Apparatus and methods for bone access and cavity preparation

Information

  • Patent Grant
  • 8961518
  • Patent Number
    8,961,518
  • Date Filed
    Wednesday, January 19, 2011
    13 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
Apparatus and methods for preparing the interior of a bone for therapy. The therapy may include therapy for a bone fracture. The apparatus and methods may involve orienting a surgical instrument for proper deployment in the interior of the bone. An instrument guide may be positioned and retained against translation along, and rotation about one or more of three substantially orthogonal axes. Apparatus placed exterior to the bone may register the guide to a region inside the bone that is designated for preparation or treatment. One or more broaching members may be used to prepare the region for treatment. A broaching member may be expandable inside the bone. A broaching member may be flexible such that it broaches bone having a relatively lower density and it leaves bone having a relatively higher density substantially intact.
Description
FIELD OF TECHNOLOGY

Aspects of the disclosure relate to providing apparatus and methods for repairing bone fractures. In particular, the disclosure relates to apparatus and methods for repairing bone fractures utilizing a device that is inserted into a bone.


BACKGROUND

Bone fracture fixation may involve using a structure to counteract or partially counteract forces on a fractured bone or associated bone fragments. In general, fracture fixation may provide longitudinal (along the long axis of the bone), transverse (across the long axis of the bone), and rotational (about the long axis of the bone) stability. Fracture fixation may also preserve normal biologic and healing function.


Bone fracture fixation often involves addressing loading conditions, fracture patterns, alignment, compression force, and other factors, which may differ for different types of fractures. For example, midshaft fractures may have ample bone material on either side of the fracture in which anchors may be driven. End-bone fractures, especially on the articular surface may have thin cortical bone, soft cancellous bone, and relatively fewer possible anchoring locations. Typical bone fracture fixation approaches may involve one or both of: (1) a device that is within the skin (internal fixation); and (2) a device that extends out of the skin (external fixation).


Internal fixation approaches typically involve one or both of: (a) a plate that is screwed to the outside of the bone; and (b) an implant that is inserted inside the bone.


Plates are often characterized by relatively invasive surgery, support of fractured bone segments from one side outside of bone, and screws that anchor into the plate and the bone.


Implants may include intramedullary rods or nails, such as those used in mid shaft treatments. The typical intramedullary rod or nail is fixed in diameter and is introduced into the medullary canal through an incision. Flexible intramedullary rod-like solutions utilize structures that can be inserted into the medullary cavity through an access site and then be made rigid. The flexible structures may be reinforced with polymers or cements. Multi-segment fractures, of either the midshaft or end-bone, may require alignment and stability in a manner that generates adequate fixation in multiple directions. Implants may be used to treat midshaft fractures and end-bone fractures.


Implant-based therapies may involve removing bone tissue from the interior of the bone to prepare the interior for the implant. Preparation for the implant may involve providing a space in the bone interior for reception of the implant.


Proper location, size, shape, orientation and proximity to bone fragments and anatomical features, among other factors, may increase the therapeutic effectiveness of the implant.


It would be desirable, therefore, to provide apparatus and methods for preparation of a bone interior.





BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 shows illustrative apparatus in accordance with principles of the invention.



FIG. 2 shows illustrative anatomy in connection with which the invention may be practiced.



FIG. 3 shows a view, taken along lines 3-3 (shown in FIG. 1) of a portion of the apparatus shown in FIG. 1.



FIG. 4 shows a view, taken along lines 4-4 (shown in FIG. 1) of a portion of the apparatus shown in FIG. 1.



FIG. 5 shows a view, taken along lines 5-5 (shown in FIG. 1) of a portion of the apparatus shown in FIG. 1.



FIG. 6 shows a portion of the apparatus shown in FIG. 1 along with other apparatus in accordance with principles of the invention.



FIG. 7 shows a portion of the apparatus shown in FIG. 1 in a state that is different from the state shown in FIG. 1.



FIG. 8 shows a portion of the apparatus shown in FIG. 1.



FIG. 9 shows a portion of the apparatus shown in FIG. 1 along with other apparatus in accordance with principles of the invention.



FIG. 10 shows a portion of the apparatus shown in FIG. 1.



FIG. 11 shows other illustrative apparatus in accordance with principles of the invention.



FIG. 12 shows a partial cross-sectional view, taken along lines 12-12 (shown in FIG. 11), of the apparatus shown in FIG. 11.



FIG. 13 shows a partial cross-sectional view, taken along lines 13-13 (shown in FIG. 11) of the apparatus shown in FIG. 11.



FIG. 14 shows other illustrative apparatus in accordance with principles of the invention.



FIG. 15 shows a portion of the apparatus shown in FIG. 14.



FIG. 16 shows a portion (labeled “16”) of the apparatus shown in FIG. 11.



FIG. 17 shows a view, taken along lines 17-17 (shown in FIG. 16) of a portion of the apparatus shown in FIG. 16.



FIG. 18 shows a view, taken along lines 18-18 (shown in FIG. 17) of the apparatus shown in FIG. 17.



FIG. 19 shows other illustrative apparatus in accordance with principles of the invention.



FIG. 20 shows a partial cross-sectional view, taken along lines 20-20 (shown in FIG. 7) of the apparatus shown in FIG. 7.



FIG. 21 shows a partial cross-sectional view, taken along lines 21-21 (shown in FIG. 8) of the apparatus shown in FIG. 8.



FIG. 22 shows a partial cross-sectional view, taken along lines 22-22 (shown in FIG. 21) of the apparatus shown in FIG. 21.



FIG. 22A shows the apparatus shown in FIG. 22 along with illustrative anatomy in connection with which the invention may be practiced.



FIG. 23 shows a view, taken along lines 23-23 (shown in FIG. 20), of the apparatus shown in FIG. 20.



FIG. 24 shows a partial cross-sectional view, taken along lines 24-24 (shown in FIG. 8) of the apparatus shown in FIG. 8.



FIG. 25 shows a portion of the apparatus shown in FIG. 9, along with other apparatus.



FIG. 26 shows a partial cross-sectional view, taken along lines 26-26 (shown in FIG. 25), of apparatus shown in FIG. 25.



FIG. 27 shows information that may be used to manufacture apparatus in accordance with the principles of the invention.



FIG. 28 shows a partial cross-sectional view, taken along lines 28-28 (shown in FIG. 25), of apparatus shown in FIG. 25.



FIG. 29 shows a partial cross-sectional view, taken along lines 29-29 (shown in FIG. 25), of apparatus shown in FIG. 25.



FIG. 30 shows apparatus shown in FIG. 25 in a state that is different from the state shown in FIG. 25.



FIG. 31 shows still other apparatus in accordance with the principles of the invention.



FIG. 32 shows yet other apparatus in accordance with the principles of the invention.



FIG. 33 shows yet other apparatus in accordance with the principles of the invention.



FIG. 34 shows yet other apparatus in accordance with the principles of the invention.



FIG. 35 shows yet other apparatus in accordance with the principles of the invention.



FIG. 36 shows yet other apparatus in accordance with the principles of the invention.



FIG. 37 shows a portion of the apparatus shown in FIG. 36.



FIG. 38 shows a partial cross-sectional view, taken along lines 38-38 (shown in FIG. 37), of the apparatus shown in FIG. 37.



FIG. 39 shows a partial cross-sectional view, taken along lines 39-39 (shown in FIG. 37), of the apparatus shown in FIG. 37.



FIG. 40 shows a partial cross-sectional view, taken along lines 40-40 (shown in FIG. 37), of the apparatus shown in FIG. 37.



FIG. 41 shows yet other apparatus in accordance with the principles of the invention.



FIG. 42 shows yet other apparatus in accordance with the principles of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Apparatus and methods for preparing the interior of a bone for therapy are provided. The therapy may include therapy for a bone fracture. The apparatus and methods may involve orienting a surgical instrument for proper deployment in the interior of the bone. The surgical instrument may provide access from outside the bone to the interior of the bone. The surgical instrument may prepare the interior to receive a therapeutic device. The surgical instrument may include a therapeutic device.


Apparatus and methods for positioning a surgical instrument relative to exterior features of a bone are provided. The apparatus may be a surgical instrument guide.


The surgical instrument may be a device for repairing the bone. The surgical instrument may be a prosthetic device. For example, the surgical instrument may include one or more of the features of devices that are shown and described in U.S. Patent Application Publication No. 2009/0182336A1, which is hereby incorporated by reference herein in its entirety. The surgical instrument may be for accessing an interior region of the bone. For example, the surgical instrument may be a bone saw. The surgical instrument may be a drill. The surgical instrument may be for preparing the interior region of the bone to receive a therapeutic device. For example, the surgical instrument may be a broach.


The surgical instrument may have a portion that is configured to be positioned in a targeted region inside the bone.


The bone may have a surface. The surface may have a normal axis. The normal axis may be substantially perpendicular to the surface. The surface may have an anterior-posterior axis. The anterior-posterior axis may extend in a direction that is substantially normal to the anterior and posterior sides of the bone. The surface may have a proximal-distal axis. The proximal-distal axis may extend in a direction that is substantially along the bone. The bone surface may have curvature. The curvature may define a curvature axis. The curvature may be circumferential around the bone. The curvature axis may be parallel or near parallel with the proximal-distal axis.


The surgical instrument guide may include a bottom index. The bottom index may provide for aligning the device at a position along the surface normal axis. The position may be flush with the surface. The bottom index may be a bottom surface of the device. The bottom index may be one or more features that project from the bottom surface of the device.


The surgical instrument guide may include first and second lateral extensions. The first lateral extension may be configured to respond to an anterior contour of the bone. The anterior contour may be a contour on the anterior side of the bone. The second lateral extension may be configured to respond to a posterior contour of the bone. The posterior contour may be a contour on the posterior side of the bone. The first and second lateral extensions may provide for aligning the device along the anterior-posterior axis.


The surgical instrument guide may include a distal index. The distal index may be configured to provide visual alignment along the proximal-distal axis.


In some embodiments, the surgical instrument guide may include a first bone contactor. The first bone contactor may be configured to engage the surface. The apparatus may include a second bone contactor. The second bone contactor may be configured to engage the surface. When the first and second bone contactors engage the surface, the first and second contactors resist rotation about the surface normal axis.


In some embodiments, the first and second bone contactors may be configured to penetrate the surface.


In some embodiments, the surgical instrument guide may include first and second lateral cleats. The first lateral cleat may be configured to engage an anterior portion of the bone. The second lateral cleat may be configured to engage a posterior portion of the bone. When the first and second lateral cleats are engaged in the bone, the first and second lateral cleats may resist rotation about the proximal-distal axis of the bone.


The surgical instrument guide may include an instrument guide member. The surgical instrument guide may include an aligning member. The aligning member may be configured to align the guide member with the bone. The surgical instrument guide may include a base member. The base member may support the aligning member.


In some embodiments, the surgical instrument guide may include a lateral cleat. The lateral cleat may be configured to resist movement of the base member in a direction along the circumference of the elongated bone. The lateral cleat may include a stem that is directly fixed to the base.


In some embodiments, the surgical instrument guide may include a bone contactor. The bone contactor may be configured to resist rotation of the base about an axis that is substantially normal to the surface.


In some embodiments, the bone contactor may be a first bone contactor and the surgical instrument guide may include a second bone contactor. The first and second bone contactors may extend from a surface of the base. The first and second bone contactors may be configured to contact the bone surface along the curvature axis of the bone surface.


In some embodiments, the surgical instrument guide may include a handle support and a grip. The grip may be rotatable relative to the handle support when a torque greater than a threshold torque is applied to the grip.


In some embodiments, the surgical instrument guide may include an alignment template. The alignment template may be configured to register the instrument guide member to a target region inside the bone.


In some embodiments, the instrument template may include a dimension that corresponds to a dimension of a surgical instrument that is configured for deployment in the bone interior through the instrument guide member.


In some embodiments, the template may include a fluoroscopically detectable material.


In some embodiments, the template may be fixed to the base. The template may map to a lateral view plane in the cavity.


In some embodiments, the template may map to an anterior-posterior view plane in the cavity.


In some embodiments, the surgical instrument guide may include a first template that maps to the lateral view plane and a second template that maps to the anterior-posterior view plane.


In some embodiments, the surgical instrument guide may include a channel. The channel may be configured to direct an elongated fixation member into the bone. The elongated fixation member may be a wire. The wire may be a k-wire. The elongated fixation member may be a rod. The rod may be a threaded rod.


In some embodiments, the surgical instrument guide may include a first channel and a second channel. The first and second channels may be configured to direct first and second elongated fixation members into the bone.


In some embodiments, the first and second channels may be oblique to each other.


The methods may include a method for performing a procedure in a bone interior. The method may include positioning an instrument template outside the bone interior at a position that corresponds to a target region inside the bone. The method may include generating an electronic image showing the instrument template and the target region. The method may include delivering an instrument to the target region.


In some embodiments, the delivering may include arranging a guide member to direct the instrument to the target region. The guide member may have a fixed orientation relative to the instrument template.


In some embodiments, the positioning may include positioning a coring saw outline.


In some embodiments, the positioning may include positioning a broach outline.


In some embodiments, the positioning may include positioning a prosthesis outline.


In some embodiments, the positioning may include positioning a bone implant outline.


In some embodiments, the generating may include receiving an image using fluoroscopy.


In some embodiments, the instrument template may be a first instrument template and the method may include positioning a second instrument template outside the bone interior at a position that corresponds to the target region; and generating an electronic image showing the second instrument template and the target region.


In some embodiments, the positioning of a second instrument template may include arranging the second instrument template in a plane that is oblique to a plane that includes the first instrument template.


In some embodiments, the positioning of the second instrument template comprises arranging the second instrument template in a plane that is substantially orthogonal to a plane that includes the first instrument template.


In some embodiments, the delivering may include delivering a coring saw.


In some embodiments, the delivering may include delivering a bone interior broach.


In some embodiments, the delivering may include delivering a prosthesis.


The methods may include a method for guiding an instrument into a bone interior. The method may include positioning an instrument guide adjacent a bone. The instrument guide may include a first fixation element and a second fixation element.


The method may include passing a first fixation member through the bone such that the first fixation member is in contact with the first fixation element. The method may include passing a second fixation member through the bone such that the second fixation member is in contact with the second fixation element.


In some embodiments, the passing of a second fixation member may include orienting the second fixation member substantially obliquely with respect to the first fixation member.


In some embodiments, the passing of the second fixation member may include encompassing human tissue in a region defined by the first fixation member, the second fixation member and the instrument guide such that the instrument guide is retained adjacent the bone by the human tissue.


Apparatus and methods for guiding an instrument relative to an elongated bone are provided. The apparatus may be a surgical instrument guide.


The bone may have a longitudinal axis.


The surgical instrument guide may include an instrument guide member and a base member. The base member may support the guide member. The instrument guide member may be configured to pivot with respect to the base member from a first position to a second position. The first position may define a first angle relative to the bone longitudinal axis. The second position may define a second relative to the bone longitudinal axis.


In some embodiments, the surgical instrument guide may include an alignment template. The alignment template may register the instrument guide member to a first target region inside the bone when the guide member is in the first position. The alignment template may register the instrument guide member to a second target region inside the bone when the guide member is in the second position.


In some embodiments, the template may have a dimension that corresponds to a dimension of a surgical instrument that is configured for deployment in the bone interior through the instrument guide member.


In some embodiments, the template may include a fluoroscopically detectable material.


In some embodiments, the template may be fixed to the guide member. The template may map to a lateral plane in the bone interior. The template may map to an anterior plane in the cavity. The template may map to a posterior plane in the cavity.


In some embodiments, the template may be a first template and the surgical instrument guide may include a second template. The second template may be fixed to the guide member. The second template may map to a lateral plane in the cavity.


In some embodiments, the surgical instrument guide may include a guide member stop. The guide member stop may be configured to fix the position of the guide member with respect to the base member.


In some embodiments, the stop may induce a frictional force between a first surface on the guide member and a second surface on the base member.


In some embodiments, the stop may include a projection that interferes with relative movement between the guide member and the base.


The methods may include a method for introducing an instrument into an interior of a bone. The method may include introducing the instrument into a guide member that is pivotably mounted on a base. The base may be positioned adjacent a bone. The method may include pivoting the guide member relative to the base to change an angle between the guide member and the base. The method may include advancing the instrument through the guide member.


In some embodiments, the pivoting may include adjusting the angle to align an instrument template with a target region inside the interior of the bone.


In some embodiments, the adjusting may include viewing an electronic image that shows the instrument template and the target region.


In some embodiments, the method may include fixing the angle between the guide member and the base.


Apparatus and methods for broaching an interior region of a bone are provided. The bone may include first bone material. The first bone material may include cancellous bone. The bone may include second bone material. The second bone material may include cortical bone. The second bone material may have a density that is higher than a density of the first bone material.


The apparatus may include rotator. The apparatus may include a broaching member.


The broaching member may be moved in the bone interior to displace, disaggregate, disintegrate, dislocate, excavate, abrade, cut or otherwise broach bone material. The broaching member may be rotated in the bone interior. The rotation may be continuous. The rotation may be pulsed. The rotation may be unidirectional. The rotation may alternate between a first rotational direction and a second rotational direction.


The broaching member may be fixed to the rotator. The broaching member may be configured to be moved relative to the rotator to displace bone material that is radially away from the rotator.


In some embodiments, the broaching member may be configured to substantially deflect around second bone material.


In some embodiments, the broaching member may be configured to form in the bone a space having a first contour that corresponds to a shape of the broaching member. The broaching member may be configured to form in the bone a space having a second contour that corresponds to anatomy that includes the second bone material. The broaching member may be a first broaching member and the apparatus may include a second broaching member. The second broaching member may be disposed opposite the first broaching member.


In some embodiments, the broaching member may include a cutting edge.


In some embodiments, the broaching member may include a flexible wire segment. The wire segment may include braided wire.


In some embodiments, the apparatus may include a reinforcement that supports the broaching member. The reinforcement may support a cutting edge.


In some embodiments, the broaching member may have a proximal end that is fixed to the rotator and a distal end that is fixed to the rotator.


In some embodiments, the broaching member may have a proximal end that is fixed to the rotator and a distal end that is free.


In some embodiments, the broaching member may include an edge of an open cell in a mesh.


The broaching member may include a segment that has any suitable form. For example, the segment may be straight, circular, rhombic, square, triangular, oval, ellipsoid, spiral, loop-shaped, hoop-shaped, teardrop-shaped, egg-beater-shaped, football-shaped, or any other suitable shape. The segment may be a closed loop. The loop may be asymmetric.


The segment may have one or more of a variety of transverse cross sections, such as square, rectangular, octagonal, contours with sharp edges, stranded cable, or other suitable configurations to facilitate bone displacement.


The segment may have a leading edge. The leading edge may be beveled at a suitable angle, including an angle from about 5° to about 75°. The angle may cause leading edge 2202 to be generally sharp or knife-like.


The segment may be rigid. The segment may be resilient.


The broaching member may have one or more ends that are attached to apparatus such as a drive shaft or a suitable support, such as a hub. The broaching member may have a free end. Broaching members with free distal ends may have any suitable shape at the tine distal ends, such as pointed, forked, rounded, blunt or truncated.


The broaching member may have an end that is attached to apparatus by crimping, welding, set-screw, snap fit or any other suitable fastening. The broaching member may have one or more ends that are of unitary construction with the apparatus.


The broaching member may include a tine. The tine may be resilient or stiff. The tine may have an end that is attached to a drive shaft. The tine may have a free end.


The broaching member may include a blade.


The broaching member may include numerous interconnected cells. The cells may be arranged in a network. The cells may be linked such that when the structure is stressed (e.g., compressed) at a point the stress is distributed to nearby cells. The cells may be constructed from laser-cut tube stock that is expanded into a suitable shape.


The broaching member may be one of a number of broaching members in a broaching head. For example, the broaching head may have one broaching member, 2-6 broaching members, 7-20 broaching members, more than 20 broaching members, 100 broaching members or any suitable number of broaching members.


When a large number (i.e., when the circumferential density of broaching members is relatively high) of broaching members are present during the rotation of a broaching head, a relatively lower torque may be required to drive the broaching head.


Broaching member may rotate in a bone cavity that has an irregular shape, for example, nonround, oblong, or angular. The cavity may be smaller than a diameter of broaching member.


Broaching member may include any suitable structural form such as wire, ribbon, cable, stranded wire, braided wire, braided ribbon, or any other suitable structural form.


Broaching member may include any suitable material, such as polymer, metal, composite, stainless steel, Nitinol (shapeset, superelastic or other Nitinol), other alloy or any other suitable material.


The broaching member may be supported by one or more reinforcements.


The reinforcement may be sized and positioned to support a segment of the broaching member in a desired contour. The reinforcement may provide bone-broaching abrasiveness, momentum or both.


The reinforcement may be a tube.


The reinforcement may be a brace. The brace may be fixed to the broaching member, for example, by crimping, welding or press-fit. The brace may include broaching edges for displacing bone material. The broaching edges may have any suitable form, such as serrated, saw-tooth, knife-edge, rectilinear edge or any other suitable form.


The reinforcement may be formed from polymer, metal, alloy or any other suitable material.


The reinforcement may be formed from a pattern that is cut into a metal tube.


In some embodiments, the apparatus may include a distal hub. The broaching member may have a distal end that is fixed to the distal hub. The distal hub may be configured to move between a first position and a second position. The first and second positions may be located along a longitudinal axis of the rotator.


The distal hub may be constructed of metal, stainless steel, laser-cut tube, polymer, ceramic or any other suitable material.


The distal hub may include flutes. The distal hub may include broaching edges.


The methods may include a method for broaching an interior region of a bone. The interior region may include a bottom surface. The bottom surface may be an surface of a portion of the bone that is opposite an access hole in the bone.


The method may include expanding a bone broaching member in the interior region. The method may include disaggregating relatively low-density material inside the bone using the member. The method may include deflecting the broaching member away from relatively high-density material inside the bone.


In some embodiments, the method may include rotating the bone broaching member using a flexible drive shaft.


In some embodiments, the method may include changing the elevation of the bone broaching member relative to the bottom surface.


In some embodiments, the disaggregating may include cutting the relatively low-density material.


In some embodiments, the disaggregating may include displacing the relatively low-density material.


In some embodiments, the method may include registering an exterior instrument guide to the bone broaching member; visually mapping the exterior instrument guide to the interior region; and deploying the bone broaching member to the interior region based on the exterior instrument guide. The exterior instrument guide may be exterior to the bone.


