A |
3976079 | Samuels | Aug 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4018228 | Goosen | Apr 1977 | A |
4038725 | Keefe | Aug 1977 | A |
4042979 | Angell | Aug 1977 | A |
4073179 | Hickey et al. | Feb 1978 | A |
4103690 | Harris | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4137922 | Leininger et al. | Feb 1979 | A |
4140125 | Smith | Feb 1979 | A |
4170990 | Baumgart et al. | Oct 1979 | A |
4185636 | Gabbay et al. | Jan 1980 | A |
4192315 | Hilzinger et al. | Mar 1980 | A |
4214587 | Sakura | Jul 1980 | A |
4217902 | March | Aug 1980 | A |
4243048 | Griffin | Jan 1981 | A |
4324248 | Perlin | Apr 1982 | A |
4345601 | Fukuda | Aug 1982 | A |
4352358 | Angelchik | Oct 1982 | A |
4366819 | Kaster | Jan 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4416266 | Baucom | Nov 1983 | A |
4456017 | Miles | Jun 1984 | A |
4465071 | Samuels et al. | Aug 1984 | A |
4470415 | Wozniak | Sep 1984 | A |
4470533 | Schuler | Sep 1984 | A |
4474181 | Schenck | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4492229 | Grunwald | Jan 1985 | A |
4522207 | Kleiman et al. | Jun 1985 | A |
4523592 | Daniel | Jun 1985 | A |
4532927 | Miksza | Aug 1985 | A |
4535764 | Ebert | Aug 1985 | A |
4549545 | Levy | Oct 1985 | A |
4553542 | Schenck et al. | Nov 1985 | A |
4576605 | Kaidash et al. | Mar 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4586503 | Kirsch et al. | May 1986 | A |
4593693 | Schenck | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4612932 | Caspar et al. | Sep 1986 | A |
4622970 | Wozniak | Nov 1986 | A |
4624255 | Schenck et al. | Nov 1986 | A |
4637380 | Orejola | Jan 1987 | A |
4641652 | Hutterer et al. | Feb 1987 | A |
4665906 | Jervis | May 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4683895 | Pohndorf | Aug 1987 | A |
4706362 | Strausburg | Nov 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4732151 | Jones | Mar 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4820298 | Leveen et al. | Apr 1989 | A |
4844318 | Kunreuther | Jul 1989 | A |
4873975 | Walsh et al. | Oct 1989 | A |
4890615 | Caspari et al. | Jan 1990 | A |
4896668 | Popoff et al. | Jan 1990 | A |
4899744 | Fujitsuka et al. | Feb 1990 | A |
4901721 | Hakki | Feb 1990 | A |
4923461 | Caspari et al. | May 1990 | A |
4924866 | Yoon | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4929240 | Kirsch et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
4932955 | Merz et al. | Jun 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4950015 | Nejib et al. | Aug 1990 | A |
4950283 | Dzubow et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4990152 | Yoon | Feb 1991 | A |
4991567 | McCuen et al. | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5007920 | Torre | Apr 1991 | A |
5011481 | Myers et al. | Apr 1991 | A |
5020713 | Kunreuther | Jun 1991 | A |
5026379 | Yoon | Jun 1991 | A |
5032127 | Frazee et al. | Jul 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5035702 | Taheri | Jul 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5074874 | Yoon et al. | Dec 1991 | A |
5088692 | Weiler | Feb 1992 | A |
5100418 | Yoon | Mar 1992 | A |
5100421 | Christoudias | Mar 1992 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5127413 | Ebert | Jul 1992 | A |
5129913 | Ruppert | Jul 1992 | A |
5152769 | Baber | Oct 1992 | A |
5154189 | Oberlander | Oct 1992 | A |
5158566 | Pianetti | Oct 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5174087 | Bruno | Dec 1992 | A |
5178634 | Ramos Martinez | Jan 1993 | A |
5192294 | Blake | Mar 1993 | A |
5196022 | Bilweis | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5207694 | Broome | May 1993 | A |
5217027 | Hermens | Jun 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5221259 | Weldon et al. | Jun 1993 | A |
5222961 | Nakao et al. | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5234447 | Kaster et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5258000 | Gianturco | Nov 1993 | A |
5258011 | Drews | Nov 1993 | A |
5261917 | Hasson et al. | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5282825 | Muck et al. | Feb 1994 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5304117 | Wilk | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5312436 | Coffey et al. | May 1994 | A |
