This application claims the benefit of pending U.S. Provisional Patent Application No. 61/286,950, filed Dec. 16, 2009, the disclosure of which is incorporated herein by reference.
Various insulative products or combinations of insulative products can be used to insulate buildings. Some of the insulative products include spray foams, board insulation, loosefill insulation, and batts of fibrous insulation.
Spray foam insulation can include materials that are mixed at the building site and applied with a sprayer. The sprayer can be configured to introduce the spray foam insulation into joints, cavities, and penetrations of the building ceilings, floors and walls. After setting, the spray foam insulation can be effective in reducing air infiltration into the building and also effective in providing insulative properties to the building. Spray foam insulation can be used in combination with subsequently installed insulative products such as loosefill insulation and batts of fibrous insulation.
In contrast to spray foam insulation, loosefill insulation includes a multiplicity of discrete, individual tufts, cubes, flakes or nodules. Loosefill insulation can be applied to buildings by blowing the loosefill insulation into insulation cavities, such as sidewall cavities or an attic of a building. Loosefill insulation can be made from glass fibers, although other mineral fibers, organic fibers, and cellulose fibers can be used. The distribution of the loosefill insulation into an insulation cavity typically uses a blowing insulation distribution machine that conditions the loosefill insulation and feeds the conditioned loosefill insulation pneumatically through a distribution hose.
It would be advantageous if systems using combinations of spray foam insulation and loosefill insulation could be improved.
In accordance with embodiments of this invention there is provided an insulated cavity including a layer of foam material positioned over cracks and around penetrations occurring in portions of the cavity. A layer of insulative material is positioned in contact with the layer of foam material. The layer of insulative material is a mixture of foam material and loosefill insulation material.
In accordance with embodiments of this invention there are also provided an insulated cavity including a layer of insulative material positioned over cracks and around penetrations occurring in portions of the cavity. The layer of insulative material is a mixture of foam material and loosefill insulation material.
In accordance with embodiments of this invention there is also provided an insulated cavity including a layer of foam material positioned over cracks and around penetrations occurring in portions of the cavity. A layer of insulative material is positioned in contact with the layer of foam material. The layer of insulative material is a mixture of foam material and loosefill insulation material. The layer of foam material and the layer of insulative material maintain their position within the cavity without additional support.
In accordance with embodiments of this invention there is also provided apparatus configured for insulating an insulation cavity within a building. The apparatus includes a spray foam device configured for mixing foam material and a blowing insulation machine configured for conditioning loosefill insulation material. The apparatus is configured to selectively deliver a layer of foam material to the insulation cavity and a layer of insulative material to the insulation cavity. The layer of insulative material has a mixture of foam material and conditioned loosefill insulation material.
In accordance with embodiments of this invention there is also provided a method of insulating a cavity within a building. The method includes the steps of applying a layer of foam material into the cavity, applying a layer of insulative material into the cavity, the layer of insulative material being positioned in contact with the layer of foam material, the layer of insulative material being a mixture of foam material and loosefill insulation material, the layer of insulative material applied before the layer of foam material cures, allowing the layer of foam material and the layer of insulative material to cure.
Various advantages of this invention will become apparent to those skilled in the art from the following detailed description of the invention, when read in light of the accompanying drawings.
The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise indicated, all numbers expressing quantities of dimensions such as length, width, height, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.
The description and figures disclose apparatus and methods for application of foam material and combinations of foam material and loosefill insulation into insulation cavities of a building. Generally, the apparatus is configured to apply a layer of air sealant foam material over the cracks and penetrations of insulation cavities followed quickly by an insulative layer of material having a combination of foam material and loosefill insulation, thereby substantially filling the remainder of the insulation cavity.
The term “insulation cavity” as used herein, is defined to mean any space within the building within which insulation is desired, including the non-limiting examples of a building attic or sidewalls. The term “cracks”, as used herein, is defined to mean spaces or openings through which exterior air can enter the building enclosure. The term “penetrations”, as used herein, is defined to mean holes or openings passing through the building enclosure in which ducts, pipes, wires, structural elements, and windows are run between the building interior and the building exterior. The term “building enclosure”, as used herein, is defined to mean the system or assembly of components that provides environmental separation between an interior conditioned space and an exterior environment.