Apparatus and methods for treating a bone interior are provided.


The apparatus may include a flexible sheath. The flexible sheath may include stress-relief features that allow bending under tension and compression. The stress-relief features may include slots or slot patterns. The stress-relief features may be provided using laser-cutting.


The stress-relief features may include sintered particles. The particles may include metal, polymer, composite or any other suitable material.


The flexible sheath may have a first configuration and a second configuration. The second configuration may have a smaller radius of curvature than the first configuration. The apparatus may include a rotatable shaft. The rotatable shaft may extend through the sheath. The apparatus may include an elongated steering member. The elongated steering member may be configured to deflect the flexible sheath from the first configuration to the second configuration.


In some embodiments, the elongated steering member may be configured to be elastically deformed when the elongated steering member deflects the flexible sheath from the first configuration to the second configuration.


In some embodiments, the elongated steering member may include a first portion. The first portion may translate along a longitudinal direction of the sheath. The elongated steering member may include a second portion. The second portion may be configured to extend radially outward through a passage in the sheath when the elongated steering member deflects the flexible sheath from the first configuration to the second configuration.


In some embodiments, the rotatable shaft may have a distal end and the apparatus may include an expandable head that extends from the distal end. The expandable head may include a compressed configuration for translating within the sheath. The expandable head may include an expanded configuration when the expandable head is deployed outside the sheath.


In some embodiments, the expandable head may be configured to displace cancellous bone and not cortical bone.


Apparatus and methods for preparation of the interior of a bone are provided.


The apparatus may include an elongated member. The elongated member may have a longitudinal axis. The elongated member may be curved about the longitudinal axis. The elongated member may be configured to rotate about the longitudinal axis inside the bone.


In some embodiments, the elongated member may include a substantially spiral segment. The spiral segment may include a proximal end and a distal end. The proximal end may be disposed at a first radius from the longitudinal axis. The distal end may be disposed at a second radius from the longitudinal axis. The second radius may be at least as great as the first radius. The second radius may be greater than the first radius.


In some embodiments, the elongated member may be a first elongated member and the apparatus may include a second elongated member. The second elongated member may be curved about the longitudinal axis. The second elongated member may be configured to rotate about the longitudinal axis.


In some embodiments, the second elongated member may include a substantially spiral second segment.


In some embodiments, the proximal end may be a first proximal end and the distal end may be a first distal end. The spiral second segment may include a second proximal end and a second distal end. The second proximal end may be disposed at a third radius from the longitudinal axis. The second distal end may be disposed at a fourth radius from the longitudinal axis. The fourth radius may be at least as great as the third radius. The fourth radius may be greater than the third radius.


In some embodiments, the third radius may be substantially the same as the first radius; and the fourth radius may be substantially the same as the second radius.


In some embodiments, the apparatus may include a circumferential offset. The circumferential offset may be in a circumferential direction about the longitudinal axis. The circumferential offset may be between the second proximal end and the first proximal end. The circumferential offset may be between the second distal end and the first distal end.


In some embodiments, the apparatus may include a support. The support may include a proximal support end. The proximal support end may be fixed to a shaft. The apparatus may include a support segment. The support segment may be fixed to at least one of the first and second spiral segments. The support segment may conform to a contour of the spiral segment.


The methods may include a method for preparing a bone interior. The method may include providing access to a bone intramedullary space. The method may include introducing into the intramedullary space an elongated member. The elongated member may have a substantially spiral segment. The spiral segment may have a longitudinal axis. The method may include rotating the substantially spiral segment about the longitudinal axis to displace cancellous bone matter.


In some embodiments, the elongated member may be a first elongated member, the substantially spiral segment may be a first substantially spiral segment, and the method may include introducing into the intramedullary space a second elongated member. The second elongated member may have a substantially spiral second segment. The substantially spiral second segment may share the longitudinal axis with the first substantially spiral segment. The method may include rotating the substantially spiral second segment about the longitudinal axis.


In some embodiments, the first spiral segment may have a first periodic rotation cycle. The second spiral segment may have a second periodic rotation cycle. The second periodic rotation cycle may lag behind the first periodic rotation cycle by a phase lag. The phase lag may be about Pi radians.


Apparatus and methods for sawing a hole in a bone are provided. The bone may have a longitudinal bone axis.


The apparatus may include a bone coring saw. The bone coring saw may include a tooth. The tooth may include a first cutting member and a second cutting member. The first cutting member may be configured to cut bone when the coring saw rotates in a first direction. The second cutting member may be configured to cut bone when the coring saw rotates in a second direction. The second direction may be rotationally opposite from the first direction.


The bone coring saw may include a cylindrical tube. The cylindrical tube may define a tube longitudinal direction and a tube radial direction. The bone coring saw may include a saw tooth. The saw tooth may extend longitudinally from an end of the cylindrical tube. The saw tooth may include a cutting surface that is oblique to the tube radial direction.


The methods may include a method for sawing a hole in the bone. The method may include forming a substantially cylindrical passage into the intramedullary space of a bone. The substantially cylindrical passage may extend along a direction that is at an acute angle to the longitudinal bone axis. The method may include removing from the bone a substantially cylindrical plug that is substantially coaxial with the passage.


In some embodiments, the forming may include tunneling through the bone using a K-wire.


In some embodiments, the removing may include sawing a hole using a rotary coring saw.


In some embodiments, the method may include rotating the rotary coring saw about a portion of the K-wire.


In some embodiments, the method may include sustaining a coaxial relationship between the K-wire and the rotary coring saw. The sustaining may include rotating the rotary coring saw about a bushing. The K-wire, the bushing and the rotary coring saw may be substantially coaxial.


In some embodiments, the method may include translating the K-wire relative to the rotary coring saw to remove from the coring saw the cylindrical plug.


The method may include a method for providing access to an intramedullary space of a bone. The method may include supporting a cylindrical body of a rotary saw at an acute angle to a surface of the bone; and engaging teeth of the rotary saw with the surface.


Apparatus and methods for accessing the inside of a bone are provided.


The apparatus may include a rotatable saw that includes a cannula. The apparatus may include a bushing that is disposed in the cannula. The apparatus may include a wire that is disposed substantially coaxially with the rotatable saw in the bushing.


In some embodiments, the wire may include a distal end that is configured to penetrate the bone. The wire may include a proximal end that is configured to receive torque.


In some embodiments, the wire may be configured to drill a pilot hole in the bone. The pilot hole may have an axis that forms an acute angle with a surface of the bone at the opening of the pilot hole. The saw may include teeth.


The teeth may be arranged adjacent a distal end of the cannula. The bushing may be configured to align the rotatable saw coaxially with the axis when the teeth contact the bone.


In some embodiments, the apparatus may include a biased member proximal the bushing. The biased member may be configured to urge a distal end of the bushing toward the bone when the teeth have penetrated into the bone.


In some embodiments, the bushing may be fitted into the cannula with a tolerance that provides friction between the bushing and the rotatable saw. The friction may resist proximally-directed force from a bone core in the cannula while the teeth are cutting into the bone.


In some embodiments, the rotatable saw may include a cylindrical body having a wall thickness that is traversed by a vent. The vent may be configured to exhaust bone matter.


In some embodiments, the wire may include a distal diameter and a proximal diameter. The proximal diameter may be greater than the distal diameter. The wire may include a shoulder where the distal diameter adjoins the proximal diameter. The shoulder may be configured to be translated proximally relative to the rotatable saw to eject a bone core from the cannula.


The apparatus may include an assembly for accessing the inside of a bone.


The assembly may include an arrangement of teeth. The teeth may be supported at the end of a rotatable frame. The frame may define one or more passageways. The passageways may extend from a cannula inside the frame to a region that is outside the frame.


In some embodiments, the assembly may include a bushing. The bushing may be disposed in the cannula. The assembly may include a wire. The wire may be disposed substantially coaxially with the rotatable saw in the bushing.


In some embodiments, the wire may be configured to drill a pilot hole in the bone. The pilot hole may have an axis that forms an acute angle with a surface of the bone at the opening of the pilot hole. The busing may be configured to align the rotatable saw coaxially with the axis when the teeth contact the bone.


Apparatus and methods for preparing a bone interior are provided. The apparatus may have a longitudinal apparatus axis.


The apparatus may include one or more broaching members. The broaching members may be blades. A first blade may be linked to a second blade by a linkage. The linkage may be configured to be rotated about the longitudinal axis. The linkage maybe configured to be radially displaced from the longitudinal apparatus axis.


In some embodiments, at least one of the first and second blades may be rigid.


In some embodiments, at least one of the first and second blades may include stainless steel.


In some embodiments, at least one of the first and second blades may include Nitinol.


In some embodiments, the linkage may include a pin.


In some embodiments, the linkage may be a first linkage. The apparatus may include an actuator. The actuator may be linked to the first blade by a second linkage. The actuator may be linked to the second blade by a third linkage. The actuator may include a main body. The main body may include members that are configured to be displaced relative to each other. One of the members may be fixed relative to the main body.


In some embodiments, at least one of the second and third linkages may include a pin.


In some embodiments, the third linkage is distal the second linkage.


In some embodiments, the actuator may be configured to radially displace the first linkage by changing a distance between the second linkage and the third linkage.


In some embodiments, the actuator may include a first elongated actuator member. The first elongated actuator member may be linked to the second linkage. The actuator may include a second elongated actuator member. The second elongated actuator member may be linked to the third linkage. The second elongated actuator member may be configured to radially displace the first linkage by changing a longitudinal offset between the first and second elongated members.


In some embodiments, the apparatus may be configured to traverse a path in the bone interior. The apparatus may include a fourth linkage that constrains the longitudinal offset based on position of the apparatus along the path.


In some embodiments, the fourth linkage may be a manual linkage.


In some embodiments, the longitudinal offset may include a range of values. The range of values may include a first value. The first value may correspond to a first linkage first radial displacement. The range of values may include a second value. The second value may correspond to a first linkage second radial displacement. The second radial displacement may be greater than the first radial displacement.


In some embodiments, the range may include a third value. The third value may correspond to a first linkage third radial displacement. The first linkage third radial displacement may be less than the second radial displacement.


In some embodiments, the apparatus may include a cutting surface. The cutting surface may be disposed on one of the first and second blades. At the first and third radial displacements, the cutting surface may be disengaged from the bone.


In some embodiments, at the second radial displacement, the cutting surface may be engaged with the bone.


In some embodiments, the first blade may have a first bound portion. The first bound portion may be between the first and second linkages. The first blade may have a first free portion. The first free portion may extend beyond the first linkage in a direction away from the second linkage.


In some embodiments, the second blade may have a second bound portion. The second bound portion may be between the first and third linkages. The second blade may have a second free portion. The second free portion may extend beyond the first linkage in a direction away from the third linkage.


In some embodiments, the first bound portion may be longer than the second bound portion.


In some embodiments, the second bound portion may be longer than the first bound portion.


In some embodiments, the first free portion may be longer than the second free portion.


In some embodiments, the second free portion may be longer than the first free portion.


In some embodiments, the apparatus may include a cutting surface. The cutting surface may be disposed on at least one of the first and second blades. The fourth linkage may be programmed to position the cutting surfaces at different radial displacements along the path. Each of the radial displacements may correspond to a longitudinal position on the path.


In some embodiments, the fourth linkage may control the longitudinal offset based on an electronic signal. The electronic signal may be based on a set of digital instructions. The digital instructions may be based on a digitized image of the bone interior.


In some embodiments, the apparatus may include a third blade. The apparatus may include a fourth blade. The third blade may be linked to the fourth blade by a fourth linkage. The fourth linkage may be configured to be rotated about the longitudinal axis. The fourth linkage may be configured to be radially displaced from the longitudinal axis. The actuator may be configured to radially displace the fourth linkage by changing the longitudinal offset between the first and second elongate members.


The methods may include a method for preparing the bone interior. The method may include rotating a cutting surface inside a bone about a rotational axis. The method may include moving a control member from a first control position to a second control position.


The cutting surface may be configured to occupy a first radial position that corresponds to the first control position. The cutting surface may be configured to occupy a second radial position that corresponds to the second control position. The cutting surface may be configured to occupy a third radial position that corresponds to an intermediate control position. The intermediate control position may be between the first and second control positions. The third radial position may be at a greater radial distance from the rotational axis than are both the first and second radial positions.


In some embodiments, the first and second radial positions may be at substantially the same distance from the rotational axis.


In some embodiments, when the cutting surface is at one or both of the first and second radial positions, the cutting surface may be disengaged from the bone. When the cutting surface is at the third radial position, the cutting surface may be engaged with the bone.


Apparatus and methods for positioning a bone fragment are provided.


The apparatus may include a probe support. The probe support may have a proximal end and a distal end. The apparatus may include a handle. The handle may be attached to the proximal end. The apparatus may include a probe. The probe may be attached to the distal end. The probe support may be configured to traverse an angled access hole in a metaphyseal bone surface. The probe support may be configured to provide mechanical communication between the handle and the probe when the handle is outside a bone interior and the probe is inside the bone interior.


In some embodiments, the probe may have a conical tip.


In some embodiments, the probe may have a rounded tip.


In some embodiments, the probe support may include a proximal segment and a distal segment. The proximal segment may extend from the handle. The distal segment may support the probe.


In some embodiments, the proximal and distal segments may define an obtuse angle.


In some embodiments, the proximal segment may have a first flexibility. The distal segment may have a second flexibility. The second flexibility may be greater than the first flexibility.


In some embodiments, the apparatus may include an intermediate segment. The intermediate segment may be between the proximal and distal segments. The intermediate segment may include a curve.


In some embodiments, the proximal segment may have a first flexibility. The intermediate segment may have a second flexibility. The distal segment may have a third flexibility. The second flexibility may be greater than the third flexibility.


The methods may include a method for treating a bone. The bone may have a longitudinal bone axis. The method may include providing a hole in the bone. The hole may be at an angle to the longitudinal bone axis. The hole may provide access to a bone interior region. The method may include advancing a probe through the hole and into the interior region. The method may include displacing cancellous bone using the probe.


In some embodiments, the displacing may include identifying a spatial distribution of low-density matter in the interior region.


In some embodiments, the method may include displaying an image of the interior region and the probe when the probe is inside the interior region.


The methods may include another method for treating the bone. The method may include providing a hole in the bone. The hole may be at an angle to the longitudinal bone axis. The hole may provide access to a bone interior region. The method may include advancing a probe through the hole and into the interior region. The method may include displacing bone matter using the probe.


In some embodiments, the displacing may include identifying a spatial distribution of cancellous bone in the interior region.


In some embodiments, the method may include displaying an image of the interior region and the probe when the probe is inside the interior region.


In some embodiments, the displacing may include positioning a first cortical bone fragment relative to a second cortical bone fragment.


In some embodiments, the method may include displaying an image of the interior region and the probe when the probe is inside the interior region.


Apparatus and methods in accordance with the invention will be described in connection with the FIGS. The FIGS. show illustrative features of apparatus and methods in accordance with the principles of the invention. The features are illustrated in the context of selected embodiments. It will be understood that features shown in connection with one of the embodiments may be practiced in accordance with the principles of the invention along with features shown in connection with another of the embodiments.


Apparatus and methods described herein are illustrative. Apparatus and methods of the invention may involve some or all of the features of the illustrative apparatus and/or some or all of the steps of the illustrative methods. The steps of the methods may be performed in an order other than the order shown or described herein. Some embodiments may omit steps shown or described in connection with the illustrative methods. Some embodiments may include steps that are not shown or described in connection with the illustrative methods.


Illustrative embodiments will now be described with reference to the accompanying drawings, which form a part hereof.


The apparatus and methods of the invention will be described in connection with embodiments and features of an illustrative bone repair device and associated hardware and instrumentation. The device and associated hardware and instruments will be described now with reference to the FIGS. It is to be understood that other embodiments may be utilized and structural, functional and procedural modifications may be made without departing from the scope and spirit of the present invention.



FIG. 1 shows illustrative instrument guide 100 positioned at site H′ on bone B. Broach head 124 may be delivered through guide 100 to target region Rt of intramedullary space IS. Target region Rt is illustrated as being within cancellous bone BCA, but could be in either, or both, of cancellous bone BCA and cortical bone BCO. Side template 130 and top template 132 are registered to guide tube 120. Arm 131 may support template 130. A practitioner may position templates 130 and 132 such that templates 130 and 132 “project” onto target region Rt so that guide 100 will guide broach head 124 to target region Rt.


Template 130 may include lobe outline 134 and shaft outline 136 for projecting, respectively, a “swept-out” area of broach head 124 and a location of shaft-like structure 125. Template 132 may include lobe outline 138 and shaft outline 140 for projecting, respectively, a target “swept-out” area of broach head 124 and a target location of shaft-like structure 125. Templates 130 and 132 may be configured to project a shape of any suitable instrument that may be deployed, such as a drill, a coring saw, a prosthetic device or any other suitable instrument.


Fluoroscopic imaging may be used to position templates 130 and 132 relative to target region Rt.


Broach head 124 may rotate in intramedullary space IS to clear intramedullary bone matter so that a prosthetic device may be implanted. Broach head 124 may be driven and supported by broach control 126 and broach sheath 127.


Guide 100 may include base 102. Alignment members 104 and 106 (shown in FIG. 10) may extend from base 102 to align guide centerline CLG of guide 100 with bone centerline CLBS of the top surface of bone B. One or both of alignment members 104 and 106 may be resilient. One or both of alignment members 104 and 106 may be stiff.


Alignment members 104 and 106 may be relatively free to slide along surfaces of bone B. Guide 100 may include contacts 108 and 110 (shown in FIG. 10) that may engage bone B along centerline CLBS. Contacts 108 and 110 may extend from a bottom surface (shown in FIG. 10) of guide 100. Contacts 108 and 110 may prevent guide centerline CLG from rotating out of alignment with bone centerline CLBS.


Contacts 108 and 110 may assure alignment of guide 100 with the surface of bone B, because two points of contact may be stable on an uneven surface even in circumstances in which 3, 4 or more contacts are not stable.


Guide 100 may include lateral cleats 112 and 114 (shown in FIG. 10). Lateral cleats 112 and 114 may engage the surface of bone B to prevent guide 100 from rotating in direction θ about guide centerline CLG. Lateral cleats 112 and 114 may be resilient to allow some sliding over bone B.


When a practitioner positions guide 100 on bone B, alignment members 104 and 106 may be the first components of guide 100 to engage bone B. Alignment members 104 and 106 may bring guide centerline CLG into alignment with bone centerline CLBS before contacts 108 and 110 and cleats 112 and 114 engage bone B. Then, in some embodiments, cleats 112 and 114 may engage bone B to inhibit rotation in direction θ. Then, in some embodiments, contacts 108 and 110 may engage bone B along bone centerline CLBS. Contacts 108 and 110 may have sharp points to provide further resistance to de-alignment of guide centerline CLG from bone centerline CLBS. In some embodiments, there may be no more than two contacts (e.g., 108 and 110) to ensure that the contacts are in line with bone centerline CLBS.


Guide 100 may include stem 116 and grip 118. A practitioner may manually grip grip 118. In some embodiments, a torque-limiter (not shown) may be provided to limit the torque that the practitioner can apply via grip 118 to contacts 108 and 110.


Guide tube 120 may receive and guide any suitable instrument. Guide tube 120 may be oriented at angle α with respect to handle 116. In some embodiments, angle α may be fixed. In some embodiments, angle α may be adjustable. In some embodiments, templates 130 and 132 may be fixed relative to guide tube 120. In some embodiments, including some embodiments in which α is adjustable and some in which α is not adjustable, guide tube 120 may be oriented so that the axis LGT of guide tube 120 intersects bone B at substantially the same point as does axis LH of stem 116. Grip 118 will thus be positioned directly over the center of hole site H′.


Guide 100 may include channels 142 and 144 (shown in FIG. 5). Rods 146 and 148 may be inserted through channels 142 and 144, respectively, through cortical bone BCO. Rods 146 and 148 may stabilize guide 100 on bone B. Rods 146 and 148 may be K-wires. Rods 146 and 148 may be inserted using a wire drill.



FIG. 2 illustrates anatomical features of fractured bone B. Reference frame 200 shows that the view of bone B is substantially in anterior/posterior plane 200. Lateral plane 204 includes volar half-plane VOL and dorsal half-plane DOR.


Bone B is illustrated as a radius that is fractured at fractures Fh and Fa Bone B includes bone portions Pb, Ph and Pa in distal end D. Bone segment Pb is the largest portion of bone B. Bone segment Ph is a head portion of bone B. Bone segments Ph and Pa include articular surface AS. Bone portions Pb, Ph and Pa are separated or partially separated along fractures Fa and Fh. Fracture Fa transects articular surface AS. Fracture Fh transects head of bone B.


Bone B, shown in a cross section that includes approximate longitudinal axis LB, includes cortical bone BCO and cancellous bone BCA. Deployment of an implant into distal end D of bone B may require an access hole at site H′. Deployment of the implant may require displacement of cancellous bone BCA. Illustrative contours C1, C2 and C3 in cancellous bone BCA are different contours within which cancellous bone BCA may be displaced. Contour C4, which is a projection of contour C3 onto articular surface AS, shows that contour C4, for example, may be asymmetric. For example, contour C4 may have major axis A1 and minor axis A2 (shown in half). The other contours may also be asymmetric.


Apparatus and methods provided herein may provide an access hole H at site H′. An apparatus inserted at site H′ through access hole H, may travel a distance xH through intermedullary space IS to reach a head portion of bone B. An apparatus inserted at site I′ through access hole I may travel a distance xI through intermedullary space IS to reach a head portion of bone B. An apparatus inserted at H′ may require a “bend” to travel through intermedullary space IS to reach a head portion of bone B. An apparatus inserted at I′ may not require a “bend” to reach a head portion of bone B. Apparatus and methods provided herein may displace cancellous bone BCA within a contour such as C1, C2 or C3.



FIG. 3 shows guide 100, from the side, positioned at site H′ at which an access hole is to be provided. Template 130 is positioned to register with target area Rt a broach (with outline 134) and a drill (with outline 136). Template 132 extends normal to the plane of FIG. 3. Fluoroscopy may be used to select the target area based on contours of cancellous bone BCA and cortical bone BCO (shown in FIG. 2) in bone B. A rod such as a K-wire may be inserted through hole 302 and bone B to fix a position of guide 100 relative to bone B.