5314468 | Ramos Martinez | May 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334196 | Scott et al. | Aug 1994 | A |
5336233 | Chen | Aug 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5346459 | Allen | Sep 1994 | A |
5350420 | Cosgrove et al. | Sep 1994 | A |
5353804 | Kornberg et al. | Oct 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5364406 | Sewell | Nov 1994 | A |
5366459 | Yoon | Nov 1994 | A |
5366462 | Kaster et al. | Nov 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5374268 | Sander | Dec 1994 | A |
5376096 | Foster | Dec 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5385606 | Kowanko | Jan 1995 | A |
5387227 | Grice | Feb 1995 | A |
5403331 | Chesterfield | Apr 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5403338 | Milo | Apr 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5413584 | Schulze | May 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5437685 | Blasnik | Aug 1995 | A |
5439479 | Schichman et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5451231 | Rabenau et al. | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5454834 | Boebel et al. | Oct 1995 | A |
5456246 | Schmiedling et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5464447 | Fogarty et al. | Nov 1995 | A |
5474557 | Mai | Dec 1995 | A |
5480405 | Yoon | Jan 1996 | A |
5486187 | Schenck | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5488958 | Topel et al. | Feb 1996 | A |
5496334 | Klundt et al. | Mar 1996 | A |
5499990 | Schulken et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5522884 | Wright | Jun 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5533236 | Tseng | Jul 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5556411 | Taoda et al. | Sep 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5571119 | Atala | Nov 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5582619 | Ken | Dec 1996 | A |
5584879 | Reimold et al. | Dec 1996 | A |
5586983 | Sanders et al. | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5593424 | Northrupp, III | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5601571 | Moss | Feb 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5601600 | Ton | Feb 1997 | A |
5603718 | Xu | Feb 1997 | A |
5609608 | Bennett et al. | Mar 1997 | A |
5628757 | Hasson | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5632753 | Loeser | May 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643305 | Al-Tameem | Jul 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5660186 | Bachir | Aug 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5676670 | Kim | Oct 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5690662 | Chiu et al. | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5697913 | Sierocuk et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700271 | Whitfield et al. | Dec 1997 | A |
5702412 | Popov et al. | Dec 1997 | A |
5707362 | Yoon | Jan 1998 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5709695 | Northrup, III | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5725539 | Matern | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5728135 | Bregen et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5746753 | Sullivan et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766189 | Matsumo | Jun 1998 | A |
5769870 | Salahich et al. | Jun 1998 | A |
5776154 | Taylor et al. | Jul 1998 | A |
5779718 | Green et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5797920 | Kim | Aug 1998 | A |
5797933 | Snow et al. | Aug 1998 | A |
5797934 | Rygaard | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810848 | Hayhurst | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5824002 | Gentelia et al. | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5827265 | Glinsky et al. | Oct 1998 | A |
5827316 | Young et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5851216 | Allen | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868763 | Spence et al. | Feb 1999 | A |
5868770 | Rygaard | Feb 1999 | A |
5871528 | Camps et al. | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5882340 | Yoon | Mar 1999 | A |