Referring now to
Referring again to
Insulation cavities 26 are formed in the spaces between the plurality of framing members 18 and the interior surface 22 of the exterior sheathing 20. As illustrated in
Referring again to
Referring now to
Referring again to
In the illustrated embodiment, the layer of foam material 32 is a mixture of two components. The foam material is a low expanding material that maintains its flexibility, air sealant properties and adhesion to common building materials over time. Optionally, the foam material can be non-allergenic. One example of the foam material used for the layer of foam material 32 is the ENERGYCOMPLETE™ Spray Foam marketed by Owens Corning headquartered in Toledo, Ohio.
In the embodiment illustrated in
As shown in
Referring again to
The loosefill insulation is a multiplicity of discrete, individual tufts, cubes, flakes or nodules 38 having physical characteristics that provide for desired insulative properties. The loosefill insulation can be made from glass fibers, although other mineral fibers, organic fibers, and cellulose fibers can be used. As will be discussed in more detail below, the loosefill insulation can be conditioned by a blowing insulation machine configured to distribute the conditioned loosefill insulation into the insulation cavities 26. In the illustrated embodiment, the loosefill insulation is unbonded loosefill insulation. Alternatively, the loosefill insulation can be any desired loosefill insulation.
The layer of insulative material 34, having the mixture of the foam material and the loosefill insulation, can be characterized by several properties including the volumetric ratio of the foam material to the loosefill insulation, the density of the loosefill insulation within the mixture and by the resulting insulative value of the combination of the layer of foam material 32 and the layer of insulative material 34.
In the illustrated embodiment, the volumetric ratio of the foam material to the loosefill insulation is in a range of from about 0.75 to about 1.25 to 1.00. In other embodiments, the volumetric ratio of the foam material to the loosefill insulation can be less than about 0.75 to 1.00 or more than about 1.25 to 1.00.
In the illustrated embodiment, the density of the loosefill insulation within the mixture is in a range of from about 0.5 lbs/ft3 to about 4.0 lbs/ft3. In other embodiments, the density of the loosefill insulation within the mixture can be less than about 0.5 lbs/ft3 or more than about 4.0 lbs/ft3.
Referring again to
The foam material used for the layer of foam material 32 and the layer of insulative material 34 provides several advantages over other foam-based materials. First, in the illustrated embodiment and unlike polyurethane-based foams, the foam material of the layer of foam material 32 and the layer of insulative material 34 is a latex-based foam that does not require a quarantined work area during application. However, it is within the contemplation of the invention that the foam material of the layer of foam material 32 and the layer of insulative material 34 can be non-latex-based materials. Second, after application and a short curing time, the foam material is tack free and has a consistency that maintains flexibility. By maintain flexibility after curing, excess foam material can be manipulated as required to complete the construction. As one example of manipulating the foam material after curing, excess foam material can be simply compressed back into the insulation cavity 26 by covering construction materials 36, thereby eliminating the time, labor and expense of removal of the foam material extending beyond the insulation cavity 26. The construction materials 36 can be any desired materials, including the non-limiting examples of drywall and paneling. The construction materials 36 simply compress the foam material extending from the insulation cavity 26 back into the insulation cavity 26. Third, the low expansion rate of the foam material provides for ready envelopment of the nodules 38 of the loosefill insulation rather than engaging the nodules 38 with such force so as to force the nodules 38 of loosefill insulation from the insulation cavities 26. Fourth, the low expansion rate of the foam material allows the foam material to envelope the nodules 38 without compressing the nodules 38 of loosefill insulation. By not compressing the nodules 38 of loosefill insulation, the nodules retain their insulative value.
While the embodiment illustrated in
Referring again to
As shown in
Referring now to
Generally, the spray foam device 52 is configured to mix the two components of the foam material forming the layer of foam material 32 and the layer of insulative material 34, and is further configured to convey the mixed foam material to the insulation cavities 26. The spray foam device 52 includes a mixer 56, a plurality of component sources 58 (for purposes of simplicity only one component source 58 is illustrated), a material hose 60, a foam distribution hose 64 and a spray device 66.