FIG. 4 shows guide 100, from the top, positioned at site H′ (not shown). Template 132 is positioned to register with target area Rt the broach (with outline 138) and the drill (with outline 140).


Template 132 extends from the base of grip 118.


Arm 404 supports template 130, which extends normal to the plane of FIG. 3. Fluoroscopy may be used to select the target area based on contours of cancellous bone BCA (shown in FIG. 2) and cortical bone BCO (shown in FIG. 2) in bone B. A rod such as a K-wire may be inserted through hole 402 and bone B to fix a position of guide 100 relative to bone B.


Cannula 406 is present in guide tube 120 for delivering instruments to intramedullary space IS (shown in FIG. 2) of bone B.



FIG. 5 shows guide 100, from above and posterior, positioned at site H′. H′ is approximately centered along axis LGT of guide tube 120. Distal ends of rods 146 and 148 penetrate bone B to maintain a position of guide 100. Rods 146 and 148 may be at oblique to each other. Rods 146 and 148 may be skewed relative to each other.



FIG. 6 shows illustrative drill 600 inserted in guide tube 120 and penetrating bone B. Drill 600 may penetrate cortical bone BCO (shown in FIG. 2) and cancellous bone BCA (shown in FIG. 2). Drill 600 may include teeth 602, flutes 604, shaft 606, torque adapter 608 and any other suitable features. Torque adapter 608 may be an A-O type torque adapter or any other suitable torque adapter. Stop 610 may be present to limit penetration depth dp of drill 600. Stop 610 may be any suitable feature that limits forward axial motion of members 600. Stop 610 may include annular distal surface 612, which may abut rim 614 of guide tube 120 when dP is reached. Fastener 616, which may be a set screw, may be used to fix the position of stop 610 along shaft 606 to fix the magnitude of dP.



FIG. 7 shows illustrative intramedullary broach 700. Broach 700 may include broach head 702. Broach head 702 may include illustrative broaching member 704.


Broaching member 704 may be sufficiently rigid to displace cancellous bone BCA. Broaching member 704 may be sufficiently flexible to be deformed by cortical bone BCO. In some embodiments, broaching member 704 may be expandable. Broach head 702 may be supported by and rotated by shaft assembly 714. Broach control 706 may include drive handle 708 for rotating and translating broach head 702. Broach control 706 may include expansion control hub 710. Expansion control hub 710 may be displaceable along control shaft to expand or contract broaching member 704. Broach head 702 may include distal end 780. Expansion control hub 710 is shown in the “contract” position.



FIG. 8 shows broach 700 deployed in bone B through hole H. Broach 700 may be deployed while broaching member 704 is contracted.


Broach head 702 may be advanced, through intramedullary space IS, into metaphyseal region M of bone B. Broach head 702 may be disposed in any portion of intramedullary space IS, such as in the end-bone.


Access hole H may be sufficiently small that it reduces the occurrence of cause stress risers at site H′. Expansion control hub 710 is shown in the “expand” position and broaching member 704 is shown expanded in bone B. Broaching member 704 may be expanded during or after deployment.


A standard orthopaedic drill instrument (not shown) may be used to open access hole H in cortical bone BCO (shown in FIG. 2) at site H′ on bone B. The drill instrument may be guided by apparatus such as guide 100 (shown in FIG. 1). Axis hole H may be drilled along broach axis LC. Broach axis LC may form an angle β with bone axis LB. Broach 700 may be positioned such that broach axis Lc substantially coincides with guide tube axis LGT (shown in FIG. 1). Angle β may be an acute angle. Angle β may be complementary with angle α (shown in FIG. 1).



FIG. 9 shows illustrative instrument guide 900 at site H′ on bone B. Instrument guide 900 may have one or more features in common with instrument guide 100 (shown in FIG. 1). Instrument guide 900 may include instrument templates 930 and 932 for positioning instrument guide 900 such that an instrument can be positioned at target region St1.


Illustrative steerable broach 950 may be deployed at target region St1 in intramedullary space IS by insertion through guide 900 at site H′. Broach 950 may include broach head 925. Broach head 925 may have one or more features or properties in common with broach head 125 (shown in FIG. 1). Broach head 925 may be supported by broach sheath 927. Broach head 925 may be rotated by drive shaft 940 which may extend inside broach sheath 927 and receive torque from torque adapter 908. Torque adapter 908 may provide rotation from any suitable rotation source drive shaft 940.


Broach sheath 927 may be flexible. Broach sheath 927 may be flexible in region 928 such that application of off-axis tension by elevator ribbon 952 may position broach head 925 at a distance y or −y relative to bone axis LB. Illustrative elevator control body 960 may apply axial compression to elevator ribbon 952 to cause broach sheath 927 to bend.


Broach sheath 927 may be configured to flex in more than one plane. Broach sheath 927 may be configured to flex substantially in one plane only.


Target region St1 could be in either, or both, of cancellous bone BCA and cortical bone BCO (shown in FIG. 2). Side template 930 and top template 932 are registered to guide tube 920. A practitioner may position templates 930 and 932 such that templates 930 and 932 “project” onto target region St1 so that guide 900 will guide broach head 925 to target region St1.


Side template 930 may be rotatable at arm 942 to change angle γ between side template 930 axis LT and guide 900 centerline CLGT. γ may be selected to correspond to a degree of elevation in direction y or −y of broach head 925. γ may be selected to correspond to a degree of actuation of control 962 of control body 960. For example, γ may be selected such that side template 930 “projects” onto target region St2.


Fluoroscopic imaging may be used to position templates 930 and 932 relative to target region St1.


A practitioner can select the position of H′ (distance xH shown in FIG. 2), the angle of hole H (shown in FIG. 2) relative to bone axis LB, the degree and distribution of flexing in region 928, the penetration of broach sheath 927, the size of broach head 925, the swept-out profile of broaching member 924, and any other suitable parameters, to determine the size, shape, orientation and location of a cavity to be swept out by broaching member 924. For example, one or more of the aforementioned parameters may be selected to position broach head 925 in target region St2.



FIG. 10 shows guide base 102 from below on the distal side. Stem 116 extends from the top of base 102. Guide tube 120 extends from the distal portion of base 102. Arm 131 extends from the side of base 102. Site H′ of hole H (shown in FIG. 2) is shown projected onto opening 1002 of guide tube 120 and centered about axes LH and LGT.


Illustrative contacts 108 and 110 extend down from base 102 to engage bone B (shown in FIG. 2) and resist rotation about vertical axes LH and LTR and translation along guide centerline CLG. Contacts 108 and 110 may be sufficiently sharp to penetrate or partially penetrate bone B. Cleats 112 and 114 may engage the surface of bone B and resist rotation about guide centerline CLG. Base 102 may support any suitable number of contacts in any suitable pattern or location. Base 102 may support an arrangement of contacts that extends in a direction that is substantially oblique or transverse to guide centerline CLG.


In some embodiments, base 102 may include a flange (not shown) that saddles bone B. The flange may include any suitable number of contacts in any suitable pattern, including an arrangement of contacts that extends in a direction that is substantially oblique or transverse to guide centerline CLG.


Alignment members 104 and 106 may extend from base 102 to align guide centerline CLG of guide 100 with bone centerline CLBS of the top surface of bone B (shown in FIG. 2). Each of alignment members 104 and 106 include continuous alignment edges 1004 and 1006. Edge 1004 is supported by substantially vertical struts 1007 and 1008. Edge 1006 is supported by substantially vertical struts 1010 and 1012. Edges 1004 and 1006 are substantially parallel to centerline CLG.


In some embodiments, alignment members may be or may include tines that correspond to struts 1007, 1008, 1010 and 1012. One or more of the tines may extend straight down from base 102. One or more of the tines may extend down and in the proximal direction relative to base 102. One or more of the tines may extend down and in the distal direction relative to base 102.


In embodiments that include one or more tines (not shown), edges 1004 and 1006 may be absent. In those embodiments, the tines may flex independently of each other. One or more of the tines may be biased away from guide centerline CLG. One or more of the tines may be biased toward guide centerline CLG. One or more of the tines may be curved or arcuate.


Some embodiments may include a bushing (not shown) in guide tube 120. The bushing may provide stability for a K-wire in procedures in which the K-wire is used as a drill to provide preliminary access to the inside of a bone.



FIG. 11 shows illustrative saw 1100. Saw 1100 may be used to cut an access hole at site H′ or site I′ (shown in FIG. 2) or any other suitable hole. Saw 1100 may be guided by guide 100 (shown in FIG. 1), guide 900 (shown in FIG. 9), guide 1900 (shown in FIG. 19) or any other suitable guide.


Saw 1100 may include wire 1102. Wire 1102 may be a K-wire or any other suitable wire. Saw 1100 may include centering sleeve 1104. Centering sleeve 1104 may be made of polymer, alloy or any other suitable material. Saw 1100 may include cutting member 1106. Cutting member 1106 may include teeth 1108, vents 1110 and cylindrical member 1112. Vents 1110 may provide chip clearance, side-cutting, reduced heating or other properties, among others. Saw 1100 may include torque adapter 1114. Torque adapter 1114 may transmit rotation from a rotation source to one or both of K-wire 1102 and cutting member 1106.


Wire 1102 may form an angled pilot hole in bone B. The hole may be formed at angle δ between saw axis Ls and bone axis LB. After wire 1102 penetrates bone B, saw 1100 may be advanced distally until teeth 1108 engage bone B and being to cut. Teeth 1108 will engage bone B first at point p, in the crotch between wire 1102 and bone B. Teeth 1108 may therefore be subjected to a contact force from bone B that is oblique to a plane defined by teeth 1108. Centering sleeve 1104 may support teeth 1108 against the oblique force and maintain teeth 1108 at a substantially constant radius from axis Ls during the formation of an access hole.


A spring 1116 (shown in FIG. 13) may urge centering sleeve 1104 distally to keep centering sleeve 1104 at or near bone B as teeth 1108 penetrate into bone B.



FIG. 12 shows that centering sleeve 1104 may be coaxially arranged within cutting member 1106. Wire 1102 may be coaxially arranged within centering sleeve 1104. Collar 1202 of centering sleeve 1104 may be provided at a distal end of centering sleeve 1104 to provide a close tolerance between wire 1102 and centering sleeve 1104.



FIG. 13 shows spring 1116 compressed between proximal face 1302 of centering sleeve 1104 and distal face 1304 of torque adapter 1114.


In some embodiments, wire 1102 may be used to drill a pilot hole in bone B without apparatus such as centering sleeve 1104 and cutting member 1106. In such embodiments, a bushing (not shown) may be provided in a guide tube such as guide tube 120 (shown in FIG. 1). Wire 1102 may be placed through the bushing and driven by a torque adapter such as 1114. The bushing may have a bore that is sized to stabilize a K-wire driven in rotation by a surgical drill.


It may be desirable thereafter to cut in the bone a hole that is substantially coaxial with the K-wire. After the K-wire is drilled into the bone, in such embodiments, the bushing (not shown) may be removed from the guide tube to allow a coring saw to advance through the guide tube.



FIG. 14 shows illustrative apparatus 1400 for cutting in bone B a hole that is substantially coaxial with wire 1402. FIG. 14 shows a relevant portion of coring saw guide 1450. Coring saw guide 1450 may include contacts 1452 for engaging a surface of bone B (shown in FIG. 2). Coring saw guide 1450 may include handle-mounting recesses such as 1454. A centering sleeve (not shown) may be disposed coaxially between wire 1402 and cutting member 1406. In some embodiments, a cutting member such as 1406 may be engaged by a collar (not shown) that is configured for delivery of torque.


A proximal end of wire 1402 may be engaged in a hand drill fitting and rotatingly driven into the bone as it is advanced distally through saw guide 1450.



FIG. 15 shows wire 1402. Distal end 1502 of wire 1402 may have a first diameter. Proximal end 1504 of wire 1402 may have a second diameter that is greater than the first diameter. Step 1506 between the first diameter and the second diameter may be used as a stop to limit the extent to which wire 1402 may be driven into bone B.


Proximal end 1504 of a wire such as 1402 may extend along and through a cannula in an A-O type adapter while the adapter drives a cutting member such as 1408 distally into a bone.


In some embodiments, step 1506 may be used to distally eject a bone plug from the interior of distal end 1405 of cutting member 1406 after a hole is cut and cutting member 1406 is withdrawn from the bone.


In some embodiments, a soft-tissue protector (not shown) may be provided to keep soft tissue proximate the access hole from becoming engaged by rotating apparatus. The protector may include a cannula for guiding the rotating apparatus into the hole. The protector may include a flange that “funnels” the apparatus into the cannula and blocks the soft tissue from approaching the apparatus.



FIG. 16 shows a portion of illustrative cutting member 1106 from region 16 of FIG. 11. A circumferential tooth 1602 may extend into one or more of vents 1110 to engage bone on the inside of the cutter.


Tooth 1602 may provide friction between cutting member 1106 and the bone plug and may facilitate removal of the bone plug upon with drawal of cutting member 1106 from the access hole. The distal end of the bone plug may not be severed from bone B native tissue by cutting member 1106. Tooth 1602 may provide one or both of torsional and axial force to sever the plug from bone B. Vents 1110 may include vent edges 1604. Vent edges 1604 may cut a wall of the access hole.


Tooth 1602 may provide friction between cutting member 1106 and centering sleeve 1104. The friction may resist proximal motion of centering sleeve 1104.



FIG. 17 shows illustrative teeth 1108 of cutter member 1106 (shown in FIG. 11). Illustrative tooth 1702 may include cutting edge 1704, face 1706 and back 1708. Face 1706 and back 1708 may partially define adjacent gullets 1710 and 1712, which intervene between tooth 1702 and neighboring teeth 1714 and 1716, respectively. Tooth 1702 may have thickness t. Tooth 1702 may be circumferentially set apart from neighboring tooth 1716 by pitch Pt. Cutting edge 1704 may be angled relative to saw radial direction Rs by bevel angle φ (shown on a different tooth). Cutting edge 1704 is shown with φ=0°, but any suitable φ may be used. Face 1706 may have longitudinal rake angle ρ.


Larger rake angles (e.g., positive) may produce lower forces, but smaller included tooth angles, and therefore lower heat capacity. Smaller rake angles (e.g., negative) may increase heat capacity and increase heat generated in shearing but increase cutting forces.


Face 1706 is shown with ρ=0°, but any suitable ρ may be used. Gullet 1710 may have gullet depth Dg.


In some embodiments, tooth 1702 may include facet 1718 (shown in broken line). When facet 1718 is present, tooth face 1706 may be shortened by distance h. Facet 1718 may have a normal (not shown) that is oriented at any suitable angle relative to axis Ls and radius Rs.



FIG. 18 shows teeth 1108 (shown in FIG. 11) as viewed along lines 18-18 (shown in FIG. 17). Cutting edge 1704 forms angle θ with saw outer wall 1802. Cutting edge 1704 is shown with θ≈90°, but any suitable θ may be used. For example, a tooth formed by cutting along chord Ch1 may create a cutting edge having θ>90°. A tooth formed by cutting along chord Che may create a cutting edge having θ<90°.


In some embodiments, a cutting member may have bi-directionally cutting teeth. Each tooth such tooth may have a right and a left cutting edge. When the coring saw rotates clockwise, a right edge cuts. When the coring saw rotates counterclockwise, a left edge cuts.



FIG. 19 shows illustrative instrument guide 1900. Illustrative instrument guide 1900 may have one or more features in common with one or more of guide 100 (shown in FIG. 1) and guide 900 (shown in FIG. 9). Guide 1900 may be used to guide an instrument into bone B at a site such as H′ or I′ (shown in FIG. 2).


Guide 1900 may include base 1902. Base 1902 may be placed against bone B (shown in FIG. 2) at site H′. Base 1902 may include contacts (not shown), alignment members (not shown), cleats (not shown) or any other suitable features. Grip 1918 may extend from base 1902. Base 1902 may include pivot 1904. Pivot 1904 may pivotably support guide tube 1920. Guide tube 1920 centerline CLGT′ may be positioned at any suitable angle α′ relative to axis LH′ so that saw 1950 may be advanced through bone B (not shown) at angle α′. The intersection of axis LH′ and CLGT′ may substantially coincide with site H′ or site I′ for different values of α′. A practitioner may change angle α′ before or during penetration of saw 1950 into bone B. For example, a practitioner may initiate a pilot hole at α′≈0° and then change α′ to obtain the desired angle for the access hole.


Saw 1950 may include teeth 1952, flutes 1954, cannula 1956 or any other suitable features, including the features described and shown herein in connection with other saws.



FIG. 20 shows a view of a distal portion of broach 700 taken along lines 20-20 (shown in FIG. 7). Pin 703 may be located near the distal end of bracket 720. Pin 703 may fix the position of the distal end of broaching member 704. Pin 703 may support cylindrical form 705. Cylindrical form 705 may be coaxially mounted on pin 703. Cylindrical form 705 may support a spiral segment of broaching member 704. One or more distal portions of broaching member 704 may be welded or otherwise suitably fixed to cylindrical form 705.


Cylindrical form 705 may constrain or partially constrain the orientation of distal portions of broaching member 704. Cylindrical form 705 may be fixed relative to bracket 720. Cylindrical form 705 may be rotatable relative to bracket 720.


Broach head 702 may include end cap 701. Broaching member 704 may remove tissue that is generally proximal end cap 701. In some embodiments, member 704 may expand in such a manner as to extend distally of end cap 701. In such embodiments, the broaching member may remove tissue that is distal of end cap 701.


Reducing or minimizing the distance between the distal end of broaching member 704 and end cap 701 may allow broaching member 704 to remove tissue that is more immediately proximal end cap 701. End cap 701 may be positioned at the distal end of bracket 720. End cap 701 may be configured to have a smooth, atraumatic surface. Bracket 720 may be attached to drive shaft 730.


Shaft assembly 714 may include drive shaft 730. Drive shaft 730 may support bracket 720 at union 732. Drive shaft 730 may be secured to bracket 720 by pin 734. Drive shaft 730 may provide rotation to broach head 702.


Proximal ends 736 and 738 of broaching member 704 may be fixed to slide 740, which may be a tube. Proximal end 738 may be threaded through or keyed into windows 742 and 744 in slide 740. Proximal end 736 may be threaded through or keyed into slots 746 and 748 in slide 740. Slide 740 may slide relative to drive shaft 730 to expand and contract broaching member 704. Slide 740 is shown in the “contract” state, in which broaching member 704 is drawn close to bracket 720. Slide cover 750 may slide with slide 740. One or both of slide 740 and slide cover 750 may be translated along axis Lc by control hub 710 (shown in FIG. 7) or any other suitable position controller.


Slide cover 750 may remain stationary relative to drive shaft 730 when slide 740 slides relative to drive shaft 730. In embodiments in which slide cover 750 remains stationary when slide 740 moves, distal end 752 of slide cover 750 may limit the radial position of broaching member 704 at a fixed distance along drive shaft 730 and thus affect the deformation of broaching member 704 in the expanded state.


Broaching member 704 may undergo one or both of elastic and plastic deformation.



FIG. 21 shows a view of a distal portion of broach 700 taken along lines 20-20 (shown in FIG. 7) when broaching member 704 is in an expanded state. Broaching member 704 is shown as mainly circular. However, any desired shape may be able to be imparted in the expanded state such as but not limited to: square, triangular, oval, ellipsoid, teardrop, football, or any other suitable shape.


Different shapes may be obtained using several methods, such as utilizing a pre-set shape in a shape memory alloy, modifying the geometry of the member cross-section (along the member length) such that it preferentially bends in a desired manner, constraining broaching member 704 (e.g., in force, shear or moment) in a way that forces the expansion to take desired shape, having the final shape be that of the expanded geometry and the reduced or collapsed geometry be that of a higher strain configuration, and/or any other suitable method of forming a desired shape.


For example, largely or substantially preventing radial movement of broaching member proximal ends 736 and 738, and allowing movement of the distal end of broaching member 704 generally about pin 703 while elastically deforming broaching member proximal ends 736 and 738, due to reducing the distance between the distal end and proximal ends 736 and 738 of broaching member 704, may modify the geometry of broaching member 704 from a generally straight configuration to a generally eggbeater shape.


The deformation may relatively increase the distance between (a) sections 760 and 762 and (b) bracket 720. As this distance is increased, the swept-out volume of broaching member 704, as broaching member 704 rotates generally about an axis such as Lc (shown in FIG. 8), is increased.


In some embodiments, a broach may include a broaching member that includes one or more stiff tines (not shown) that is joined to a drive shaft. The drive shaft may have a longitudinal axis. The tine may be joined to the drive shaft radially close to the axis at a proximal end of the tine. The tine may have a distal end that is spaced radially apart from the axis. The distal end of the tine may be distal of the distal end of the drive shaft. There may be numerous tines on the drive shaft. Such embodiments may be appropriate for rotation in intramedullary space IS of bone B (shown in FIG. 2) using high torque at low rotational speeds.



FIG. 22 shows broaching member 704 in partial cross section from view lines 22-22 (shown in FIG. 21). Broaching member 704 may have leading edges 2202 and 2204 that may be rotated in direction ωc by drive shaft 730 (shown in FIG. 21). Broaching member 704 may sweep out a space in bone B (shown in FIG. 2) based on radius Rc, which corresponds to sections 760 and 762 (shown in FIG. 21).


Leading edge 2202 may be beveled at angle αc1. Angle αc1 may be any suitable angle, including an angle from about 5° to about 75°. Angle αc1 may cause leading edge 2202 to be generally sharp or knife-like. This may aid in the broaching member's ability to remove tissue.


Leading edge 2204 may be beveled at angle αc2. Angle αc2 may be any suitable angle, including an angle from about 5° to about 75°. Angle αc2 may cause leading edge 2204 to be generally sharp or knife-like. This may aid in the broaching member's ability to remove tissue.


As broaching member 704 is rotated clockwise generally about axis Lc leading edges 2202 and 2204 may generally be the first portion of sections 760 and 762 to come in contact with tissues such as relatively less dense cancellous bone BCA (shown in FIG. 2). Sections 760 and 762 may be configured to be sufficiently flexible such that if either of sections 760 and 762 contacts relatively more dense materials, such as diaphysis, metaphysis and epiphysis bone, sections 760 and 762 may deflect generally radially in direction −ωo about axis Lc and/or in the linear direction towards axis Lc at any location along the length of sections 760 and 762 or any other portion of broaching member 704. Deflection or deformation of sections 760 and 762 may have the affect of not disturbing the more dense tissues.