5891130 | Palermo et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5893369 | LeMole | Apr 1999 | A |
5893865 | Swindle et al. | Apr 1999 | A |
5893886 | Zegdi et al. | Apr 1999 | A |
5895394 | Kienzle et al. | Apr 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5911352 | Racenet et al. | Jun 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5931842 | Goldsteen et al. | Aug 1999 | A |
5941434 | Green | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941888 | Wallace et al. | Aug 1999 | A |
5941908 | Goldsteen et al. | Aug 1999 | A |
5944730 | Nobles et al. | Aug 1999 | A |
5947991 | Cowan | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5951600 | Lemelson | Sep 1999 | A |
5954735 | Rygaard | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5957938 | Zhu et al. | Sep 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5961481 | Sterman et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5964772 | Bolduc et al. | Oct 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5972017 | Berg et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5976069 | Navia et al. | Nov 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5976161 | Kirsch et al. | Nov 1999 | A |
5976164 | Bencini et al. | Nov 1999 | A |
5976178 | Goldsteen et al. | Nov 1999 | A |
5984917 | Fleischmann et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
5989278 | Mueller | Nov 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6001110 | Adams | Dec 1999 | A |
6007544 | Kim | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6013084 | Ken et al. | Jan 2000 | A |
6022367 | Sherts | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6026814 | LaFontaine et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033419 | Hamblin, Jr. et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6036703 | Evans et al. | Mar 2000 | A |
6036710 | McGarry et al. | Mar 2000 | A |
6042607 | Williamson et al. | Mar 2000 | A |
6056751 | Fenton | May 2000 | A |
6063070 | Eder | May 2000 | A |
6066148 | Rygaard | May 2000 | A |
6068608 | Davis et al. | May 2000 | A |
6068637 | Popov et al. | May 2000 | A |
6071295 | Takahashi | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6080114 | Russin | Jun 2000 | A |
6080175 | Hogendijk | Jun 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6106538 | Shiber | Aug 2000 | A |
6110188 | Narciso | Aug 2000 | A |
6113611 | Allen et al. | Sep 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6120524 | Taheri | Sep 2000 | A |
6132397 | Davis et al. | Oct 2000 | A |
6132438 | Fleischmann et al. | Oct 2000 | A |
6139540 | Rost et al. | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6152937 | Peterson et al. | Nov 2000 | A |
6159165 | Ferrera et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165185 | Shennib et al. | Dec 2000 | A |
6165196 | Stack et al. | Dec 2000 | A |
6171319 | Nobles et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6176413 | Heck et al. | Jan 2001 | B1 |
6176864 | Chapman | Jan 2001 | B1 |
6179840 | Bowman | Jan 2001 | B1 |
6179848 | Solem | Jan 2001 | B1 |
6179849 | Yencho et al. | Jan 2001 | B1 |
6180848 | Flament et al. | Jan 2001 | B1 |
6183512 | Howanec et al. | Feb 2001 | B1 |
6190373 | Palermo et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6197037 | Hair | Mar 2001 | B1 |
6217611 | Klostermeyer | Apr 2001 | B1 |
6221083 | Mayer | Apr 2001 | B1 |
6234995 | Peacock | May 2001 | B1 |
6241738 | Dereume | Jun 2001 | B1 |
6241741 | Duhaylongsod et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6254570 | Rutner et al. | Jul 2001 | B1 |
6254615 | Bolduc et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6280460 | Bolduc et al. | Aug 2001 | B1 |
6283979 | Mers Kelly et al. | Sep 2001 | B1 |
6283993 | Cosgrove et al. | Sep 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6299598 | Bander | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6331158 | Hu et al. | Dec 2001 | B1 |
6332468 | Benetti | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6346112 | Adams | Feb 2002 | B2 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6358258 | Arcia et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6371964 | Vargas et al. | Apr 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6391038 | Vargas et al. | May 2002 | B2 |