The mixer 56 is configured to mix the two components forming the foam material in desired quantities. The mixer 56 can be any desired structure, mechanism or combination thereof sufficient to mix the two components forming the foam material. In one embodiment, the components can be mixed in a ratio of 4 parts of a first component to one part of a second component. In other embodiments, the components of the foam material can be mixed in other desired ratios. In still other embodiments, the foam material can be formed from more than two components. In the illustrated embodiment, the first component is a functionalized acrylic polymer solution and the second component is a cross linker. Alternatively, the various components of the foam material can be other desired materials.
Referring again to
Optionally, the spray foam device 52 can include a control panel 62. The control panel 62 can be configured to include the operating controls (not shown) for the spray foam device 52. In other embodiments, the operating controls for the spray foam device 52 can be positioned in other locations, including remote locations.
After mixing, the foam material exits the spray foam device 52 and is conveyed through the foam distribution hose 64 to the insulation cavity 26. The foam distribution hose 64 can be any desired structure or device, such as the non-limiting example of a hose.
As shown in
In the illustrated embodiment, an optional operator control device 68 is positioned near the spray device 66. The operator control device 68 is configured to control the operations of the spray foam device 52, such as for example on, off and flow rate. In the illustrated embodiment, the operator control device 68 is configured for wireless communication with the spray foam device 52. However, the operator control device 68 can also be configured for wired communication with the spray foam device 52.
Referring again to
The chute 72 is configured to receive compressed loosefill insulation material from a source of compressed loosefill insulation material and introduce the loosefill insulation material to a plurality of shredding mechanisms (not shown) positioned in the lower unit 70. Optionally, the chute 72 includes a handle segment 80 to facilitate ready movement of the blowing wool machine 54 from one location to another. However, the handle segment 80 is not necessary to the operation of the blowing insulation machine 54.
As further shown in
The plurality of shredding mechanisms is mounted at the outlet end 78 of the chute 72. In the illustrated embodiment, the shredding mechanisms include a plurality of low speed shredders and a high speed shredder. The low speed shredders are configured to shred and pick apart the loosefill insulation material as the loosefill insulation material is discharged from the outlet end 78 of the chute 72 into the lower unit 70. The high speed shredder is configured for additional shredding of the loosefill insulation material. While the illustrated embodiment is described as having a plurality of low speed shredders and a high speed shredder, it should be appreciated that any desired quantity and combination of low speed shredders and high speed shredders can be used. It should further be appreciated that any type, quantity and configuration of separator or shredder, such as a clump breaker, beater bar or any other mechanism that shreds and picks apart the loosefill insulation material can be used.
Referring again to
In the illustrated embodiment, the shredding mechanisms rotate at a speed in a range of from about 40 rpm to about 500 rpm. In other embodiments, the shredding mechanisms can be rotate at speeds less than about 40 or more than about 500 rpm.
Referring again to
The shredding mechanisms, discharge mechanism 88 and the blower 92 are mounted for rotation. They can be driven by any suitable means, such as by a motor (not shown), or other means sufficient to drive rotary equipment. Alternatively, the shredding mechanisms, discharge mechanism 88 and the blower 92 can each be provided with its own motor. In the illustrated embodiment, the shredding mechanisms, discharge mechanism 88 and the blower 92 are configured to operate on a single 110 volt, 15 amp power source provided to the blowing insulation machine 54. In other embodiments, the shredding mechanisms, discharge mechanism 88 and the blower 92 can be configured to operate on multiple 110 volt, 15 amp power lines or on a single 220 volt power source.
Referring again to
In the illustrated embodiment, an optional blowing insulation controller 99 is positioned near the spray device 66. The blowing insulation controller 99 is configured to control the operations of the blowing insulation machine 54, such as for example on, off and flow rate. In the illustrated embodiment, the blowing insulation controller 99 is configured for wireless communication with the blowing insulation machine 54. However, the blowing insulation controller 99 can also be configured for wired communication with the blowing insulation machine 54.