Leading edges 2202 and 2204 may be offset from axis Lc by offsets Δ1 and Δ2 respectively. Appropriate magnitudes of offsets Δ1 and Δ2 may be selected. In some embodiments, offsets Δ1 and Δ2 may be constrained by the collapsed diameter (overall diameter of broach head 702 in a plane transverse to axis Lc when broaching member 704 is collapsed, e.g., for deployment) of the configuration and the desired expanded engagement (radius Rc) of broaching member 704 with the tissue. Offsets Δ1 and Δ2 may aid in the broaching member's efficiency at displacing tissue.



FIG. 22A shows broach head 704 in intramedullary space IS of bone B and illustrates how flexible broaching members can broach bone of a relatively lower density and be deflected by bone of a relatively higher density. Sections 760 and 762 have displaced or removed some of cancellous bone BCA from bone B by rotating in direction ωc about axis Lc. Sections 760 and 762 may be sufficiently stiff to remove cancellous bone to radius Rc from axis Lc in the “top” portion of bone B. Because of the placement of axis Lc relative to the bottom portion of bone B, sections 760 and 762 contact cortical bone BCO at the bottom of bone B. Sections 760 and 762 may be sufficiently flexible to be deflected by cortical bone BCO. Section 760 is shown deflected in direction −ωc by bone BCO. Sections 760 and 762 thus remove bone only to radius Rc′ in the “bottom” portion of bone B.


The cavity created by broach 700 may thus be bounded in part by cancellous bone BCA and in part by cortical bone BCO. The shape of the cavity portion that is bounded by cancellous bone BCA may be governed substantially by the geometry and mechanical properties of broach 700. The shape of the cavity portion that is bounded by cortical bone BCO may be governed substantially by the native anatomy of bone B.



FIG. 23 shows a view of broach 700 along lines 23-23 (shown in FIG. 20). Broach 700 is in the contracted state. Slide cover 750 has been removed. Slots 746, 748 and 2302 in slide 740 may be configured to coincide with features on proximal end 736 (shown in FIG. 21) of broaching member 704. When proximal end 736 is engaged with slots 746, 748 and 2302, slots 746, 748 and 2302 may restrict movement of proximal end 736 in either direction generally along axis Lc. Slots 746, 748 and 2302 may have any suitable geometry that allows for the engagement and axial translation of proximal end 736.


Slots 746, 748 and 2302 may be of sufficient depth that, when proximal end 736 is engaged in slots 746, 748 and 2302, slide cover 750 (shown in FIG. 20) has adequate radial clearance with respect to proximal end 736 and slide 740 to slide over slide 740 and slots 746, 748 and 2302. An inner surface of slide cover 750 may prevent movement of proximal end 736 from moving in a direction generally away from axis Lc.


Slide 740 may include slots (not shown) that correspond to proximal end 738 (shown in FIG. 20) and have one or more features in common with, slots 746, 748 and 2302.


Broach head 720 may include broaching member wrap section 2304. Pin 703 may be integrated into wrap section 2304. Wrap section 2304 may be separate from pin 703. Wrap section 2304 may be configured to allow wrapping of broaching member 704 generally around wrap section 2304. Broaching member 704 may be looped in wrap section 2304. Broaching member 704 may be wrapped (as shown in FIG. 23) at least one full turn in wrap section 2304. Wrapping about wrap section 2304 may bias segments 760 and 762 (shown in FIG. 21) away from axis Lc.



FIG. 24 shows a cross section, viewed along lines 24-24 (shown in FIG. 8) of a portion of broach control 706 (shown in FIG. 7). Expansion control hub 710 is shown with base 2402 at position pe. This may correspond to the expanded state of broaching member 704, as shown in FIG. 8. Base 2402 may be moved distally to position pc. This may correspond to the contracted state of broaching member 704, as shown in FIG. 7. Expansion control hub 710 may operate in connection with body 2408. Body 2408 may include control shaft 712 and distal stop 2410. Control shaft 712 may include threads 2418.


Expansion control hub 710 may include outer member 2412 and inner member 2414. Outer member 2412 and inner member 2414 may be fixed to each other. Slide pin 2404 may be captured between outer member 2412 and inner member 2414. Inner member 2414 may include threads 2416 for engagement with threads 2418 on control shaft 712. Slide pin 2404 may travel in slots 2405 and 2407 in body 2408.


Expansion control hub 710 may be moved along axis Lc by applying force to expansion control hub 710. In some embodiments, expansion control hub 710 may be advanced axial generally along axis Lc by applying rotational force generally about axis Lc to expansion control hub 710 such that threads 2416 move advance or retreat through threads 2418.


Axial movement of expansion control hub 710 relative to body 2408 may be transferred to slide 740 and slide cover 750 while drive shaft 730 remains axially fixed to body 2408 by pin 2406. Slide 740 may include cut-outs 2430 and 2432. Slide cover 750 may include cut-outs 2434 and 2436. Cut-outs 2430, 2432, 2434 and 2436 may provide clearance of pin 2406 when slide 740 and slide cover 750 travel axially.


When expansion control hub 710 is moved axially, proximal ends 736 and 738 (shown in FIG. 20) of broaching member 704 thus move axially. Distal end 780 (shown in FIG. 7) of broaching member 704 may be axially fixed to drive shaft 730, which may be fixed to body 2408. Thus, when expansion control hub 710 moves distally, the distance between (a) proximal ends 736 and 738 and; (b) distal end 780 decreases and broaching member 704 expands. When expansion control hub 710 moves proximally, the distance between (a) proximal ends 736 and 738; and (b) distal end 780 increases and broaching member 704 contracts.


Distal stop 2410 and proximal stop 2420 may limit axial movement of expansion control hub 710. Although proximal stop 2420 is shown as being part of handle 708, proximal stop 2420 may be separate from handle 708.


Handle 708 may transfer rotational motion generally about axis Lc to control shaft 712. Control shaft 712 may transfer the rotation to slide pin 2404 and drive shaft pin 2406. Slide pin 2404 may transfer the rotation to slide 740 and slide cover 750. Drive shaft pin 2406 may transfer the rotation to drive shaft 730, which may drive broaching member 704 (shown in FIG. 21).


Distal stop 2410 is shown as being integral with body 2408, but distal stop may be a separate element that is attached to control shaft 712 or a different part of body 2408.


Pin 2406 may extend into recess feature 2422. Recess feature 2422 may be a through-hole. Pin 2406 may extend through the through hole to a location external to body 2408.


Pin 2404 may extend into recess feature 2424. Recess feature 2424 may be a through-hole. Pin 2404 may extend through the through-hole to a location external to body outer member 2412. Recess feature may extend circumferentially about axis Lc. If recess feature 2424 extends circumferentially about axis Lc, expansion control hub 710 may rotate about axis Lc substantially without restricting, or being restricted by, pin 2404.


Body 2408 may include circumferential recess 2426. Recess 2426 may be sized to engage O-ring 2428. Recess 2426 may prevent axial movement between body 2408 and O-ring 2428 generally along axis Lc. O-ring 2428 may be sized to provide an interference fit with outer member 2412. The interference fit may produce friction between O-ring 2428 and expansion control hub 710. The friction may allow expansion control hub 710 to be lightly locked at any rotational position relative to body 2408, generally about axis Lc.



FIG. 25 shows illustrative cavity preparation apparatus 2500. Apparatus 2500 may include broach 2550. Broach 2550 may have one or more features in common with broach 950 (shown in FIG. 9). Broach 2550 may include one or more of broach head 2525, elevator ribbon 2552 and control body 2560. Apparatus 2500 may include guide 2502. Guide 2502 may guide broach 2550 or any other suitable apparatus through an access hole such as H or I (shown in FIG. 2). Guide 2502 may retain soft tissue at a distance from the access hole to prevent engagement of the soft tissue by an instrument that is present in guide 2502.



FIGS. 26-29 show features of different portions of apparatus 2500.



FIG. 26 shows in partial cross section illustrative broach head 2525 and illustrative elevator ribbon 2552.


Broach head 2525 may be driven about axis LE by rotating drive shaft 2540. Broach head 2525 may include broaching member 2524, which may have one or more features in common with broaching member 704 (shown in FIG. 7). Broach head 2525 may include distal hub 2526 and proximal hub 2528. One or both of distal hub 2526 and proximal hub 2528 may transfer rotation to broaching member 2524. One or both of distal hub 2526 and proximal hub 2528 may support broaching member 2524.


Drive shaft 2540 may extend within broach sheath 2527. Drive shaft 2540 may be supported in rotation by bushing 2530 at the end of broach sheath 2527.


Illustrative elevator ribbon 2552 may be anchored to broach sheath 2527 at fixation 2532. When axial compressive force, generally along axis LE, is applied to elevator ribbon 2552, elevator ribbon 2552 may buckle along its length. For example, elevator ribbon 2552 may buckle at or near section 2534. Section 2536 may be used to support broach sheath 2527 at an elevation relative to cancellous bone BCA or cortical bone BCO in bone B (shown in FIG. 2).


Portions of elevator ribbon 2552 may extend inside broach sheath 2527 and pass through slots 2542 and 2544 to section 2534. In some embodiments, there may be contact between drive shaft 2540 and elevator ribbon 2552. In some embodiments, there may be no contact between drive shaft 2540 and elevator ribbon 2552.


Elevator ribbon 2552, when compressed, may apply tension to adjacent portion 2538 of broach sheath 2527 and compression to opposite portion 2540 of broach sheath 2527. One or both of the tension of adjacent portion 2538 and the compression of opposite portion 2540 may cause broach sheath 2527 to curve generally about an axis such as LF.


One or both of adjacent portion 2538 and opposite portion 2540 may include stress-relief features that allow bending under tension and compression. The stress-relief features may include slots or slot patterns. The stress-relief features may be provided using laser-cutting. The stress-relief may provide an equilibrium curvature such that broach sheath 2527 is curved at rest.


The stress-relief features may include sintered particles. The particles may include metal, polymer, composite or any other suitable material.



FIG. 27 shows illustrative laser-cut pattern 2700 for a broach sheath such as 927 (shown in FIG. 9) or 2527 (shown in FIG. 26). Pattern 2700, which is shown flat for illustration, may be cut in a cylindrical tube to relieve compression on one side of the tube and relieve tension on the other side of the tube. For example, compression relief pattern 2740 may be provided along opposite portion 2540 of broach sheath 2527. Tension relief pattern 2738 may be provided along adjacent portion 2538 of broach sheath 2527. Tension and compression relief may be increased by lengthening lengths Lp1 and Lp2, respectively. Bending stiffness may be reduced by increasing pattern widths w1 and w2. Increasing kerf and decreasing inter-cut spacing may also decrease bending stiffness. In some embodiments, the tube may have an outer diameter of 0.108 in. In some embodiments, the tube may have an outer diameter of 0.125 in. Any suitable outer diameter may be used.



FIG. 28 shows illustrative elevator control body 2860. Elevator control body 2860 may support the proximal end of broach sheath 2527. Drive shaft 2540 may extend through control body 2860 to torque adapter 2808. Torque adapter 2808 may be cannulated. Torque adapter 2808 may be a cannulated A-O type adapter. Torque adapter 2808 may have a “D”-shaped extension for engagement by a D-shaped chuck.


Torque adapter 2808 may be torqued by any suitable source of rotational energy.


Control body 2860 may include housing 2862 and actuator 2866. Handle 2864 may be used to rotate actuator 2866 through angle δhd E about axis LTE relative to housing 2862. When actuator moves through angle δE, shaft 2868 may drive shuttle 2870 in slot 2872. The distal end of elevator ribbon 2552 may be fixed to the shuttle, for example, by screw 2874. When the shuttle is in a distal position, elevator ribbon 2552 is expanded (as shown in FIG. 26). When the shuttle is in a proximal position, elevator ribbon 2552 is contracted toward axis LE.


Actuator 2866 may include face member 2890. Face member 2890 may be fixed relative to housing 2862. Face member 2890 may include recess 2892. Recess 2892 may “catch” a projection such as 2894 to act as a detent. Projection 2894 may be one of several projections that provide detent positions. For example, three detent positions may be provided: forward, neutral and back. In the forward position, elevator ribbon 2552 is extended. In the back position, elevator ribbon 2552 is compressed. In the neutral position, elevator ribbon 2552 is in a partially compressed state.


Housing 2862 may be configured to house a torque limiter (not shown). The torque limiter may couple torque adapter 2808 to drive shaft 2540 and may be used to limit the torque that is applied to broach head 2525 (shown in FIG. 25). If broach head 2525 were to jam in bone B (shown in FIG. 2), the torque limiter may cap or reduce the torque on broaching head 2525 to prevent damage to broaching head 2525, other elements of apparatus 2500, other involved apparatus or bone B.



FIG. 29 shows illustrative guide 2502. Guide 2502 may include cannula 2904 and funnel 2906. Funnel 2906 may facilitate insertion of a broach head such as 2525 (shown in FIG. 25) into a hole such as H (shown in FIG. 2).


Guide 2502 may be “preloaded” on broach sheath 2527. A practitioner may insert a broach head into hole H (shown in FIG. 2) and then position guide 2520 in hole H. Funnel 2906 may protect soft tissue outside bone B. Cannula 2904 may guide the broach head through hole H when broach head is withdrawn from hole H (for example, at the conclusion of a cavity preparation procedure).


Outer wall 2908 of cannula 2904 may be of an appropriate diameter to substantially fill hole H. Funnel 2906 may include ledge 2910. Ledge 2910 may limit the extent to which cannula 2904 may extend into intramedullary space IS.


Cannula 2904 may support detent 2912. Detent 2912 may be present to catch on the inside of cortical bone BCO wall W to retain cannula 2904 in position in hole H. Detent 2912 may be have a tapered profile so that it can engage walls W of different thickness. In some embodiments, detent 2912 may be passive. In passive embodiments, detent 2912 may be resilient, biased or rigid. In some embodiments, detent 2912 may be active. In active embodiments, detent 2912 may be actuated. For example, detent 2912 may be actuated by a manual control that causes detent 2912 to extend away from tube cannula 2904 a desired distance or a preset distance. Cannula 2904 may include more than one detent.


Mouth 2914 of funnel 2906 may have any suitable shape transverse to axis LE. The shape may be rectangular, triangular, elliptical, tear-drop, splayed, circular and any other suitable shape.


Funnel 2906 may include a skiving-curved section (not shown). The skiving-curved section may be at the distal end of funnel 2906.


Guides for rotatable broaches may include a body that has a cannula. The body may support a broach sheath in alignment with the cannula. A drive shaft may pass through the cannula and extend distally through the broach sheath. A rotation source may be connected to the drive shaft proximal the body. The body may be hand-held. The body may have no adaptations to mate with a hole such as H (shown in FIG. 2).



FIG. 30 shows apparatus 2500 (shown in FIG. 25) with control 2864 at a larger angle δE and elevator ribbon 2552 in the contracted state close to broach sheath 2527. Stress-relief features such as those shown in flat model 2700 (shown in FIG. 27) are shown in portions 2538 and 2540 of broach sheath 2527.



FIG. 31 shows illustrative broaching member 3102. Broaching member 3102 may be mounted by fixture 3104 to hub 3106 at the distal end of a broach shaft 3108. Broach shaft 3108 may have one or more features in common with broach shaft 2527 (shown in FIG. 26) or any other broach shaft discussed or shown herein. For example, broach shaft 3108 may include stress-relief features 3110 and 3112.


Hub 3106 may have one or more features in common with hub 2528 (shown in FIG. 26).


Broaching member 3102 may be a self expanding structure. Broaching member 3102 may be constructed from laser-cut tube stock that is expanded into a suitable shape, such as that shown. Broaching member 3102 may include broaching members such as 3114. Broaching member 3102 may include numerous interconnected cells such as cell 3116. The cells may be defined by one or more broaching members. Some cells may be defined by structures other than broaching members. The cells may be arranged in a network. The cells may be linked such that when the structure is stressed (e.g., compressed) at a point the stress is distributed to nearby cells. Broaching member 3102 may thus rotate in a bone cavity that has an irregular shape, for example, nonround, oblong, or angular. The cavity may be smaller than a diameter of broaching member 3102, such as expanded diameter DE.


Broaching member 3102 may include broaching members that included braided wire (not shown). Broaching member 3102 may include broaching members that included braided ribbon (not shown).


In some embodiments, each cell arm may be a broaching member. When a large number (i.e., when the circumferential density of broaching members is high) of broaching members are present during the rotation of a broaching head, a relatively lower torque is required to drive the broaching head.



FIG. 32 shows illustrative broach 3200 inserted in bone B. Broach 3200 may include broaching head 3202. Flexible rotating drive shaft 3204 may drive broaching head 3202 in rotation in directions ρ′ or −ρ′. Drive shaft 3204 may be driven by a rotation source such as handle 3206. In some embodiments, the rotation source may include a surgical hand drill, a dremel motor or any other suitable rotational power source.


Drive shaft 3204 may be sheathed in a flexible cannula (apart from broach sheath 3210, which is described below).


Control body 3208 may be used to insert broaching head 3202 through a hole at site H′. During insertion, broaching head 3202 may be withdrawn into flexible broach sheath 3210. Proximal end 3212 of flexible broach sheath 3210 may be fixed to distal end 3214 of control body 3208. Actuator 3216 may engage drive shaft 3204 and may slide relative to control body 3208. Actuator 3216 may thus translate drive shaft 3204 along axis LM within guide sheath 3210.


In some embodiments, broaching head 3202 may be compressible and expandable. Broaching head 3202 may be compressed within guide sheath 3210. Broaching head 3202 may be expanded outside of guide sheath 3210. In some embodiments, broaching head 3202 may self-expand in bone B after being pushed out of guide sheath 3210 by drive shaft 3204. In some embodiments, broaching head 3202 may be outside guide sheath 3210 when broaching head 3202 is delivered into bone B.


Broaching head 3202 may include one or more broaching members 3218 that have sufficient rigidity to displace cancellous bone, but sufficient resilience to deform when brought into contact with cortical bone and thus leave the cortical bone substantially in place.


Broaching members 3218 may be formed from loops. The loops may be fixed to distal hub 3220. The loops may be fixed to proximal hub 3222. One or both of distal hub 3220 and proximal hub 3222 maybe axially fixed to drive shaft 3204. One or both of distal hub 3220 and proximal hub 3222 maybe rotationally fixed to drive shaft 3204. Broaching head 3202 may include any suitable number of loops. Broaching members 3218 may have one or more features in common with broaching member 704 (shown in FIG. 7) or any other broaching member described or shown herein.



FIG. 33 shows illustrative broaching head 3300. Broaching head 3300 may include broaching members 3302. Each of broaching members 3302 may have one or more features in common with broaching member 704 (shown in FIG. 7) or any other broaching member shown or described herein. Broaching head 3300 may have any suitable number of broaching members 3302. For example, broaching head 3300 may have one broaching member, 2-6 broaching members, 7-20 broaching members, more than 20 broaching members or any suitable number of broaching members.


Broaching head 3300 may be contracted toward drive shaft 3310 and withdrawn into an outer sheath (not shown). The outer sheath may be inserted in a hole such as H (shown in FIG. 2). Broaching head 3300 may then be deployed by retracting the sheath. Broaching members 3302 may be sufficiently resilient to be contracted and may expand away from drive shaft 3310 when the sheath is retracted.


Broaching members 3302 may be supported by distal hub 3304. Distal hub 3304 may be absent and broaching members 3302 may have free distal ends. Broaching members with free distal ends may be supported at their proximal ends near the central axis of broaching head 3300. The broaching members may be angled radially away from the central axis of broaching head 3300.


Broaching members with free distal ends may have suitable shape at the distal ends, such as pointed, forked, rounded, blunt or truncated.


Broaching members 3302 may be supported by proximal hub 3306. Proximal hub 3306 may be supported by broach sheath 3308. Broach sheath 3308 may have one or more features in common with broach sheath 127 (shown in FIG. 1).


Drive shaft 3310 may drive broaching head 3300 in rotation. Drive shaft 3310 may extend distally to distal hub 3304. Drive shaft 3310 may extend through broach sheath 3308 to a proximal rotation source (not shown).


One or both of distal hub 3304 and proximal hub 3306 maybe axially fixed to drive shaft 3310. One or both of distal hub 3304 and proximal hub 3306 maybe rotationally fixed to drive shaft 3310.


One or more of broaching members 3302 may include a hoop segment such as 3312. Segment 3312 may support one or more reinforcements such as 3314.


Segment 3312 may be rigid. Segment 3312 may be resilient. Segment 3312 may have any suitable pre-set curvature or be substantially linear. Segment 3312 may be a closed loop. The loop may be asymmetric.


Segment 3312 may include a length of wire, ribbon, cable, stranded wire, or any other suitable form or structure. Segment 3312 may include polymer, metal, alloy or any other suitable material. Segment 3312 may be constructed of a mesh cut from metal tube.


Reinforcement 3314 may be a tube. Reinforcement 3314 may be formed from polymer, metal, alloy or any other suitable material. One or more reinforcements such as 3314 may be sized and positioned to support segment 3312 in a desired contour. One or more reinforcements such as 3314 may provide bone-broaching abrasiveness, momentum or both.



FIG. 34 shows illustrative broaching head 3400. Broaching head 3400 may include broaching members 3402. Each of broaching members 3402 may have one or more features in common with broaching member 704 (shown in FIG. 7) or any other broaching member shown or described herein. Broaching head 3400 may have any suitable number of broaching members 3402. For example, broaching head 3400 may have one broaching member, 2-6 broaching members, 7-20 broaching members, more than 20 broaching members or any suitable number of broaching members.


Broaching members 3402 may be supported by distal hub 3404. Broaching members 3402 may be supported by proximal hub 3406. Proximal hub 3406 may be supported by drive shaft 3410. Drive shaft 3410 may have one or more features in common with drive shaft 730 (shown in FIG. 20) or any other drive shaft that is shown or described herein.


Drive shaft 3410 may drive broaching head 3400 in rotation. Drive shaft 3410 may extend distally to distal hub 3404. Drive shaft 3410 may extend to a proximal rotation source (not shown).


One or both of distal hub 3404 and proximal hub 3406 maybe axially fixed to drive shaft 3410. One or both of distal hub 3404 and proximal hub 3406 maybe rotationally fixed to drive shaft 3410.