6395015 | Borst et al. | May 2002 | B1 |
6402764 | Hendricksen et al. | Jun 2002 | B1 |
6406492 | Lytle | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6409739 | Nobles et al. | Jun 2002 | B1 |
6409758 | Stobie et al. | Jun 2002 | B2 |
6416527 | Berg et al. | Jul 2002 | B1 |
6418597 | Deschenes et al. | Jul 2002 | B1 |
6419658 | Restelli et al. | Jul 2002 | B1 |
6419681 | Vargas et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6425900 | Knodel et al. | Jul 2002 | B1 |
6428550 | Vargas et al. | Aug 2002 | B1 |
6428555 | Koster, Jr. | Aug 2002 | B1 |
6443158 | LaFontaine et al. | Sep 2002 | B1 |
6451048 | Berg et al. | Sep 2002 | B1 |
6461320 | Yencho et al. | Oct 2002 | B1 |
6475222 | Berg et al. | Nov 2002 | B1 |
6478804 | Vargas et al. | Nov 2002 | B2 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6497671 | Ferrera et al. | Dec 2002 | B2 |
6497710 | Yencho et al. | Dec 2002 | B2 |
6514265 | Ho et al. | Feb 2003 | B2 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6524338 | Gundry | Feb 2003 | B1 |
6533812 | Swanson et al. | Mar 2003 | B2 |
6537288 | Vargas et al. | Mar 2003 | B2 |
6547799 | Hess et al. | Apr 2003 | B2 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6562053 | Schulze et al. | May 2003 | B2 |
6575985 | Knight et al. | Jun 2003 | B2 |
6589255 | Schulze et al. | Jul 2003 | B2 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6607542 | Wild et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6635214 | Rapacki et al. | Oct 2003 | B2 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6648900 | Fleischman et al. | Nov 2003 | B2 |
6651670 | Rapacki et al. | Nov 2003 | B2 |
6651672 | Roth | Nov 2003 | B2 |
6652540 | Cole et al. | Nov 2003 | B1 |
6652541 | Vargas et al. | Nov 2003 | B1 |
6660015 | Berg et al. | Dec 2003 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6695859 | Golden et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709442 | Miller et al. | Mar 2004 | B2 |
6712829 | Schulze | Mar 2004 | B2 |
6719768 | Cole et al. | Apr 2004 | B1 |
6743243 | Roy et al. | Jun 2004 | B1 |
6749622 | McGuckin et al. | Jun 2004 | B2 |
6776782 | Schulze | Aug 2004 | B2 |
6776784 | Ginn | Aug 2004 | B2 |
6776785 | Yencho et al. | Aug 2004 | B1 |
6786915 | Akerfeldt et al. | Sep 2004 | B2 |
6802847 | Carson et al. | Oct 2004 | B1 |
6821286 | Carranza et al. | Nov 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6955679 | Hendricksen et al. | Oct 2005 | B1 |
6960221 | Ho et al. | Nov 2005 | B2 |
6979337 | Kato | Dec 2005 | B2 |
6979338 | Loshakove et al. | Dec 2005 | B1 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7056330 | Gayton | Jun 2006 | B2 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7070618 | Streeter | Jul 2006 | B2 |
7182769 | Ainsworth et al. | Feb 2007 | B2 |
7182869 | Catlin et al. | Feb 2007 | B2 |
7220268 | Blatter | May 2007 | B2 |
20010018592 | Schaller et al. | Aug 2001 | A1 |
20010018593 | Nguyen et al. | Aug 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021856 | Bolduc et al. | Sep 2001 | A1 |
20010047181 | Ho et al. | Nov 2001 | A1 |
20020010490 | Schaller et al. | Jan 2002 | A1 |
20020042623 | Blatter et al. | Apr 2002 | A1 |
20020082614 | Logan et al. | Jun 2002 | A1 |
20020099395 | Acampora et al. | Jul 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020165561 | Ainsworth et al. | Nov 2002 | A1 |
20020173803 | Yang et al. | Nov 2002 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078603 | Schaller et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093118 | Ho et al. | May 2003 | A1 |
20030125755 | Schaller et al. | Jul 2003 | A1 |
20030191481 | Nguyen et al. | Oct 2003 | A1 |
20030195531 | Gardiner et al. | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20040050393 | Golden et al. | Mar 2004 | A1 |
20040068276 | Golden et al. | Apr 2004 | A1 |
20040102797 | Golden et al. | May 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040138685 | Clague et al. | Jul 2004 | A1 |
20040176663 | Edoga | Sep 2004 | A1 |
20040193259 | Gabbay | Sep 2004 | A1 |