In operation, the chute 72 guides the loosefill insulation material to the shredding mechanisms positioned in the lower unit 70. The shredding mechanisms shred, pick apart and condition the loosefill insulation material. The conditioned loosefill insulation material exits the shredding mechanisms and enters the discharge mechanism 88 for distribution into the airstream 86 provided by the blower 92. The airstream 86, with the conditioned loosefill insulation material, exits the blowing wool machine 54 at the machine outlet 90 and flows through the loosefill hose 98 toward the insulation cavity 26.
In the illustrated embodiment, the spray foam device 52 and the blowing insulation machine 54 are configured to be positioned in a space that is external to the building 10. However, the spray foam device 52 and the blowing insulation machine 54 can be positioned in other desired locations within the interior of the building 10.
In operation, the insulation cavities 26 are filled with the layer of foam material 32 and the layer of insulative material 34 as described in the following process. First, the spray foam device 52 is supplied with components of the foam material. The mixer 56 mixes the components according to a desired ratio and the foam mixture is conveyed to the spray device 66. Next, the layer of foam material 32 is applied to the insulation cavities 26 such that the layer of foam material 32 has the desired thickness. Next, before the layer of foam material 32 has cured, the layer of insulative material 34 is applied to the insulation cavities 26. In one embodiment, the elapsed time between the completion of the application of the layer of foam material 32 and application of the layer of insulative material 34 is in a range of from about 5 seconds to about 5 minutes. In other embodiments, the elapsed time between completion of the application of the layer of foam material 32 to application of the layer of insulative material 34 can be less than about 5 seconds or more than about 5 minutes.
The layer of insulative material 34 is applied as the foam material is delivered by the spray device 66 at the same time the blowing insulation machine 54 delivers conditioned loosefill insulation material to the insulation cavity 26. The foam material and the conditioned loosefill insulation material mix as the foam material and the conditioned loosefill insulation material enter the insulation cavity 26. The mixture of the foam material and the conditioned loosefill insulation material can be in any desired ratio and any desired density. The layer of insulative material 34 can have any thickness to achieve a desired insulative value (R).
Referring again to
Following application of the mixture of the foam material and the conditioned loosefill insulation into the insulation cavity 26, the layer of foam material 32 and the layer of insulative material 34 are allowed to cure. During the curing process, the foam material of the layer of insulative material 34 expands to envelop the entrained nodules 38 of loosefill insulation material and further expands to fill gaps that may occur between the entrained nodules 38. After curing of the layer of insulative material 34, the entrained nodules 38 of loosefill insulation material are suspended within the cured foam material. Optionally, curing of the layer of foam material 32 or the layer of insulative material 34 can be accelerated using any desired methods, such as the non-limiting example of heat. In certain embodiments after curing, the entrained nodules 38 and the filled gaps can result in a structure that advantageously facilitates subsequent removal of the layer of insulative material 34.
While the embodiment illustrated in
While the apparatus 50, illustrated in
While the apparatus 50, illustrated in
Referring now to
While the spray foam device 152 and the blowing insulation machine 154, illustrated in
While the apparatus 50, illustrated in
While the apparatus 250, illustrated in
In the embodiment illustrated in
While the embodiment illustrated in
The principle and mode of operation of the apparatus and methods for application of foam and foam/loosefill insulation systems into insulation cavities of a building have been described in certain embodiments. However, it should be noted that the apparatus and methods for application of foam and foam/loosefill insulation systems into insulation cavities of a building may be practiced otherwise than as specifically illustrated and described without departing from its scope.