One or more of broaching members 3402 may include a hoop segment such as 3412. Reinforcement 3414 may support one or more segments such as 3412.


Segment 3412 may be rigid. Segment 3412 may be resilient. Segment 3412 may include a length of wire, ribbon, cable, stranded wire or any other suitable form or structure. Segment 3412 may include polymer, metal, alloy or any other suitable material.


Reinforcement 3414 may be a brace. Reinforcement 3414 may be formed from polymer, metal, alloy or any other suitable material. One or more reinforcements such as 3414 may be sized and positioned to support segment 3412 in a desired contour. One or more reinforcements such as 3414 may provide bone-broaching abrasiveness, momentum or both.


The brace may reduce material fatigue in segment 3412. The brace may help segment 3412 retain its shape under forces of rotation and broaching resistance. The brace may include loops such as 3418 and 3416. The loops may pass around the circumference of segment 3412. In some embodiments, loops 3418 and 3416 may encompass only a portion of the circumference. In some embodiments, the brace may be fixed to segment 3412, for example, by crimping, welding or press-fit.


The brace may support broaching edges for displacing bone material in bone B (shown in FIG. 2). The broaching edges may have any suitable form, such as serrated, saw-tooth, knife-edge, rectilinear edge or any other suitable form.


The brace may be formed from a pattern that is cut into a metal tube.



FIG. 35 shows illustrative broaching head 3500. Broaching head 3500 may include broaching member 3502. Broaching member 3502 may have one or more features in common with broaching member 704 (shown in FIG. 7) or any other broaching member shown or described herein.


Broaching head 3500 may have any suitable number of broaching members such as broaching member 3502. For example, broaching head 3400 may have one broaching member, 2-6 broaching members, 7-20 broaching members, more than 20 broaching members or any suitable number of broaching members. When more than one broaching member is included, the broaching members may have different sizes or other features.


Broaching member 3502 is illustrated as a single solid hoop. Broaching member 3502 may include one or more members that are stranded or braided. Broaching member 3502 may include wire, strip stock, sheet stock, strand, ribbon, polymer, composite, ceramic, sintered material or any other suitable material. Broaching member 3502 may have one or more of a variety of cross sections, such as square, rectangular, octagonal, contours with sharp edges, stranded cable, or other suitable configurations to facilitate bone displacement.


Broaching member 3502 may include stainless steel, Nitinol (shapeset, superelastic or other Nitinol) or any other suitable substance.


Broaching member 3502 may be a substantially continuous structure. Broaching member 3502 may pass through channel 3512 in distal hub 3504. Broaching member 3502 may be fastened to distal hub 3504 in channel 3512.


Broaching member 3502 may be supported by distal hub 3504. Broaching member 3502 may be supported by proximal hub 3506. Proximal hub 3506 may be supported by broach sheath 3508. Broach sheath 3508 may have one or more features in common with broach sheath 127 (shown in FIG. 1) or any other broach sheath that is shown or described herein.


Drive shaft 3510 may drive broaching head 3500 in rotation. Drive shaft 3510 may extend distally to distal hub 3504. Drive shaft 3510 may extend to a proximal rotation source (not shown).


One or both of distal hub 3504 and proximal hub 3506 maybe axially fixed to drive shaft 3510. One or both of distal hub 3504 and proximal hub 3506 maybe rotationally fixed to drive shaft 3510.


Distal hub 3504 may be constructed of metal, stainless steel, laser-cut tube, polymer, ceramic or any other suitable material.


The distal end of drive shaft 3510 may extend into a channel (not shown) in distal hub 3504. Distal hub 3504 may be free to move axially with respect to drive shaft 3510. The channel in distal hub 3504 may be keyed for receiving a complementarily keyed distal end of drive shaft 3510. Drive shaft 3510 may thus drive broaching member 3502 distal portions 3518 and 3520.


During rotation, broaching member 3502 may elongate axially, along axis LG and push distal hub 3504 distally relative to drive shaft 3510. Such motion may contract broaching member 3502. During rotation, broaching member 3502 may expand axially along axis LG and draw distal hub 3504 proximally relative to drive shaft 3510. Contraction may occur, for example, when distal hub 3504 encounters resistant material.


Distal hub 3504 may be fixed to drive shaft 3510. Broaching member 3502 may be driven rotationally by application of torque to proximal ends 3514 and 3516 of broaching member 3502. Broaching member 3502 may be driven rotationally by application of torque to distal portions 3518 and 3520 of broaching member 3502.


Proximal ends 3514 and 3516 of broaching member 3502 may be affixed to drive shaft 3510 by proximal hub 3506. Proximal hub 3506 may engage proximal ends 3514 and 3516 by crimping, welding, set-screw, snap fit or any other suitable fastening.


Proximal hub 3506 may include or rotate with respect to a bearing (not shown). The bearing may be seated in the distal end of broach sheath 3508. Thus, when drive shaft 3510 rotates broaching member 3502, broach sheath 3508 and the bearing do not rotate. The orientation at which proximal ends 3514 and 3516 of broaching member 3502 are fixed to proximal hub 3506 may provide or retain a shape of broaching member 3502.


Distal hub 3504 may extend a distance E in the distal direction away from distal portions 3518 and 3520 of broaching member 3502. Distal hub 3504 may thus contact bone material inside bone B (shown in FIG. 2) before distal portions 3518 and 3520 contact the material. If the material is dense, such as cortical bone, the material may resist distal advancement of distal hub 3504. Broaching member 3502 may thus be prevented from broaching or interacting with the material.


Distal hub 3504 may include flutes 3522 and 3524. Broaching edges 3526, 3528, 3530, 3532, 3534 and 3536 may displace material inside bone B. Flutes 3522 and 3524 may intersect with each other at the distal end of distal hub 3504.


Distal hub 3504 may have a blunt distal end without flutes. This may prevent broaching member 3502 from interacting with material that resists distal advancement of distal hub 3504. The distal end of distal hub 3504 may be any suitable shape.


Distal hub 3504 may be absent from broaching head 3500.



FIG. 36 shows illustrative broach 3600. Broach 3600 may include broaching head 3602, control shaft assembly 3604 and actuator 3606.


Broaching head 3602 may include linked blades 3608, 3610, 3612 and 3613. Linked blades 3608 and 3610 may have broaching edges 3630 and 3632, respectively. The broaching edges may broach bone inside bone B (shown in FIG. 2) when broach head 3602 is rotated about axis LI.


The blades may positioned radially by a locking mechanism. The blades may be positioned radially by a resilient mechanism such that the blades may interact with bone tissue with sufficient pressure to displace bone tissue of certain densities, but insufficient pressure to substantially displace bones of a higher density.


Linked blades 3608, 3610, 3612 and 3613 may be linked by one or more linkages such as linkages 3614, 3616, 3618 and 3620. Linkage 3618 (and corresponding linkage 3619, not shown) may be supported by elongated members such as fixed struts 3622 and 3624. Fixed struts 3622 and 3624 may be fixed with respect to axis LI. Fixed struts 3622 and 3624 may be joined by distal tip 3634.


Linkage 3614 may be supported by one or more elongated members, such as pull struts (not shown) that extend axially within control shaft assembly 3604. The pull struts may cause radial extension and contraction of the blades by changing the axial distance between (a) linkage 3614 and (b) linkages 3618 and 3619 (not shown).


Control shaft assembly 3604 may include fixed struts 3622 and 3624, the one or more pull struts (not shown), housing members 3626 and 3628, one or more filler members (not shown) and other suitable members (not shown).


Actuator 3606 may include elements for creating an offset between elongated members such as the fixed struts and the puller struts. Actuator 3606 may include elements for rotating broaching head 3602 about axis LI.



FIG. 37 shows broaching head 3602 and a portion of control shaft assembly 3604 with housing members 3626 and 3628 removed. Pullers 3702 and 3704 may be present in control shaft assembly 3604 to move linkage 3614 axially relative to linkages 3618 and 3619.



FIG. 38 shows illustrative portion 3800 of linkage 3614. Portion 3800 may be a pin channel that spans pull struts 3702 and 3704 and blades 3608 and 3610. A pin (not shown) may traverse the pin channel to axially align holes 3802, 3804, 3808 and 3810, of strut pull 3702, strut 3704, blade 3608 and blade 3610, respectively.



FIG. 39 shows pin channel 3902 of linkage 3618 and pin channel 3904 of linkage 3619. Pin channel 3902 traverses blade 3612, housing member 3622 and pin fastener 3906. Pin channel 3904 traverses blade 3613, housing member 3624 and pin fastener 3908.


A pin (not shown) may be present in channel 3902 to axially fix linkage 3618 to housing member 3622. A pin (not shown) may be present in channel 3904 to axially fix linkage 3619 to housing member 3624. Linkages 3619 and 3618 may be offset from axis LI by offsets Δ3 and Δ4.


When broach head 3602 is rotated in bone B (shown in FIG. 2) in direction ωI or −ωI, with blades 3608 and 3610 positioned as shown, broaching edges 3630 and 3632 (shown in FIG. 36) will sweep out a space of radius RIMAX, which is the maximum radius for broach head 3602. If linkage 3614 (shown in FIG. 36) were moved from the axial position shown, broaching edges 3630 and 3632 would sweep out a space of RI.



FIG. 40 shows the radial extent of tip 4002 of blade 3610 for different axial positions of linkage 3614. When linkage 3614 is in a most-proximal position, tip 4002 may be at RI=RI0. At RI0, broaching edge 3622 may be disengaged from bone B (shown in FIG. 2). When linkage 3614 is in an intermediate axial position, tip 4002 may be at RI=RI1. At RI1, broaching edge 3622 may be engaged with bone B. At RI=RIMAX, broaching edge 3622 may be engaged with bone B at a maximum radius from axis LI.


Filler members such as filler 4004 may be placed in spaces between pull struts. The filler members may be placed proximate blades that are actuated by the pull struts. The filler members may provide lateral stability to the pull struts.



FIG. 41 shows illustrative broaching head 4100. Broaching head 4100 may include broaching members 4102. Each of broaching members 4102 may have one or more features in common with broaching member 704 (shown in FIG. 7) or any other broaching member shown or described herein. Broaching head 4100 may have any suitable number of broaching members 4102. For example, broaching head 4100 may have one broaching member, 2-6 broaching members, 7-20 broaching members, more than 20 broaching members or any suitable number of broaching members.


Broaching head 4100 may be contracted toward drive shaft 4110 and withdrawn into a broach sheath (not shown). The broach sheath may be inserted in a hole such as H (shown in FIG. 2). Broaching head 4100 may then be deployed by retracting the broach sheath. Broaching members 4102 may be sufficiently resilient to be contracted and may expand away from drive shaft 4110 when the broach sheath is retracted.


Broaching members 4102 may include free distal ends such as distal end 4104. Broaching members with free distal ends may be supported at their proximal ends near the central axis of broaching head 4100.


Distal end 4104 may have any suitable shape, such as pointed, forked, rounded, blunt or truncated.


Broaching members 4102 may be supported proximally by one or more of drive shaft 4110, a proximal hub (not shown), and a broach sheath. The broach sheath may have one or more features in common with broach sheath 127 (shown in FIG. 1).


Drive shaft 4110 may drive broaching head 4100 in rotation. The rotation may be in direction ωs. The rotation may be in direction −ωs. Drive shaft 4110 may extend through the broach sheath (not shown) to a proximal rotation source (not shown).


Broaching members 4102 may be rotated at high angular speed to break up cancellous bone, such as bone BCA (shown in FIG. 2). One or both of stiffness of broaching members 4102 and angular speed may be chosen to select a bone density threshold above which broaching members 4102 will have reduced or substantially no effect and below which broaching members 4102 will break up the cancellous bone.


One or more of broaching members 4102 may include a spiral segment such as 4106. Segment 4106 may be supported by one or more reinforcements such as 4108.


Segment 4106 may be rigid. Segment 4106 may be resilient. Segment 4106 may have any suitable pre-set curvature. Segment 4106 may include a substantially linear portion (not shown).


Segment 4106 may include a length of wire, ribbon, cable, stranded wire, or any other suitable form or structure. Segment 4106 may include polymer, metal, alloy or any other suitable material. Segment 4106 may be constructed of a mesh cut from metal tube.


Reinforcement 4108 may be a tube. A reinforcement 4108 may be formed from polymer, metal, alloy or any other suitable material. One or more reinforcements such as 4108 may be sized and positioned to support segment 4106 in a desired contour. One or more reinforcements such as 4108 may provide bone-broaching abrasiveness, momentum or both.


Reinforcement 4108 may be a brace.


Spiral segment 4112 may “spiral” in the same direction as spiral segment 4106. Spiral segment 4112 may “spiral” in the opposite direction from spiral segment 4106 such that distal tips 4104 and 4114 “face” in opposite circumferential directions.


Broaching members 4102 may be absent from broaching head 4100. Reinforcements such as 4108 may be present in broaching head 4100 to perform as broaching members.



FIG. 42 shows illustrative intramedullary tool 4200. Tool 4200 may include handle 4202, elongated support 4204 and probe 4206.


A practitioner may use handle 4202 to insert probe 4206 into intramedullary space IS of bone B (shown in FIG. 2). Probe 4206 may be used to determine the spatial distribution of cancellous bone BCA (shown in FIG. 2) in intramedullary space IS. Probe 4206 may be used to apply force to a bone fragment such as fragments Ph and Pa (shown in FIG. 2) to position the bone fragment for provisional reduction of a fracture such as Fh and Fa (shown in FIG. 2). Probe 4206 may be viewed in situ via fluoroscopic imagery or any other suitable type of imagery during operation of tool 4200.


Probe 4206 may include distal face 4208. Distal face 4208 may be rounded, conical, faceted or any other suitable shape. Probe 4206 may include a wire loop.


Probe 4206 may include polymer, alloy or any other suitable material.


Elongated support 4204 may include one or more straight portions such as portion 4208. Elongated support 4204 may include one or more curved portions such as portion 4210. Elongated support 4204 may be shaped such that probe 4206 may be inserted into an angled access hole such as H or I (shown in FIG. 2) and advanced substantially along bone axis LB toward distal end D of bone B (shown in FIG. 2).


Elongated support 4204 may include one or more rigid sections. Elongated support 4204 may include one or more flexible sections. A flexible section may help probe 4206 negotiate a turn from the angled access hole into the intramedullary space. A flexible section may help probe 4206 deflect away from high density bone, such as high density cancellous bone or cortical bone, during advancement substantially along bone axis LB (shown in FIG. 2).


Elongated support 4204 may have one or more solid sections. Elongated support 4204 may have one or more cannulated sections.


Elongated support 4204 may include polymer, alloy or any other suitable material.


Thus, apparatus and methods for fracture repair have been provided. Persons skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation. The present invention is limited only by the claims that follow.

Claims
  • 1. Apparatus for broaching a bone, the apparatus comprising; a rotator defining a first axis; anda broaching member including an edge fixed to the rotator and configured to be moved relative to the rotator to displace first bone material that is radially away from the rotator, a distal end of the broaching member looping through a distal end of the rotator to form a loop about a second axis that is transverse to the first axis so that in operation a section of the broaching member extends away from the loop and deflects around second bone material, the second bone material having a higher density than the first bone material.
  • 2. The apparatus of claim 1 wherein the broaching member is configured to form in the bone a space having a first contour that corresponds to a shape of the broaching member and a second contour that corresponds to anatomy of the second bone material.
  • 3. The apparatus of claim 2 wherein: the section of the broaching member is a first section; andthe broaching member comprises a second section that is disposed opposite the first section of the broaching member.
  • 4. The apparatus of claim 1 wherein operationally the section deflects around the second bone material more than the section deflects around the first bone material.
  • 5. The apparatus of claim 1 wherein the loop is disposed about a transverse member that is coupled to the rotator.
  • 6. The apparatus of claim 5 wherein the transverse member is supported by the distal end of the rotator.
  • 7. The apparatus of claim 1 wherein the loop is looped at least one full turn about a transverse member that is supported by the distal end of the rotator.
  • 8. The apparatus of claim 7 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 9. The apparatus of claim 8 wherein the lengthwise axis intersects the first axis.
  • 10. The apparatus of claim 8 wherein the first axis is a central axis of the rotator.
  • 11. The apparatus of claim 8 wherein the lengthwise axis is the second axis.
  • 12. The apparatus of claim 1 wherein the loop comprises a broaching member segment that is wrapped about a transverse member that is supported by the distal end of the rotator.
  • 13. The apparatus of claim 12 wherein the segment is wrapped at least one full turn around the transverse member.
  • 14. The apparatus of claim 12 wherein the segment traverses more than one time a distal portion of the transverse member.
  • 15. The apparatus of claim 12 wherein the segment biases the first broaching member section away from the first axis, the first axis being a central axis of the rotator.
  • 16. The apparatus of claim 12 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 17. The apparatus of claim 16 wherein the lengthwise axis intersects the first axis.
  • 18. The apparatus of claim 16 wherein the first axis is a central axis of the rotator.
  • 19. The apparatus of claim 16 wherein the lengthwise axis is the second axis.
  • 20. The apparatus of claim 1 wherein: the section is a first section;the broaching member is monolithic and comprises a second section, opposite the first section, that extends away from the loop;the loop expands the broaching member radiallv outward front the rotator by biasing the first and second sections away from each other.
  • 21. The apparatus of claim 1 wherein the broaching member includes a first proximal end and a second proximal end.
  • 22. The apparatus of claim 21 wherein: the first proximal end is fixed to the rotator at a first position;the second proximal end is fixed to the rotator at a second position; andthe first position is, relative to the rotator, diametrically opposite the second position.
  • 23. The apparatus of claim 22 wherein the loop applies to the first proximal end and the second proximal end a force that is directed radially away from the first axis of the rotator.
  • 24. The apparatus of claim 23 wherein the first axis is a central axis of the rotator.
  • 25. The apparatus of claim 1 wherein the rotator includes an end cap disposed distal the loop.
  • 26. The apparatus of claim 25 wherein the end cap has a smooth, atraumatic surface.
  • 27. The apparatus of claim 25 wherein the distal end of the rotator includes a channel proximal the end cap, the loop looping about a transverse member that is disposed in the channel.
  • 28. The apparatus of claim 1 further comprising: a pin; anda cylindrical form supported by the pin, wherein the loop is supported by the cylindrical form.
  • 29. The apparatus of claim 28 wherein the cylindrical form is coaxially mounted on the pin.
  • 30. The apparatus of claim 28 wherein the loop has an orientation and the cylindrical form constrains the orientation.
  • 31. The apparatus 30 wherein the distal end of the broaching member is fixed to the cylindrical form.
  • 32. The apparatus of claim 28 wherein the cylindrical form is fixed, relative to the first axis of the rotator.
  • 33. The apparatus of claim 32 wherein the first axis is a central axis of the rotator.
  • 34. The apparatus of claim 28 wherein the cylindrical form is rotatable relative to the rotator.
  • 35. The apparatus of claim 1 wherein the first axis is a central axis of the rotator.
  • 36. Apparatus for broaching a bone, the apparatus comprising: a rotator defining a first axis; anda broaching member including an edge fixed to the rotator and configured to be moved relative to the rotator to displace first bone material that is radially away from the rotator, the broaching member looping about a portion of a distal end of the rotator to form a loop about a second axis that is transverse to the first axis so that in operation a section of the broaching member extends away from the loop and deflects around second bone material, the second bone material having a higher density than the first bone material.
  • 37. The apparatus of claim 36 wherein the broaching member is configured to form in the bone a space having a first contour that corresponds to a shape of the broaching member and a second contour that corresponds to anatomy of the second bone material.
  • 38. The apparatus of claim 36 wherein: the section of the broaching member is a first section; andthe broaching member comprises a second section that is disposed opposite the first section of the broaching member.
  • 39. The apparatus of claim 36 wherein operationally the section deflects around the second bone material more than the section deflects around the first bone material.
  • 40. The apparatus of claim 36 wherein the loop is disposed about a transverse member that is coupled to the rotator.
  • 41. The apparatus of claim 40 wherein the transverse member is supported by the distal end of the rotator.
  • 42. The apparatus of claim 36 wherein the loop is looped at least one full turn about a transverse member that is supported by the distal end of the rotator.
  • 43. The apparatus of claim 42 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 44. The apparatus of claim 43 wherein the lengthwise axis intersects the first axis.
  • 45. The apparatus of claim 43 wherein the first axis is a central axis of the rotator.
  • 46. The apparatus of claim 43 wherein the lengthwise axis is the second axis.
  • 47. The apparatus of claim 36 wherein: the loop comprises a broaching member segment that is wrapped about a transverse member that is supported by the distal end of the rotator.
  • 48. The apparatus of claim 47 wherein the segment is wrapped at least one full turn about the transverse member.
  • 49. The apparatus of claim 47 wherein the segment traverses more than one time a distal portion of the transverse member.
  • 50. The apparatus of claim 47 wherein the segment biases the first broaching member section away from the first axis, the first axis being a central axis of the rotator.
  • 51. The apparatus of claim 47 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 52. The apparatus of claim 51 wherein the lengthwise axis intersects the first axis.
  • 53. The apparatus of claim 51 wherein the first axis is a central axis of the rotator.
  • 54. The apparatus of claim 51 wherein the lengthwise axis is the second axis.
  • 55. The apparatus of claim 36 wherein: the section is a first section;the broaching member is monolithic and comprises a second section, opposite the first section, that extends away from the loop;the loop expands the broaching member radial outward from the rotator by biasing the first and second sections away from each other.
  • 56. The apparatus of claim 36 wherein the broaching member includes a first proximal end and a second proximal end.
  • 57. The apparatus of claim 56 wherein: the first proximal end is fixed to the rotator at a first position;the second proximal end is fixed to the rotator at a second position; andthe first position is, relative to the rotator, diametrically opposite the second position.
  • 58. The apparatus of claim 57 wherein the loop applies to the first proximal end and the second proximal end a force that is directed radially away from the first axis of the rotator.
  • 59. The apparatus of claim 58 wherein the first axis is a central axis of the rotator.
  • 60. The apparatus of claim 36 wherein the rotator includes an end cap disposed distal the loop.
  • 61. The apparatus of claim 60 wherein the end cap has a smooth, atraumatic surface.
  • 62. The apparatus of claim 60 wherein the distal end of the rotator includes a channel proximal the end cap, the loop looping about a transverse member that is disposed in the channel.
  • 63. The apparatus of claim 36 further comprising: a pin; anda cylindrical form supported by the pin, wherein the loop is supported by the cylindrical form.
  • 64. The apparatus of claim 63 wherein the cylindrical form is coaxially mounted on the pin.
  • 65. The apparatus of claim 63 wherein the loop has an orientation and the cylindrical form constrains the orientation.
  • 66. The apparatus of claim 65 wherein the distal end of the broaching member is fixed to the cylindrical form.
  • 67. The apparatus of claim 63 wherein the cylindrical form is fixed, relative to the first axis of the rotator.
  • 68. The apparatus of claim 67 wherein the first axis is a central axis of the rotator.
  • 69. The apparatus of claim 63 wherein the cylindrical form is rotatable relative to the rotator.
  • 70. apparatus of claim 36 wherein the first axis is a central axis of the rotator.
  • 71. Apparatus for broaching a bone, the apparatus comprising: a rotator defining a first axis; anda broaching member including an edge fixed to the rotator and configured to be moved relative to the rotator to displace first bone material that is radially away from the rotator, a distal end of the broaching member looping about a distal end of the rotator to form a loop about a second axis that is transverse to the first axis so that in operation a section of the broaching member extends away from the loop and deflects around second bone material, the second bone material having a higher density than the first bone material.
  • 72. The apparatus of claim 71 wherein the broaching member is configured to form in the bone a space having a first contour that corresponds to a shape of the broaching member and a second contour that corresponds to anatomy of the second bone material.
  • 73. The apparatus f claim 71 wherein: the section of the broaching member is a first section; andthe broaching member comprises a second section that is disposed opposite the first section of the broaching member.
  • 74. The apparatus of claim 71 wherein operationally the section deflects around the second bone material more than the section deflects around the first bone material.
  • 75. The apparatus of claim 71 wherein the loop is disposed about a transverse member that is coupled to the rotator.
  • 76. The apparatus of claim 75 wherein the transverse member is supported by the distal end of the rotator.
  • 77. The apparatus of claim 71 wherein the loop is looped at least one full turn about a transverse member that is supported by the distal end of the rotator.
  • 78. The apparatus of claim 77 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 79. The apparatus of claim 78 wherein the lengthwise axis intersects the first axis.
  • 80. The apparatus of claim 78 wherein the first axis is a central is of the rotator.
  • 81. The apparatus us of claim 78 wherein the lengthwise axis is the second axis.
  • 82. The apparatus of claim 71 wherein: the loop comprises a broaching member segment that is wrapped about a transverse member that is supported by the distal end of the rotator.
  • 83. The apparatus of claim 82 wherein the segment is wrapped at least one full turn about the transverse member.
  • 84. The apparatus of claim 82 wherein the segment traverses more than one time a distal portion of the transverse member.
  • 85. The apparatus of claim 82 wherein the segment biases the first broaching member section away from the first axis, the first axis being a central axis of the rotator.
  • 86. The apparatus of claim 82 wherein the transverse member has a lengthwise axis that is transverse to the first axis.
  • 87. The apparatus of claim 86 wherein the lengthwise axis intersects the first axis.
  • 88. The apparatus of claim 86 wherein the first axis is a central axis of the rotator.
  • 89. The apparatus of claim 86 wherein the lengthwise axis is the second axis.
  • 90. The apparatus of claim 71 wherein: the section is a first section;the broaching member is monolithic and comprises a second section, opposite the first section, that extends away from the loop;the loop expands the broaching radially outward from the rotator by biasing the first and second sections away from each other.
  • 91. The apparatus of claim 71 wherein the broaching member includes a first proximal end and a second proximal end.
  • 92. The apparatus of claim 91 wherein: the first proximal end is fixed to the rotator at a first position;the second proximal end is fixed to the rotator at a second position; andthe first position is, relative to the rotator, diametrically opposite the second position.
  • 93. The apparatus of claim 92 wherein the loop applies to the first proximal end and the second proximal end a force that is directed radially away from the first axis of the rotator.
  • 94. The apparatus of claim 93 wherein the first axis is a central axis of the rotator.
  • 95. The apparatus of claim 71 wherein the rotator includes an end cap disposed distal the loop.
  • 96. The apparatus of claim 95 wherein the end cap has a smooth, atraumatic surface.
  • 97. The apparatus of claim 95 wherein the distal end of the rotator includes a channel proximal the end cap, the loop looping about a transverse member that is disposed in the channel.
  • 98. The apparatus of claim 71 further comprising: a pin; anda cylindrical form supported by the pin, wherein the loop is supported by the cylindrical form.
  • 99. The apparatus of claim 98 wherein the cylindrical form is coaxially mounted on the pin.
  • 100. The apparatus of claim 98 wherein the loop has an orientation and the cylindrical form constrains the orientation.
  • 101. The apparatus of claim 100 wherein the distal end of the broaching member is fixed to the cylindrical form.
  • 102. The apparatus of claim 98 wherein the cylindrical form is fixed, relative to the first axis of the rotator.
  • 103. The apparatus of claim 102 wherein the first axis is a central axis of the rotator.
  • 104. The apparatus of claim 98 wherein the cylindrical form is rotatable relative to the rotator.
  • 105. The apparatus of claim 71 wherein the first axis is a central axis of the rotator.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a nonprovisional of U.S. Provisional Applications Nos. 61/296,722, filed on Jan. 20, 2010, and 61/389,507, filed on Oct. 4, 2010, both of which are hereby incorporated by reference in their entireties.