20040215231 | Fortune et al. | Oct 2004 | A1 |
20050004582 | Edoga | Jan 2005 | A1 |
20050021054 | Ainsworth et al. | Jan 2005 | A1 |
20050043749 | Breton et al. | Feb 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070924 | Schaller et al. | Mar 2005 | A1 |
20050075659 | Realyvasquez et al. | Apr 2005 | A1 |
20050075667 | Schaller et al. | Apr 2005 | A1 |
20050080454 | Drews | Apr 2005 | A1 |
20050101975 | Nguyen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050131429 | Ho et al. | Jun 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20060004389 | Nguyen et al. | Jan 2006 | A1 |
20060253143 | Edoga | Nov 2006 | A1 |
20060271081 | Realyvasquez | Nov 2006 | A1 |
20060293701 | Ainsworth et al. | Dec 2006 | A1 |
20070010835 | Breton et al. | Jan 2007 | A1 |
20070027461 | Gardiner et al. | Feb 2007 | A1 |
20070073343 | Jahns et al. | Mar 2007 | A1 |
20070073344 | Jahns et al. | Mar 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070142848 | Ainsworth et al. | Jun 2007 | A1 |
20100174281 | Jahns et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0219999 | Mar 1910 | DE |
0377052 | Jun 1923 | DE |
2703529 | Jan 1977 | DE |
3203410 | May 1981 | DE |
3227984 | Feb 1984 | DE |
3504202 | Aug 1985 | DE |
4133800 | Oct 1991 | DE |
4402058 | Apr 1995 | DE |
19547617 | Sep 1997 | DE |
197 32 234 | Jan 1999 | DE |
0072232 | Feb 1983 | EP |
0122046 | Mar 1983 | EP |
0129441 | Dec 1984 | EP |
0130037 | Jan 1985 | EP |
0140557 | May 1985 | EP |
0121362 | Sep 1987 | EP |
0409569 | Jan 1991 | EP |
0432692 | Jun 1991 | EP |
0478949 | Aug 1991 | EP |
0494636 | Jul 1992 | EP |
0537955 | Apr 1993 | EP |
0559429 | Sep 1993 | EP |
0598529 | May 1994 | EP |
0326426 | Dec 1994 | EP |
0419597 | Dec 1994 | EP |
0632999 | Jan 1995 | EP |
0641546 | Mar 1995 | EP |
0656191 | Jun 1995 | EP |
0687446 | Dec 1995 | EP |
0705568 | Apr 1996 | EP |
0711532 | May 1996 | EP |
0705569 | Oct 1996 | EP |
0734697 | Oct 1996 | EP |
0778005 | Jun 1997 | EP |
0815795 | Jan 1998 | EP |
0 895 753 | Feb 1999 | EP |
2223410 | Apr 1990 | GB |
07308322 | Nov 1995 | JP |
08336544 | Dec 1996 | JP |
10337291 | Dec 1998 | JP |
2110222 | May 1998 | RU |
577022 | Oct 1977 | SU |
1186199 | Oct 1985 | SU |
1456109 | Feb 1989 | SU |
1560133 | Apr 1990 | SU |
9006725 | Jun 1990 | WO |
9009149 | Aug 1990 | WO |
9014795 | Dec 1990 | WO |
9107916 | Jun 1991 | WO |
9108708 | Jun 1991 | WO |
9117712 | Nov 1991 | WO |
9205828 | Apr 1992 | WO |
WO 9212676 | Aug 1992 | WO |
9222041 | Dec 1992 | WO |
9301750 | Feb 1993 | WO |
9415535 | Jul 1994 | WO |
9415537 | Jul 1994 | WO |
9600035 | Jan 1996 | WO |
9606565 | Mar 1996 | WO |
9638090 | Dec 1996 | WO |
WO 9712555 | Apr 1997 | WO |
WO 9716122 | May 1997 | WO |
9728744 | Aug 1997 | WO |
WO 9727898 | Aug 1997 | WO |
9732526 | Sep 1997 | WO |
WO 9731575 | Sep 1997 | WO |
9742881 | Nov 1997 | WO |
WO 9740754 | Nov 1997 | WO |
WO 9819636 | May 1998 | WO |
9830153 | Jul 1998 | WO |
WO 9842262 | Oct 1998 | WO |
WO 9848707 | Nov 1998 | WO |
WO 9852475 | Nov 1998 | WO |
WO 9907294 | Feb 1999 | WO |
WO 9912484 | Mar 1999 | WO |
WO 9915088 | Apr 1999 | WO |
WO 9937218 | Jul 1999 | WO |
9962406 | Dec 1999 | WO |
9962409 | Dec 1999 | WO |
WO 9962408 | Dec 1999 | WO |
WO 9962415 | Dec 1999 | WO |
WO 9963910 | Dec 1999 | WO |
WO 9965409 | Dec 1999 | WO |
0003759 | Jan 2000 | WO |
WO 0015144 | Mar 2000 | WO |
0060995 | Oct 2000 | WO |
WO 0059380 | Oct 2000 | WO |
0064381 | Nov 2000 | WO |
0074603 | Dec 2000 | WO |
0119292 | Mar 2001 | WO |
0126557 | Apr 2001 | WO |
0126586 | Apr 2001 | WO |
0128432 | Apr 2001 | WO |
0154618 | Aug 2001 | WO |
0174254 | Oct 2001 | WO |
0213701 | Feb 2002 | WO |
0213702 | Feb 2002 | WO |
0230295 | Apr 2002 | WO |
0230298 | Apr 2002 | WO |
0234143 | May 2002 | WO |
02080779 | Oct 2002 | WO |
02080780 | Oct 2002 | WO |
02087425 | Nov 2002 | WO |
03053289 | Jul 2003 | WO |
03088875 | Oct 2003 | WO |
2005011468 | Feb 2005 | WO |
2005058170 | Jun 2005 | WO |
2005072624 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20040102797 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60127862 | Apr 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09540636 | Mar 2000 | US |
Child | 10715797 | US |