Number | Name | Date | Kind |
---|---|---|---|
2179678 | Wenzel | Nov 1939 | A |
2780090 | Rasmussen | Feb 1957 | A |
3619437 | McDonald, Jr. | Nov 1971 | A |
3722171 | Godley | Mar 1973 | A |
3785913 | Hallamore | Jan 1974 | A |
3861993 | Guthrie | Jan 1975 | A |
3872199 | Ottinger | Mar 1975 | A |
3929948 | Welch et al. | Dec 1975 | A |
3933514 | Banks et al. | Jan 1976 | A |
4073839 | Burkholder et al. | Feb 1978 | A |
4103464 | Clifft et al. | Aug 1978 | A |
4116893 | Flanagan | Sep 1978 | A |
4190697 | Ahrens | Feb 1980 | A |
4337318 | Doyle | Jun 1982 | A |
4419256 | Loomis | Dec 1983 | A |
4425396 | Hartman | Jan 1984 | A |
4452829 | Smith | Jun 1984 | A |
4471591 | Jamison | Sep 1984 | A |
4494343 | Berry et al. | Jan 1985 | A |
4661302 | Park | Apr 1987 | A |
4726086 | McEvoy | Feb 1988 | A |
4768710 | Sperber | Sep 1988 | A |
4795590 | Kent et al. | Jan 1989 | A |
4804506 | Okamoto et al. | Feb 1989 | A |
5060291 | Albertelli | Oct 1991 | A |
5091436 | Frisch et al. | Feb 1992 | A |
5106547 | Beck et al. | Apr 1992 | A |
5131590 | Sperber | Jul 1992 | A |
5192598 | Forte et al. | Mar 1993 | A |
5287674 | Sperber | Feb 1994 | A |
5373026 | Bartz et al. | Dec 1994 | A |
5389167 | Sperber | Feb 1995 | A |
5425908 | Merser | Jun 1995 | A |
5447389 | Olson | Sep 1995 | A |
5489407 | Suh et al. | Feb 1996 | A |
5633063 | Lause et al. | May 1997 | A |
5641368 | Romes et al. | Jun 1997 | A |
5645928 | Matsumoto et al. | Jul 1997 | A |
5655350 | Patton | Aug 1997 | A |
5688832 | Paquet et al. | Nov 1997 | A |
5753359 | Dyer et al. | May 1998 | A |
5869171 | Shiveley et al. | Feb 1999 | A |
5908501 | Pucillo | Jun 1999 | A |
5921055 | Romes et al. | Jul 1999 | A |
6047518 | Lytle | Apr 2000 | A |
6096416 | Altenberg | Aug 2000 | A |
6228476 | Bogrett et al. | May 2001 | B1 |
6262164 | Church et al. | Jul 2001 | B1 |
6409817 | Stephens | Jun 2002 | B1 |
6414044 | Taylor | Jul 2002 | B2 |
6584749 | Sperber | Jul 2003 | B2 |
7083693 | Chen et al. | Aug 2006 | B2 |
7368150 | Pritchett | May 2008 | B2 |
7797950 | Brower et al. | Sep 2010 | B2 |
7866105 | Babbitt et al. | Jan 2011 | B2 |
8209930 | Babbitt et al. | Jul 2012 | B2 |
20030031854 | Kajander et al. | Feb 2003 | A1 |
20030032350 | Kajander et al. | Feb 2003 | A1 |
20040256395 | Lak et al. | Dec 2004 | A1 |
20050281979 | Toas et al. | Dec 2005 | A1 |
20060096205 | Griffin et al. | May 2006 | A1 |
20060272280 | Romes et al. | Dec 2006 | A1 |
20070122584 | Song et al. | May 2007 | A1 |
20070234649 | Near et al. | Oct 2007 | A1 |
20080160203 | O'Leary et al. | Jul 2008 | A1 |
20080217422 | Near | Sep 2008 | A1 |
20090004459 | Kipp et al. | Jan 2009 | A1 |
20090107068 | Fay et al. | Apr 2009 | A1 |
20100065206 | Romes | Mar 2010 | A1 |
20100087562 | Diloreto et al. | Apr 2010 | A1 |
20100107550 | Toas et al. | May 2010 | A1 |
20100297424 | Romes et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2153293 | Jan 1997 | CA |
1350905 | Oct 2003 | EP |
Entry |
---|
Collins English Dictionary definition of “chemical bond”, available at <http://www.collinsdictionary.com>. |
Number | Date | Country | |
---|---|---|---|
20110138724 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61286950 | Dec 2009 | US |