US Referenced Citations (937)
Number Name Date Kind
1362513 Skinner Dec 1919 A
1344327 Wilson Jun 1920 A
1493240 Bohn May 1924 A
1685380 Shultz Sep 1928 A
2137710 Anderson Dec 1937 A
2485531 Dzus et al. Jan 1948 A
2493598 Rozek Jan 1950 A
2537070 Longfellow Jan 1951 A
2580821 Nicola Jan 1952 A
2730101 Hoffman Jan 1956 A
2780223 Haggland Feb 1957 A
2898963 Courtot Aug 1959 A
3143915 Tendler Aug 1964 A
3143916 Rice Aug 1964 A
3181533 Heath May 1965 A
3495586 Regenbogen Feb 1970 A
3517128 Hines Jun 1970 A
3593342 Niebauer et al. Jul 1971 A
3623164 Bokros Nov 1971 A
3640280 Slanker et al. Feb 1972 A
3702611 Fishbein Nov 1972 A
3710789 Ersek Jan 1973 A
3744488 Cox Jul 1973 A
3745590 Stubstad Jul 1973 A
3759257 Fischer et al. Sep 1973 A
3760802 Fischer et al. Sep 1973 A
3779239 Fischer et al. Dec 1973 A
3805775 Fischer et al. Apr 1974 A
3828790 Curtiss et al. Aug 1974 A
3835859 Roberts et al. Sep 1974 A
3886600 Kahn et al. Jun 1975 A
3909853 Lennox Oct 1975 A
3917249 Constantine Nov 1975 A
3946445 Bentley et al. Mar 1976 A
3970075 Sindelar et al. Jul 1976 A
3986504 Avila Oct 1976 A
3992726 Freeman et al. Nov 1976 A
4036107 Constantine Jul 1977 A
4091806 Aginsky May 1978 A
4124026 Berner et al. Nov 1978 A
4156296 Johnson et al. May 1979 A
4180871 Hamas Jan 1980 A
4190044 Wood Feb 1980 A
4193139 Walker Mar 1980 A
4194250 Walker Mar 1980 A
4203444 Bonnell et al. May 1980 A
4204531 Aginsky May 1980 A
4213208 Marne Jul 1980 A
4227518 Aginsky Oct 1980 A
4229840 Gristina Oct 1980 A
4231121 Lewis Nov 1980 A
4262665 Roalstad et al. Apr 1981 A
4273128 Lary Jun 1981 A
4274398 Scott et al. Jun 1981 A
4275717 Bolesky Jun 1981 A
4293962 Fuson Oct 1981 A
4313434 Segal Feb 1982 A
4349922 Agee Sep 1982 A
4352212 Greene et al. Oct 1982 A
4430991 Darnell Feb 1984 A
4453539 Raftopoulos et al. Jun 1984 A
4473070 Matthews et al. Sep 1984 A
4485816 Krumme Dec 1984 A
4502554 Jones Mar 1985 A
4519100 Wills et al. May 1985 A
4522200 Stednitz Jun 1985 A
4548199 Agee Oct 1985 A
4572186 Gould et al. Feb 1986 A
4573448 Kambin Mar 1986 A
4585000 Hershenson Apr 1986 A
4590930 Kurth et al. May 1986 A
4601290 Effron et al. Jul 1986 A
4611594 Grayhack et al. Sep 1986 A
4619122 Simpson Oct 1986 A
4627434 Murray Dec 1986 A
4634445 Helal Jan 1987 A
4643177 Sheppard et al. Feb 1987 A
4644951 Bays Feb 1987 A
4646738 Trott Mar 1987 A
4655203 Tormala et al. Apr 1987 A
4660557 Collis Apr 1987 A
4662371 Whipple et al. May 1987 A
4665906 Jervis May 1987 A
4669237 Constantine Jun 1987 A
4674488 Nashef et al. Jun 1987 A
4705027 Klaue Nov 1987 A
4721103 Freedland Jan 1988 A
4730608 Schlein Mar 1988 A
4731087 Sculco et al. Mar 1988 A
4751922 DiPietropolo Jun 1988 A
4777942 Frey et al. Oct 1988 A
4782833 Einhorn et al. Nov 1988 A
4790302 Colwill et al. Dec 1988 A
4809793 Hailey Mar 1989 A
4820305 Harms et al. Apr 1989 A
4875474 Border Oct 1989 A
4886062 Wiktor Dec 1989 A
4914818 Hall et al. Apr 1990 A
4921478 Solano et al. May 1990 A
4941466 Romano Jul 1990 A
4946459 Bradshaw et al. Aug 1990 A
4954126 Wallsten Sep 1990 A
4955916 Carignan et al. Sep 1990 A
4969888 Scholten et al. Nov 1990 A
4973257 Lhotak Nov 1990 A
4978349 Frigg Dec 1990 A
4998539 Delsanti Mar 1991 A
5002546 Romano Mar 1991 A
5015255 Kuslich May 1991 A
5030201 Palestrant Jul 1991 A
5035714 Willert et al. Jul 1991 A
5053036 Perren et al. Oct 1991 A
5059193 Kuslich Oct 1991 A
5062845 Kuslich et al. Nov 1991 A
5066296 Chapman et al. Nov 1991 A
5067957 Jervis Nov 1991 A
5071407 Termin et al. Dec 1991 A
5084050 Draenert Jan 1992 A
5100423 Fearnot Mar 1992 A
5102413 Poddar Apr 1992 A
5108404 Scholten et al. Apr 1992 A
5108435 Gustavson et al. Apr 1992 A
5112333 Fixel May 1992 A
5113846 Hiltebrandt et al. May 1992 A
5116335 Hannon et al. May 1992 A
5122134 Borzone et al. Jun 1992 A
5139497 Tilghman et al. Aug 1992 A
5151103 Tepic et al. Sep 1992 A
5169402 Elloy Dec 1992 A
5171284 Branemark Dec 1992 A
5174374 Hailey Dec 1992 A
5180382 Frigg et al. Jan 1993 A
5190545 Corsi et al. Mar 1993 A
5190546 Jervis Mar 1993 A
5190548 Davis Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197967 Wilson Mar 1993 A
5197971 Bonutti Mar 1993 A
5201741 Dulebohn Apr 1993 A
5203773 Green Apr 1993 A
5221261 Termin et al. Jun 1993 A
5236431 Gogolewski et al. Aug 1993 A
5242017 Hailey Sep 1993 A
5242461 Kortenbach et al. Sep 1993 A
5250048 Gundolf Oct 1993 A
5263955 Baumgart et al. Nov 1993 A
5269785 Bonutti Dec 1993 A
5275602 Shimizu et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5281225 Vicenzi Jan 1994 A
5281226 Davydov et al. Jan 1994 A
5286249 Thibodaux Feb 1994 A
5307790 Byrne May 1994 A
5314486 Zang et al. May 1994 A
5326205 Anspach et al. Jul 1994 A
5334184 Bimman Aug 1994 A
5358405 Imai Oct 1994 A
5376097 Phillips Dec 1994 A
5376100 Lefebvre Dec 1994 A
5378239 Termin et al. Jan 1995 A
5380328 Morgan Jan 1995 A
5397320 Essig et al. Mar 1995 A
5415660 Campbell et al. May 1995 A
5423823 Schmieding Jun 1995 A
5431671 Nallakrishnan Jul 1995 A
5437665 Munro Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439464 Shapiro Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5454365 Bonutti Oct 1995 A
5458599 Adobbati Oct 1995 A
5458648 Berman et al. Oct 1995 A
5467763 McMahon et al. Nov 1995 A
D365634 Morgan Dec 1995 S
5474557 Mai Dec 1995 A
5480447 Skiba Jan 1996 A
5496277 Termin et al. Mar 1996 A
5496330 Bates et al. Mar 1996 A
5499981 Kordis Mar 1996 A
5501695 Anspach et al. Mar 1996 A
5505734 Caniggia et al. Apr 1996 A
5509919 Young Apr 1996 A
5512037 Russell et al. Apr 1996 A
5527316 Stone et al. Jun 1996 A
5531792 Huene Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5545162 Huebner Aug 1996 A
5554163 Shturman Sep 1996 A
5556408 Farhat Sep 1996 A
5571098 Domankevitz et al. Nov 1996 A
5571189 Kuslich Nov 1996 A
5578035 Lin Nov 1996 A
5582577 Lund et al. Dec 1996 A
5582618 Chin et al. Dec 1996 A
5586983 Sanders et al. Dec 1996 A
5586985 Putnam et al. Dec 1996 A
5586990 Hahnen et al. Dec 1996 A
5591169 Benoist Jan 1997 A
5591170 Spievack et al. Jan 1997 A
5597378 Jervis Jan 1997 A
5602935 Yoshida et al. Feb 1997 A
5620414 Campbell Apr 1997 A
5620445 Brosnahan et al. Apr 1997 A
5624440 Huebner Apr 1997 A
5624447 Myers Apr 1997 A
5626580 Brosnahan May 1997 A
5645589 Li Jul 1997 A
5658280 Issa Aug 1997 A
5658283 Huebner Aug 1997 A
5660188 Groiso Aug 1997 A
5662649 Huebner Sep 1997 A
5667509 Westin Sep 1997 A
5676545 Jones Oct 1997 A
5676699 Gogolewski et al. Oct 1997 A
5681310 Yuan et al. Oct 1997 A
5683389 Orsak Nov 1997 A
5685826 Bonutti Nov 1997 A
5693011 Onik Dec 1997 A
5697981 Ison et al. Dec 1997 A
5707374 Schmidt Jan 1998 A
5709697 Ratcliff et al. Jan 1998 A
5718704 Medoff Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5728047 Edoga Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5730704 Avitall Mar 1998 A
5741266 Moran et al. Apr 1998 A
5741282 Anspach et al. Apr 1998 A
5758713 Fallet Jun 1998 A
5779703 Benoist Jul 1998 A
5792106 Mische Aug 1998 A
5810721 Mueller et al. Sep 1998 A
5814044 Hooven Sep 1998 A
5817098 Albrektsson et al. Oct 1998 A
5824095 Di Maio, Jr. et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5827312 Brown et al. Oct 1998 A
D403069 Drewry et al. Dec 1998 S
5853054 McGarian et al. Dec 1998 A
5876399 Chia et al. Mar 1999 A
5879352 Filoso et al. Mar 1999 A
5879355 Ullmark Mar 1999 A
5885258 Sachdeva et al. Mar 1999 A
5885282 Szabo Mar 1999 A
5888196 Bonutti Mar 1999 A
5891147 Moskovitz et al. Apr 1999 A
5893850 Cachia Apr 1999 A
5897556 Drewry et al. Apr 1999 A
5908423 Kashuba et al. Jun 1999 A
5915036 Grunkin et al. Jun 1999 A
5919195 Wilson et al. Jul 1999 A
5925039 Landingham Jul 1999 A
5928239 Mirza Jul 1999 A
5935127 Border Aug 1999 A
5938699 Campbell Aug 1999 A
5941878 Medoff Aug 1999 A
5951467 Picha et al. Sep 1999 A
5951556 Faccioli et al. Sep 1999 A
5957884 Hooven Sep 1999 A
5964698 Fowle Oct 1999 A
5976134 Huebner Nov 1999 A
5980525 Bryant et al. Nov 1999 A
5984932 Yoon Nov 1999 A
5984937 Morse et al. Nov 1999 A
5997538 Asnis et al. Dec 1999 A
6001099 Huebner Dec 1999 A
6015406 Goble et al. Jan 2000 A
6019762 Cole Feb 2000 A
6019947 Kucherov Feb 2000 A
6033412 Losken et al. Mar 2000 A
6045564 Walen Apr 2000 A
6048309 Flom et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6056750 Lob May 2000 A
6068642 Johnson et al. May 2000 A
6068648 Cole et al. May 2000 A
6074392 Durham Jun 2000 A
6093162 Fairleigh et al. Jul 2000 A
6096040 Esser Aug 2000 A
6113603 Medoff Sep 2000 A
6120472 Singer Sep 2000 A
6120504 Brumback et al. Sep 2000 A
6123704 Hajianpour Sep 2000 A
6126662 Carmichael et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129762 Li Oct 2000 A
6142935 Flom et al. Nov 2000 A
6143012 Gausepohl Nov 2000 A
6149651 Drewry et al. Nov 2000 A
6149689 Grundei Nov 2000 A
6156069 Amstutz Dec 2000 A
6162223 Orsak et al. Dec 2000 A
6162224 Huebner Dec 2000 A
6171309 Huebner Jan 2001 B1
6174312 Laminger Jan 2001 B1
6197027 Hajianpour Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6216573 Moutafis et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6224600 Protogirou May 2001 B1
6224604 Suddaby May 2001 B1
6231576 Frigg et al. May 2001 B1
6238417 Cole May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6258096 Seki Jul 2001 B1
6261289 Levy Jul 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6296639 Truckai et al. Oct 2001 B1
6299642 Chan Oct 2001 B1
6302915 Cooney et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6312467 Mcgee Nov 2001 B1
6319255 Grundei et al. Nov 2001 B1
6322591 Ahrens Nov 2001 B1
6331166 Burbank et al. Dec 2001 B1
6332885 Martella Dec 2001 B1
6332886 Green et al. Dec 2001 B1
6348053 Cachia Feb 2002 B1
6364909 Mcgee Apr 2002 B1
6365555 Moser et al. Apr 2002 B1
6375666 Mische Apr 2002 B1
6383188 Kuslich et al. May 2002 B2
6402753 Cole et al. Jun 2002 B1
6411729 Grunkin Jun 2002 B1
6416517 Harder et al. Jul 2002 B2
6423070 Zeppelin Jul 2002 B1
6440138 Reiley et al. Aug 2002 B1
6447514 Stalcup et al. Sep 2002 B1
6447515 Meldrum Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6454810 Lob Sep 2002 B1
6468207 Fowler Oct 2002 B1
6475789 Cech et al. Nov 2002 B1
6488685 Manderson Dec 2002 B1
6491694 Orsak Dec 2002 B1
6511481 von Hoffmann et al. Jan 2003 B2
6517541 Sesic Feb 2003 B1
6527775 Warburton Mar 2003 B1
6533788 Orbay Mar 2003 B1
6540770 Tornier et al. Apr 2003 B1
6544267 Cole et al. Apr 2003 B1
6554833 Levy et al. Apr 2003 B2
6575878 Choy Jun 2003 B1
6575973 Shekalim Jun 2003 B1
6575978 Peterson et al. Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6585736 Hajianpour Jul 2003 B2
6585770 White et al. Jul 2003 B1
6610839 Morin et al. Aug 2003 B1
6613052 Kinnett Sep 2003 B1
6613054 Scribner et al. Sep 2003 B2
6617110 Cech et al. Sep 2003 B1
6632224 Cachia et al. Oct 2003 B2
6641616 Grundei Nov 2003 B1
6645210 Manderson Nov 2003 B2
6648890 Culbert et al. Nov 2003 B2
6652585 Lange Nov 2003 B2
6656187 Camino Dec 2003 B1
6656219 Wiktor Dec 2003 B1
6660009 Azar Dec 2003 B1
6660041 Grundei Dec 2003 B1
6676665 Foley et al. Jan 2004 B2
6679886 Weikel et al. Jan 2004 B2
6682565 Krishnan Jan 2004 B1
6685706 Padget et al. Feb 2004 B2
6689138 Léchot et al. Feb 2004 B2
6692496 Wardlaw Feb 2004 B1
6701174 Krause et al. Mar 2004 B1
6709433 Schoenefeld Mar 2004 B1
6711432 Krause et al. Mar 2004 B1
6712073 Manderson Mar 2004 B2
6712858 Grungei et al. Mar 2004 B1
6719761 Reiley et al. Apr 2004 B1
6719793 McGee et al. Apr 2004 B2
6746451 Middleton et al. Jun 2004 B2
6749611 Venturini et al. Jun 2004 B2
6755831 Putnam et al. Jun 2004 B2
6755862 Keynan Jun 2004 B2
6761722 Cole et al. Jul 2004 B2
6767350 Lob Jul 2004 B1
6775401 Hwang et al. Aug 2004 B2
6780185 Frei et al. Aug 2004 B2
6783530 Levy et al. Aug 2004 B1
6783532 Steiner et al. Aug 2004 B2
6783533 Green et al. Aug 2004 B2
6793655 Orsak Sep 2004 B2
6793659 Putnam Sep 2004 B2
6811568 Minamikawa Nov 2004 B2
6827723 Carson Dec 2004 B2
6827743 Eisermann et al. Dec 2004 B2
6849051 Sramek et al. Feb 2005 B2
6852128 Lange Feb 2005 B2
6866665 Orbay Mar 2005 B2
6887243 Culbert May 2005 B2
6890333 von Hoffmann et al. May 2005 B2
6893444 Orbay May 2005 B2
6908465 von Hoffmann et al. Jun 2005 B2
6911046 Schulter Jun 2005 B2
6913605 Fletcher et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6923817 Carson et al. Aug 2005 B2
6923828 Wiktor Aug 2005 B1
6926720 Castañeda Aug 2005 B2
6932086 Hajianpour Aug 2005 B1
6942666 Overaker et al. Sep 2005 B2
6942668 Padget et al. Sep 2005 B2
6949101 McCleary et al. Sep 2005 B2
6951561 Warren et al. Oct 2005 B2
6953313 Tylosky Oct 2005 B2
6975894 Wehrli et al. Dec 2005 B2
6984248 Hyde, Jr. Jan 2006 B2
6986771 Paul et al. Jan 2006 B2
6989011 Paul et al. Jan 2006 B2
6991656 Mears Jan 2006 B2
7008425 Phillips Mar 2006 B2
7008428 Cachia et al. Mar 2006 B2
7008430 Dong et al. Mar 2006 B2
7011662 Lechot et al. Mar 2006 B2
7018332 Masson et al. Mar 2006 B1
7018380 Cole Mar 2006 B2
7022069 Masson et al. Apr 2006 B1
7025789 Chow et al. Apr 2006 B2
7041104 Cole et al. May 2006 B1
7041138 Lange May 2006 B2
7048542 Von Arx et al. May 2006 B2
7052498 Levy et al. May 2006 B2
7063701 Michelson Jun 2006 B2
7070601 Culbert et al. Jul 2006 B2
7090676 Huebner et al. Aug 2006 B2
7097646 Schantz Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7122033 Wood Oct 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7122052 Greenhalgh Oct 2006 B2
7131995 Biedermann et al. Nov 2006 B2
7137987 Patterson et al. Nov 2006 B2
7141054 Vandewalle Nov 2006 B2
7141067 Jones et al. Nov 2006 B2
7147640 Huebner et al. Dec 2006 B2
7153307 Scribner et al. Dec 2006 B2
7153309 Huebner et al. Dec 2006 B2
7160302 Warburton Jan 2007 B2
7160331 Cooney et al. Jan 2007 B2
7172595 Goble Feb 2007 B1
7175625 Culbert Feb 2007 B2
7179024 Greenhalgh Feb 2007 B2
7189237 Huebner Mar 2007 B2
7189240 Dekel Mar 2007 B1
7195589 Masson et al. Mar 2007 B1
7195633 Medoff et al. Mar 2007 B2
7214227 Colleran et al. May 2007 B2
7220282 Kuslich et al. May 2007 B2
7229441 Trieu et al. Jun 2007 B2
7235079 Jensen et al. Jun 2007 B2
7237556 Smothers et al. Jul 2007 B2
7255712 Steinberg Aug 2007 B1
7258692 Thelen et al. Aug 2007 B2
7264622 Michelson Sep 2007 B2
7267678 Medoff Sep 2007 B2
7282053 Orbay Oct 2007 B2
7294130 Orbay Nov 2007 B2
7300449 Mische et al. Nov 2007 B2
7306603 Boehm et al. Dec 2007 B2
7306683 Cheung et al. Dec 2007 B2
7311711 Cole Dec 2007 B2
D560128 Diederich et al. Jan 2008 S
7322938 Burbank et al. Jan 2008 B2
7326249 Lange Feb 2008 B2
7329228 Burbank et al. Feb 2008 B2
7341601 Eisermann et al. Mar 2008 B2
7344539 Serhan et al. Mar 2008 B2
7354453 McAfee Apr 2008 B2
7422360 Kozyuk Sep 2008 B2
7465318 Sennett et al. Dec 2008 B2
7476226 Weikel et al. Jan 2009 B2
7481815 Fernandez Jan 2009 B2
7485119 Thelen et al. Feb 2009 B2
7488320 Middleton Feb 2009 B2
7488329 Thelen et al. Feb 2009 B2
D589147 Colleran et al. Mar 2009 S
7500977 Assell et al. Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7520879 Justis et al. Apr 2009 B2
7563263 Orbay et al. Jul 2009 B2
7569061 Colleran Aug 2009 B2
7578824 Justin et al. Aug 2009 B2
7588575 Colleran et al. Sep 2009 B2
7588577 Fencl et al. Sep 2009 B2
7588588 Spitler et al. Sep 2009 B2
7601152 Levy et al. Oct 2009 B2
7611515 Wolford et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7632277 Woll et al. Dec 2009 B2
7632310 Clifford et al. Dec 2009 B2
7666226 Schaller Feb 2010 B2
7670339 Levy et al. Mar 2010 B2
7670374 Schaller Mar 2010 B2
7670375 Schaller Mar 2010 B2
7682364 Reiley et al. Mar 2010 B2
7695471 Cheung et al. Apr 2010 B2
7695502 Orbay et al. Apr 2010 B2
7704251 Huebner et al. Apr 2010 B2
7708742 Scribner et al. May 2010 B2
7713271 Warburton et al. May 2010 B2
7717472 Johnson May 2010 B2
7722612 Sala et al. May 2010 B2
7722626 Middleman et al. May 2010 B2
7727264 Orbay et al. Jun 2010 B2
7731720 Sand et al. Jun 2010 B2
7749232 Salerni Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7785368 Schaller Aug 2010 B2
7806929 Brown Oct 2010 B2
7811291 Liu et al. Oct 2010 B2
7828802 Levy et al. Nov 2010 B2
7837612 Gill et al. Nov 2010 B2
7842041 Liu et al. Nov 2010 B2
7846162 Nelson et al. Dec 2010 B2
7879103 Gertzman et al. Feb 2011 B2
7905909 Orbay et al. Mar 2011 B2
7909825 Saravia et al. Mar 2011 B2
7909827 Reiley et al. Mar 2011 B2
7909873 Tan-Malecki et al. Mar 2011 B2
7914533 Nelson et al. Mar 2011 B2
7931689 Hochschuler et al. Apr 2011 B2
7942875 Nelson et al. May 2011 B2
7959634 Sennett Jun 2011 B2
7959638 Osorio et al. Jun 2011 B2
7959683 Semler et al. Jun 2011 B2
7967827 Osorio et al. Jun 2011 B2
7967865 Schaller Jun 2011 B2
7972340 Sand et al. Jul 2011 B2
7988735 Yurek et al. Aug 2011 B2
8007498 Mische Aug 2011 B2
RE42757 Kuslich et al. Sep 2011 E
8021365 Phan Sep 2011 B2
8021366 Phan Sep 2011 B2
8043334 Fisher et al. Oct 2011 B2
8057544 Schaller Nov 2011 B2
8105236 Malandain et al. Jan 2012 B2
8109933 Truckai et al. Feb 2012 B2
8114084 Betts Feb 2012 B2
8118952 Gall et al. Feb 2012 B2
8128627 Justin et al. Mar 2012 B2
8152737 Burbank et al. Apr 2012 B2
8157804 Betts Apr 2012 B2
8226719 Melsheimer et al. Jul 2012 B2
8241335 Truckai et al. Aug 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8287539 Nelson et al. Oct 2012 B2
8287541 Nelson et al. Oct 2012 B2
8317791 Phan Nov 2012 B2
8353911 Goldin et al. Jan 2013 B2
8366773 Schaller et al. Feb 2013 B2
8409211 Baroud Apr 2013 B2
8430879 Stoneburner et al. Apr 2013 B2
8439917 Saravia et al. May 2013 B2
8485798 Sheth et al. Jul 2013 B2
8491591 Fürderer Jul 2013 B2
8496394 Schneider Jul 2013 B2
8496657 Bonutti et al. Jul 2013 B2
8496658 Stoneburner et al. Jul 2013 B2
8500357 Stahle Aug 2013 B2
8505879 Ruan Aug 2013 B2
8506199 Rump et al. Aug 2013 B2
8568413 Mazur et al. Oct 2013 B2
8579537 VanLandingham et al. Nov 2013 B2
20010018588 Harder et al. Aug 2001 A1
20010034526 Kuslich et al. Oct 2001 A1
20010053912 Frigg Dec 2001 A1
20020013600 Scribner et al. Jan 2002 A1
20020015517 Hwang et al. Feb 2002 A1
20020029081 Scarborough et al. Mar 2002 A1
20020032444 Mische Mar 2002 A1
20020055742 Lieberman May 2002 A1
20020055785 Harris May 2002 A1
20020065530 Mische May 2002 A1
20020068974 Kuslich et al. Jun 2002 A1
20020111629 Phillips Aug 2002 A1
20020111690 Hyde Aug 2002 A1
20020120269 Lange Aug 2002 A1
20020120270 Trieu et al. Aug 2002 A1
20020123750 Eisermann et al. Sep 2002 A1
20020133153 Hyde Sep 2002 A1
20020133156 Cole Sep 2002 A1
20020133172 Lambrecht et al. Sep 2002 A1
20020133175 Carson Sep 2002 A1
20020138149 Hyde Sep 2002 A1
20020143329 Serhan et al. Oct 2002 A1
20020143333 von Hoffmann et al. Oct 2002 A1
20020143334 Hoffmann et al. Oct 2002 A1
20020143335 von Hoffmann et al. Oct 2002 A1
20020147451 Mcgee Oct 2002 A1
20020147455 Carson Oct 2002 A1
20020165461 Hayzelden et al. Nov 2002 A1
20020171208 Lechot et al. Nov 2002 A1
20020173813 Peterson et al. Nov 2002 A1
20020183758 Middleton et al. Dec 2002 A1
20020191823 Wehrli et al. Dec 2002 A1
20030040805 Minamikawa Feb 2003 A1
20030055373 Sramek et al. Mar 2003 A1
20030055425 Hajianpour Mar 2003 A1
20030069582 Culbert Apr 2003 A1
20030069645 Ball et al. Apr 2003 A1
20030083660 Orbay May 2003 A1
20030083662 Middleton May 2003 A1
20030093076 Venturini et al. May 2003 A1
20030097132 Padget et al. May 2003 A1
20030097133 Green et al. May 2003 A1
20030105461 Putnam Jun 2003 A1
20030109932 Keynan Jun 2003 A1
20030120273 Cole Jun 2003 A1
20030130660 Levy et al. Jul 2003 A1
20030153918 Putnam et al. Aug 2003 A1
20030187449 McCleary et al. Oct 2003 A1
20030216738 Azar Nov 2003 A1
20030220641 Thelen et al. Nov 2003 A1
20030220644 Thelen et al. Nov 2003 A1
20030220646 Thelen et al. Nov 2003 A1
20030220698 Mears et al. Nov 2003 A1
20030225407 Estrada Dec 2003 A1
20040039384 Boehm et al. Feb 2004 A1
20040044413 Schulter Mar 2004 A1
20040049192 Shimizu Mar 2004 A1
20040078082 Lange Apr 2004 A1
20040087956 Weikel et al. May 2004 A1
20040092946 Bagga et al. May 2004 A1
20040102777 Huebner May 2004 A1
20040102778 Huebner et al. May 2004 A1
20040102788 Huebner et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040138665 Padget et al. Jul 2004 A1
20040143264 McAfee Jul 2004 A1
20040153080 Dong et al. Aug 2004 A1
20040153114 Reiley et al. Aug 2004 A1
20040153115 Reiley et al. Aug 2004 A1
20040167528 Schantz Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040181221 Huebner et al. Sep 2004 A1
20040193163 Orbay Sep 2004 A1
20040193164 Orbay Sep 2004 A1
20040193165 Orbay Sep 2004 A1
20040193251 Rudnick et al. Sep 2004 A1
20040193267 Jones et al. Sep 2004 A1
20040208717 Greenhalgh Oct 2004 A1
20040214311 Levy Oct 2004 A1
20040220678 Chow et al. Nov 2004 A1
20040230193 Cheung et al. Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236328 Paul et al. Nov 2004 A1
20040236339 Pepper Nov 2004 A1
20040249375 Agee et al. Dec 2004 A1
20040260289 Padget et al. Dec 2004 A1
20040260297 Padget et al. Dec 2004 A1
20040267269 Middleton et al. Dec 2004 A1
20050010231 Myers Jan 2005 A1
20050015129 Mische Jan 2005 A1
20050015154 Lindsey et al. Jan 2005 A1
20050033366 Cole et al. Feb 2005 A1
20050043733 Eisermann et al. Feb 2005 A1
20050065522 Orbay Mar 2005 A1
20050065523 Orbay Mar 2005 A1
20050065524 Orbay Mar 2005 A1
20050065526 Drew et al. Mar 2005 A1
20050070902 Medoff Mar 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050085818 Huebner Apr 2005 A1
20050085824 Castaneda Apr 2005 A1
20050085921 Gupta et al. Apr 2005 A1
20050113836 Lozier et al. May 2005 A1
20050113892 Sproul May 2005 A1
20050119749 Lange Jun 2005 A1
20050124972 Mische et al. Jun 2005 A1
20050125066 Mcafee Jun 2005 A1
20050131407 Sicvol et al. Jun 2005 A1
20050143734 Cachia et al. Jun 2005 A1
20050154331 Christie et al. Jul 2005 A1
20050159749 Levy et al. Jul 2005 A1
20050177172 Acker et al. Aug 2005 A1
20050182399 Levine Aug 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050209557 Carroll et al. Sep 2005 A1
20050216000 Colleran et al. Sep 2005 A1
20050216007 Woll et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050234472 Huebner Oct 2005 A1
20050240190 Gall et al. Oct 2005 A1
20050240193 Layne et al. Oct 2005 A1
20050245928 Colleran et al. Nov 2005 A1
20050251142 Hoffmann et al. Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050267483 Middleton Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050277936 Siravo et al. Dec 2005 A1
20050277978 Greenhalgh Dec 2005 A1
20050283154 Orbay et al. Dec 2005 A1
20050283159 Amara Dec 2005 A1
20050288676 Schnieders et al. Dec 2005 A1
20060004362 Patterson et al. Jan 2006 A1
20060004462 Gupta Jan 2006 A1
20060009771 Orbay et al. Jan 2006 A1
20060015123 Fencl et al. Jan 2006 A1
20060036240 Colleran et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060047787 Agarwal et al. Mar 2006 A1
20060052788 Thelen et al. Mar 2006 A1
20060058621 Wehrli et al. Mar 2006 A1
20060058826 Evans et al. Mar 2006 A1
20060064005 Triano et al. Mar 2006 A1
20060064106 Fernandez Mar 2006 A1
20060064164 Thelen et al. Mar 2006 A1
20060064173 Guederian et al. Mar 2006 A1
20060069392 Renzi Brivio et al. Mar 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079905 Beyar et al. Apr 2006 A1
20060085009 Truckai et al. Apr 2006 A1
20060089647 Culbert et al. Apr 2006 A1
20060089648 Masini Apr 2006 A1
20060100631 Sullivan et al. May 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060106390 Jensen et al. May 2006 A1
20060106394 Colleran May 2006 A1
20060116773 Cooney et al. Jun 2006 A1
20060122600 Cole Jun 2006 A1
20060122610 Culbert et al. Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060149281 Reiley et al. Jul 2006 A1
20060149379 Kuslich et al. Jul 2006 A1
20060155289 Windhager et al. Jul 2006 A1
20060173454 Spitler et al. Aug 2006 A1
20060178737 Furcht et al. Aug 2006 A1
20060187748 Kozyuk Aug 2006 A1
20060189994 Wolford et al. Aug 2006 A1
20060195103 Padget et al. Aug 2006 A1
20060200061 Warkentine Sep 2006 A1
20060200140 Lange Sep 2006 A1
20060200143 Warburton Sep 2006 A1
20060217730 Termanini Sep 2006 A1
20060229602 Olsen Oct 2006 A1
20060241629 Krebs et al. Oct 2006 A1
20060241630 Brunnett et al. Oct 2006 A1
20060241671 Greenhalgh Oct 2006 A1
20060241776 Brown et al. Oct 2006 A1
20060247637 Colleran et al. Nov 2006 A1
20060264944 Cole Nov 2006 A1
20060264945 Edidin et al. Nov 2006 A1
20060264950 Nelson et al. Nov 2006 A1
20060264951 Nelson et al. Nov 2006 A1
20060264952 Nelson et al. Nov 2006 A1
20060271053 Schlapfer et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060271198 Mcafee Nov 2006 A1
20060276797 Botimer Dec 2006 A1
20070016188 Boehm et al. Jan 2007 A1
20070016198 Boehm et al. Jan 2007 A1
20070016199 Boehm et al. Jan 2007 A1
20070016211 Botimer Jan 2007 A1
20070016283 Greenhalgh et al. Jan 2007 A1
20070016300 Kuslich Jan 2007 A1
20070027230 Beyar et al. Feb 2007 A1
20070032567 Beyar et al. Feb 2007 A1
20070043373 Sala et al. Feb 2007 A1
20070049936 Colleran et al. Mar 2007 A1
20070055379 Stone et al. Mar 2007 A1
20070066480 Moser et al. Mar 2007 A1
20070073342 Stone et al. Mar 2007 A1
20070100285 Griffin et al. May 2007 A1
20070112427 Christy et al. May 2007 A1
20070118132 Culbert et al. May 2007 A1
20070123876 Czartoski et al. May 2007 A1
20070123877 Goldin et al. May 2007 A1
20070123886 Meyer et al. May 2007 A1
20070123936 Goldin et al. May 2007 A1
20070123995 Thelen et al. May 2007 A1
20070129746 Mische Jun 2007 A1
20070142919 Cooney et al. Jun 2007 A1
20070173745 Diederich et al. Jul 2007 A1
20070173835 Medoff et al. Jul 2007 A1
20070173839 Running et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070179505 Culbert Aug 2007 A1
20070198043 Cox et al. Aug 2007 A1
20070213727 Bottlang et al. Sep 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070225568 Colleran Sep 2007 A1
20070225721 Thelen et al. Sep 2007 A1
20070225726 Dye et al. Sep 2007 A1
20070225810 Colleran et al. Sep 2007 A1
20070233091 Naifeh et al. Oct 2007 A1
20070233105 Nelson et al. Oct 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070255287 Rabiner Nov 2007 A1
20070270855 Partin et al. Nov 2007 A1
20070276392 Beyar et al. Nov 2007 A1
20070276405 Huebner et al. Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20070283849 Edidin et al. Dec 2007 A1
20070288097 Hurowitz Dec 2007 A1
20080009868 Gotfried et al. Jan 2008 A1
20080009874 Meridew et al. Jan 2008 A1
20080012317 Johnson Jan 2008 A1
20080015601 Castro et al. Jan 2008 A1
20080019970 Gorman Jan 2008 A1
20080021474 Bonutti et al. Jan 2008 A1
20080039854 Rabiner Feb 2008 A1
20080041629 Aronstam et al. Feb 2008 A1
20080053575 Cheung et al. Mar 2008 A1
20080058804 Lechot et al. Mar 2008 A1
20080065072 Spitler et al. Mar 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065074 Yeung et al. Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080077117 Miller et al. Mar 2008 A1
20080077172 Miller et al. Mar 2008 A1
20080077174 Mische Mar 2008 A1
20080086133 Kuslich et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080103501 Ralph et al. May 2008 A1
20080103519 Bonutti May 2008 A1
20080108996 Padget et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080125784 Rabiner et al. May 2008 A1
20080125805 Mische May 2008 A1
20080132896 Bowen et al. Jun 2008 A1
20080133017 Beyar et al. Jun 2008 A1
20080140078 Nelson et al. Jun 2008 A1
20080140130 Chan et al. Jun 2008 A1
20080149115 Hauck et al. Jun 2008 A1
20080161805 Saravia et al. Jul 2008 A1
20080161825 Greenhalgh et al. Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080177261 Mcminn Jul 2008 A1
20080183171 Elghazaly et al. Jul 2008 A1
20080194868 Kozyuk Aug 2008 A1
20080195104 Sidebotham et al. Aug 2008 A1
20080195105 Sidebotham et al. Aug 2008 A1
20080200915 Globerman et al. Aug 2008 A1
20080200951 Mcafee Aug 2008 A1
20080208202 Williams Aug 2008 A1
20080208261 Medoff Aug 2008 A1
20080208320 Tan-Malecki et al. Aug 2008 A1
20080212405 Globerman et al. Sep 2008 A1
20080228192 Beyar et al. Sep 2008 A1
20080249436 Darr Oct 2008 A1
20080255560 Myers et al. Oct 2008 A1
20080262495 Coati et al. Oct 2008 A1
20080269742 Levy et al. Oct 2008 A1
20080269745 Justin Oct 2008 A1
20080269746 Justin Oct 2008 A1
20080269747 Justin Oct 2008 A1
20080269748 Justin et al. Oct 2008 A1
20080269749 Shalaby et al. Oct 2008 A1
20080269750 Justin Oct 2008 A1
20080269776 Justin et al. Oct 2008 A1
20080275448 Sackett et al. Nov 2008 A1
20080275449 Sackett et al. Nov 2008 A1
20080287950 Frigg et al. Nov 2008 A1
20080287951 Stoneburner et al. Nov 2008 A1
20080294163 Chou et al. Nov 2008 A1
20080294166 Goldin et al. Nov 2008 A1
20080294167 Schumacher et al. Nov 2008 A1
20080294169 Scott et al. Nov 2008 A1
20080294205 Greenhalgh et al. Nov 2008 A1
20080319444 Osorio et al. Dec 2008 A9
20090005782 Chirico et al. Jan 2009 A1
20090012522 Lob Jan 2009 A1
20090018542 Saravia et al. Jan 2009 A1
20090018656 Clifford et al. Jan 2009 A1
20090018666 Grundei et al. Jan 2009 A1
20090024204 Greenhalgh et al. Jan 2009 A1
20090048620 Weiss et al. Feb 2009 A1
20090048629 Rabiner Feb 2009 A1
20090048672 Essenmacher Feb 2009 A1
20090054900 Rabiner et al. Feb 2009 A1
20090076517 Reiley et al. Mar 2009 A1
20090088752 Metzinger et al. Apr 2009 A1
20090104586 Cardoso et al. Apr 2009 A1
20090112196 Rabiner et al. Apr 2009 A1
20090112330 Grundei Apr 2009 A1
20090125028 Teisen et al. May 2009 A1
20090131992 Greenhalgh et al. May 2009 A1
20090143781 Mische Jun 2009 A1
20090143827 Levy et al. Jun 2009 A1
20090149890 Martin Jun 2009 A1
20090149956 Greenhalgh et al. Jun 2009 A1
20090157080 Warburton Jun 2009 A1
20090163918 Levy et al. Jun 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090177239 Castro Jul 2009 A1
20090216232 Buford et al. Aug 2009 A1
20090228007 Justin et al. Sep 2009 A1
20090228008 Justin et al. Sep 2009 A1
20090281628 Oglaza Nov 2009 A1
20090292323 Chirico et al. Nov 2009 A1
20090318981 Kang Dec 2009 A1
20100023010 Nelson et al. Jan 2010 A1
20100087821 Trip et al. Apr 2010 A1
20100094292 Parrott Apr 2010 A1
20100094347 Nelson et al. Apr 2010 A1
20100114181 Lob May 2010 A1
20100131019 Lob May 2010 A1
20100145397 Overes et al. Jun 2010 A1
20100161061 Hunt Jun 2010 A1
20100222884 Greenhalgh Sep 2010 A1
20100241120 Bledsoe et al. Sep 2010 A1
20100241123 Middleton et al. Sep 2010 A1
20100241176 Lob Sep 2010 A1
20100286481 Sharp et al. Nov 2010 A1
20100286692 Greenhalgh et al. Nov 2010 A1
20110077650 Braun et al. Mar 2011 A1
20110087227 Mazur et al. Apr 2011 A1
20110137313 Jensen et al. Jun 2011 A1
20110144645 Saravia et al. Jun 2011 A1
20110178520 Taylor et al. Jul 2011 A1
20110218585 Krinke et al. Sep 2011 A1
20110218626 Krinke et al. Sep 2011 A1
20110282346 Pham et al. Nov 2011 A1
20110295255 Roberts et al. Dec 2011 A1
20110306975 Kaikkonen et al. Dec 2011 A1
20120065638 Moore Mar 2012 A1
20120152872 Didehvar Jun 2012 A1
20120179161 Rains et al. Jul 2012 A1
20120232533 Veldman et al. Sep 2012 A1
20120239038 Saravia et al. Sep 2012 A1
20120253410 Taylor et al. Oct 2012 A1
20130006245 Stoneburner et al. Jan 2013 A1
20130012942 Nelson et al. Jan 2013 A1
20130116693 Nelson et al. May 2013 A1
20130231665 Saravia et al. Sep 2013 A1
20130267953 Brenzel et al. Oct 2013 A1
20140031823 Mazur et al. Jan 2014 A1
20140074093 Nelson et al. Mar 2014 A9
Foreign Referenced Citations (422)
Number Date Country
2007210 Nov 1990 CA
2452508 Jan 2003 CA
2609175 Dec 2005 CA
2608693 Nov 2006 CA
2537171 Aug 2007 CA
2669737 May 2008 CA
2670263 May 2008 CA
2670438 May 2008 CA
2678911 Sep 2008 CA
2685046 Nov 2008 CA
2727453 Dec 2009 CA
2738478 Apr 2010 CA
1533260 Sep 2004 CN
2699849 May 2005 CN
1909848 Feb 2007 CN
101208053 Jun 2008 CN
101636119 Jan 2010 CN
3146065 May 1983 DE
3234875 Mar 1984 DE
198800197 Aug 1988 DE
3922044 Feb 1991 DE
202006017194 Feb 2007 DE
102006016213 Oct 2007 DE
0145166 Jun 1985 EP
145166 Jun 1985 EP
145166 Aug 1986 EP
253526 Jan 1988 EP
263292 Apr 1988 EP
275871 Jul 1988 EP
355035 Feb 1990 EP
381462 Aug 1990 EP
396519 Nov 1990 EP
401650 Dec 1990 EP
409769 Jan 1991 EP
420542 Apr 1991 EP
440371 Aug 1991 EP
442137 Aug 1991 EP
475077 Mar 1992 EP
487669 Jun 1992 EP
491211 Jun 1992 EP
508710 Oct 1992 EP
525352 Feb 1993 EP
611560 Aug 1994 EP
745352 Dec 1996 EP
546162 Sep 1997 EP
807419 Nov 1997 EP
819413 Jan 1998 EP
931513 Jul 1999 EP
0941037 Sep 1999 EP
1099412 May 2001 EP
1132051 Sep 2001 EP
674495 Nov 2001 EP
1155661 Nov 2001 EP
1203569 May 2002 EP
900065 Jun 2002 EP
1277442 Jan 2003 EP
1300122 Apr 2003 EP
1348384 Oct 2003 EP
1372496 Jan 2004 EP
1391186 Feb 2004 EP
1098600 Mar 2004 EP
1277442 Mar 2004 EP
1396231 Mar 2004 EP
1410765 Apr 2004 EP
1442718 Aug 2004 EP
1442729 Aug 2004 EP
1454592 Sep 2004 EP
1459686 Sep 2004 EP
1484077 Dec 2004 EP
1079752 Jan 2005 EP
1484077 Jan 2005 EP
1495729 Jan 2005 EP
1148825 Mar 2005 EP
1148850 Apr 2005 EP
1522268 Apr 2005 EP
1227765 May 2005 EP
1535579 Jun 2005 EP
1563795 Aug 2005 EP
1582159 Oct 2005 EP
1582160 Oct 2005 EP
1582161 Oct 2005 EP
1582162 Oct 2005 EP
1582163 Oct 2005 EP
1582164 Oct 2005 EP
1634548 Mar 2006 EP
1639953 Mar 2006 EP
1669035 Jun 2006 EP
1073371 Aug 2006 EP
1454592 Aug 2006 EP
1700572 Sep 2006 EP
1702572 Sep 2006 EP
1714618 Oct 2006 EP
1787593 May 2007 EP
1808143 Jul 2007 EP
1815813 Aug 2007 EP
1820462 Aug 2007 EP
1011464 Jan 2008 EP
1905367 Apr 2008 EP
1905392 Apr 2008 EP
1915959 Apr 2008 EP
1920721 May 2008 EP
1923019 May 2008 EP
1277442 Jul 2008 EP
1972308 Sep 2008 EP
1987785 Nov 2008 EP
2014261 Jan 2009 EP
2025292 Feb 2009 EP
1459689 Apr 2009 EP
1484077 Jun 2009 EP
1073371 Jul 2009 EP
1459689 Nov 2009 EP
2653006 Apr 1991 FR
2173565 Oct 1986 GB
2268068 Jan 1994 GB
2274993 Aug 1994 GB
1310664 Dec 1989 JP
2000287983 Oct 2000 JP
2008500140 Jan 2008 JP
2008540037 Nov 2008 JP
2010510040 Apr 2010 JP
2010510041 Apr 2010 JP
2010510042 Apr 2010 JP
2010522046 Jul 2010 JP
2010524642 Jul 2010 JP
2011523889 Aug 2011 JP
2012504027 Feb 2012 JP
2004104359 Feb 2005 RU
WO8904150 May 1989 WO
WO8907056 Aug 1989 WO
WO9003764 Apr 1990 WO
WO9011726 Oct 1990 WO
WO9102493 Mar 1991 WO
WO9106260 May 1991 WO
WO9106265 May 1991 WO
WO9111962 Aug 1991 WO
WO9119461 Dec 1991 WO
WO9424938 Nov 1994 WO
WO9427507 Dec 1994 WO
WO9428824 Dec 1994 WO
WO9514433 Jun 1995 WO
WO9514433 Jun 1995 WO
WO9520362 Aug 1995 WO
WO9531159 Nov 1995 WO
WO9602202 Feb 1996 WO
WO9602203 Feb 1996 WO
WO9605783 Feb 1996 WO
WO9606041 Feb 1996 WO
WO9607161 Mar 1996 WO
WO9616607 Jun 1996 WO
WO9617557 Jun 1996 WO
WO9618354 Jun 1996 WO
WO9618354 Jun 1996 WO
WO9618354 Aug 1996 WO
WO9625118 Aug 1996 WO
WO9640476 Dec 1996 WO
WO9703611 Feb 1997 WO
WO9703611 Feb 1997 WO
WO9718775 May 1997 WO
WO9742602 Nov 1997 WO
WO9742912 Nov 1997 WO
WO9747251 Dec 1997 WO
WO9801077 Jan 1998 WO
WO9805261 Feb 1998 WO
WO9807392 Feb 1998 WO
WO9819616 May 1998 WO
WO9824380 Jun 1998 WO
WO9826725 Jun 1998 WO
WO9838918 Sep 1998 WO
WO9846169 Oct 1998 WO
WO9856301 Dec 1998 WO
WO9922661 May 1999 WO
WO9922662 May 1999 WO
WO9937219 Jul 1999 WO
WO9947055 Sep 1999 WO
WO9951149 Oct 1999 WO
WO9953843 Oct 1999 WO
WO9955248 Nov 1999 WO
WO9962416 Dec 1999 WO
WO0006037 Feb 2000 WO
WO0009024 Feb 2000 WO
WO0012036 Mar 2000 WO
WO0012036 Mar 2000 WO
WO0021455 Apr 2000 WO
WO0025681 May 2000 WO
WO0028906 May 2000 WO
WO0030551 Jun 2000 WO
WO0030569 Jun 2000 WO
WO0038586 Jul 2000 WO
WO0042954 Jul 2000 WO
WO0044319 Aug 2000 WO
WO0044321 Aug 2000 WO
WO0044946 Aug 2000 WO
WO0045712 Aug 2000 WO
WO0045714 Aug 2000 WO
WO0045715 Aug 2000 WO
WO0045722 Aug 2000 WO
WO0047119 Aug 2000 WO
WO0048534 Aug 2000 WO
WO0071038 Nov 2000 WO
WO0076414 Dec 2000 WO
WO0108571 Feb 2001 WO
WO0128443 Apr 2001 WO
WO0134045 May 2001 WO
WO0149193 Jul 2001 WO
WO0154598 Aug 2001 WO
WO0160268 Aug 2001 WO
WO0160268 Aug 2001 WO
WO0176493 Oct 2001 WO
WO0176514 Oct 2001 WO
WO0178015 Oct 2001 WO
WO0180751 Nov 2001 WO
WO0185042 Nov 2001 WO
WO0213700 Feb 2002 WO
WO0213716 Feb 2002 WO
WO0217794 Mar 2002 WO
WO0217794 Mar 2002 WO
WO0224088 Mar 2002 WO
WO0234107 May 2002 WO
WO0234148 May 2002 WO
WO0237935 May 2002 WO
WO0245606 Jun 2002 WO
WO0249517 Jun 2002 WO
WO02058575 Aug 2002 WO
WO02067824 Sep 2002 WO
WO02078555 Oct 2002 WO
WO02089683 Nov 2002 WO
WO02096306 Dec 2002 WO
WO03007830 Jan 2003 WO
WO03013336 Feb 2003 WO
WO02017794 Mar 2003 WO
WO03030760 Apr 2003 WO
WO03043488 May 2003 WO
WO03045257 Jun 2003 WO
WO03047440 Jun 2003 WO
WO03068090 Aug 2003 WO
WO02017794 Sep 2003 WO
WO2004008949 Jan 2004 WO
WO2004017817 Mar 2004 WO
WO2004030549 Apr 2004 WO
WO2004064603 Aug 2004 WO
WO2004078220 Sep 2004 WO
WO2004078221 Sep 2004 WO
WO2004086934 Oct 2004 WO
WO2004092431 Oct 2004 WO
WO2004093633 Nov 2004 WO
WO2004098453 Nov 2004 WO
WO2004103209 Dec 2004 WO
WO2004110292 Dec 2004 WO
WO2004110300 Dec 2004 WO
WO2004112661 Dec 2004 WO
WO2005000159 Jan 2005 WO
WO2005020830 Mar 2005 WO
WO2005020833 Mar 2005 WO
WO2005023085 Mar 2005 WO
WO2005032326 Apr 2005 WO
WO2005032340 Apr 2005 WO
WO2005039651 May 2005 WO
WO2005041799 May 2005 WO
WO2005044122 May 2005 WO
WO2005051971 Jun 2005 WO
WO2005055874 Jun 2005 WO
WO2005020833 Jul 2005 WO
WO2005070314 Aug 2005 WO
WO2005092223 Oct 2005 WO
WO2005094693 Oct 2005 WO
WO2005094705 Oct 2005 WO
WO2005094706 Oct 2005 WO
WO2005096975 Oct 2005 WO
WO2005102196 Nov 2005 WO
WO2005107415 Nov 2005 WO
WO2005112804 Dec 2005 WO
WO2005112804 Dec 2005 WO
WO2005122931 Dec 2005 WO
WO2005122932 Dec 2005 WO
WO2005123171 Dec 2005 WO
WO2006011152 Feb 2006 WO
WO2006020530 Feb 2006 WO
WO2005112804 Mar 2006 WO
WO2006023793 Mar 2006 WO
WO2006026323 Mar 2006 WO
WO2006026323 Mar 2006 WO
WO2006026323 Apr 2006 WO
WO2006041460 Apr 2006 WO
WO2006041460 Apr 2006 WO
WO2006042188 Apr 2006 WO
WO2006042189 Apr 2006 WO
WO2006042334 Apr 2006 WO
WO2006034396 May 2006 WO
WO2006051547 May 2006 WO
WO2006055448 May 2006 WO
WO2006063083 Jun 2006 WO
WO2006066228 Jun 2006 WO
WO2006068682 Jun 2006 WO
WO2006089929 Aug 2006 WO
WO2006090379 Aug 2006 WO
WO2006034436 Oct 2006 WO
WO2006108067 Oct 2006 WO
WO2006113800 Oct 2006 WO
WO2006116760 Nov 2006 WO
WO2006116761 Nov 2006 WO
WO2006124764 Nov 2006 WO
WO2006124764 Nov 2006 WO
WO2006124937 Nov 2006 WO
WO2006127904 Nov 2006 WO
WO2006127904 Nov 2006 WO
WO2007002933 Jan 2007 WO
WO2007008177 Jan 2007 WO
WO2007009107 Jan 2007 WO
WO2007009123 Jan 2007 WO
WO2007011994 Jan 2007 WO
WO2007012046 Jan 2007 WO
WO2007025236 Mar 2007 WO
WO2007040949 Apr 2007 WO
WO2007041665 Apr 2007 WO
WO2006124937 May 2007 WO
WO2007053960 May 2007 WO
WO2007058943 May 2007 WO
WO2007059243 May 2007 WO
WO2007059243 May 2007 WO
WO2007059246 May 2007 WO
WO2007059259 May 2007 WO
WO2007059259 May 2007 WO
WO2007065137 Jun 2007 WO
WO2007069251 Jun 2007 WO
WO2007073488 Jun 2007 WO
WO2007076308 Jul 2007 WO
WO2007076374 Jul 2007 WO
WO2007076376 Jul 2007 WO
WO2007076377 Jul 2007 WO
WO2007078692 Jul 2007 WO
WO2007079237 Jul 2007 WO
WO2007082151 Jul 2007 WO
WO2007084239 Jul 2007 WO
WO2007092813 Aug 2007 WO
WO2007092813 Aug 2007 WO
WO2007092841 Aug 2007 WO
WO2007092841 Aug 2007 WO
WO2007036815 Sep 2007 WO
WO2007114982 Oct 2007 WO
WO2007115108 Oct 2007 WO
WO2007117571 Oct 2007 WO
WO2007120539 Oct 2007 WO
WO2007092841 Nov 2007 WO
WO2007124130 Nov 2007 WO
WO2007127255 Nov 2007 WO
WO 2007127260 Nov 2007 WO
WO2007131002 Nov 2007 WO
WO2007134134 Nov 2007 WO
WO2007079237 Dec 2007 WO
WO2007145824 Dec 2007 WO
WO2008004229 Jan 2008 WO
WO2008006117 Jan 2008 WO
WO2008016910 Feb 2008 WO
WO2008019397 Feb 2008 WO
WO2008035849 Mar 2008 WO
WO2008037454 Apr 2008 WO
WO2008043254 Apr 2008 WO
WO2008058960 May 2008 WO
WO2008059027 May 2008 WO
WO2008060277 May 2008 WO
WO2008060277 May 2008 WO
WO2008063265 May 2008 WO
WO2008064346 May 2008 WO
WO2008064347 May 2008 WO
WO2008064347 May 2008 WO
WO2008064350 May 2008 WO
WO2008076330 Jun 2008 WO
WO2008076330 Jun 2008 WO
WO2008076357 Jun 2008 WO
WO2008094407 Aug 2008 WO
WO2007011353 Sep 2008 WO
WO2007092813 Sep 2008 WO
WO2008109566 Sep 2008 WO
WO2008112308 Sep 2008 WO
WO2008116170 Sep 2008 WO
WO2008116175 Sep 2008 WO
WO2008118945 Oct 2008 WO
WO2008121608 Oct 2008 WO
WO2008132728 Nov 2008 WO
WO2008134287 Nov 2008 WO
WO2008134758 Nov 2008 WO
WO2008139456 Nov 2008 WO
WO2008144709 Nov 2008 WO
WO2008144709 Nov 2008 WO
WO2007078692 Dec 2008 WO
WO2008121608 Jan 2009 WO
WO2008134287 Jan 2009 WO
WO2009006622 Jan 2009 WO
WO2009007331 Jan 2009 WO
WO2009009772 Jan 2009 WO
WO2009010412 Jan 2009 WO
WO2009012347 Jan 2009 WO
WO2009026070 Feb 2009 WO
WO2009027325 Mar 2009 WO
WO2009039430 Mar 2009 WO
WO2006026323 Apr 2009 WO
WO2006026397 Apr 2009 WO
WO2009045751 Apr 2009 WO
WO2009059227 May 2009 WO
WO2009072125 Jun 2009 WO
WO2009076086 Jun 2009 WO
WO2008144709 Jul 2009 WO
WO2009088376 Jul 2009 WO
WO2009094478 Jul 2009 WO
WO2008060277 Sep 2009 WO
WO2008112912 Sep 2009 WO
WO2009132333 Oct 2009 WO
WO2009143374 Nov 2009 WO
WO2009143496 Nov 2009 WO
WO2008112875 Dec 2009 WO
WO2009146457 Dec 2009 WO
WO2009152270 Dec 2009 WO
WO2009152272 Dec 2009 WO
WO2009152273 Dec 2009 WO
WO2009132333 Jan 2010 WO
WO2008139456 Feb 2010 WO
WO2010037038 Apr 2010 WO
WO2010056895 May 2010 WO
WO2010062379 Jun 2010 WO
WO2010065855 Jun 2010 WO
WO2010091242 Aug 2010 WO
WO2010035156 Nov 2010 WO
Non-Patent Literature Citations (42)
Entry
US 7,063,700, 06/2006, Michelson (withdrawn).
US 7,201,752, 04/2007, Huebner et al. (withdrawn).
Putnam, Matthew D., et al., “Distal Radial Metaphyseal Forces in an Extrinsic Grip Model: Implications for Post fracture Rehabilitation,” American Society for Surgery of the Hand, 25A: 469-475, May 2000.
Higgins, Thomas F., et al., “A Biomechanical Analysis of Fixation of Intra-Articular Distal Radial Fractures with Calcium—Phosphate Bone Cement,” The Journal of Bone and Joint Surgery, 84:1579-1586, Needham, Massachusetts, Sep. 2002.
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” Nitinol Devices & Components, Fremont, California, 2003.
Rozenthal, Tamara D., et al., “Functional Outcome and Complications After Volar Plating for Dorsally Displaced, Unstable Fractures of the Distal Radius,” The Journal of Hand Surgery, 31A: 359-365, Mar. 2006.
Keast-Butler, Oliver, et al., “Biology Versus Mechanics in the Treatment of Distal Radial Fractures,” The Journal of Orthopedic Trauma, 22: S91-S95, Philadelphia, Pennsylvania, Sep. 2008.
Mudgal, Chaitanya S., et al., “Plate Fixation of Osteoporotic Fractures of the Distal Radius,” The Journal of Orthopedic Trauma, 22: S106-S115, 2008, Philadelphia, Pennsylvania, Sep. 2008.
Bogoch, Earl R., et al., “The Osteoporosis Needs of Patients with Wrist Fractures,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Arora, Rohit, et al., “A Representative Case of Osteoporotic Distal Radius Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Firoozabadi, Reza, et al., “Qualitative and Quantitative Assessment of Bone Fragility and Fracture Healing Using Conventional Radiography and Advanced Imaging Technologies—Focus on Wrist Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Goldhan, Jorg, et al., “What Counts: Outcome Assessment After Distal Radius Fractures in Aged Patients,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Hoang-Kim, Amy, et al., “Wrist Fractures in Osteoporotic Patients,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Kettler, Mark, et al., “Do We Need to Include Osteoporosis in Today's Classification of Distal Radius Fractures?” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Downing, Martin R., et al., “Assessment of Inducible Fracture Micromotion in Distal Radial Fractures Using Radiostereometry,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Suhm, Norbert, et al., “Injectable Bone Cement Augmentation for the Treatment of Distal Radius Fractures: A Review,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Van Lenthe, G. Harry, et al., “Quantification of Bone Structural Parameters and Mechanical Competence at the Distal Radius,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Parkinson, Ian H., et al., “Whole Bone Geometry and Bone Quality in Distal Forearm Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
“Medtronic—Abdominal Stent Graft System, Instructions for Use,” Medtronic, Inc., Minneapolis—Minnesota, 2008.
Jupiter, Jesse B., et al., “Operative Management of Distal Radial Fractures with 2.4-Millimeter Locking Plates. A Multicenter Prospective Case Series,” The Journal of Bone and Joint Surgery, 91: 55-65, doi:10.2106-JBJS.G.01498, Needham, Massachusetts, Jan. 1, 2009.
Ilyas, Asif M., “Intramedullary Fixation of Distal Radius Fractures,” Elsevier, Inc. on behalf of the American Society for Surgery of the Hand, New York, New York, Feb. 2009.
Figl, Markus, et al., “Volar Fixed-Angle Plate Osteosynthesis of Unstable Distal Radius Fractures: 12 Months Results,” Springer, New York, New York, Feb. 19, 2009.
Photograph, OrthopaedicLIST, 2010, Wilmington, North Carolina.
Barnes, C. Lowry, et al., “Advanced Core Decompression System,” Wright, 2008, Arlington, Tennessee.
“OptiMesh 1500E—Percutaneous Interbody Fusion Surgical Technique,” Spineology Inc., Feb. 2010, Saint Paul, Minnesota.
Corti, G., et al., “Acute Vertebral Body Compression Fracture treated with OptiMesh—Indications, Applications and First Clinical Results,” Eurospine, 2005, Uster-Zürich Switzerland.
Advanced Core Decompression System—Surgical Technique, Wright, 2010, Arlington, Tennessee.
App No. PCT/US/2009/30971 International Search Report, Mar. 6, 2009.
App No. PCT/US/2009/30971 Written Opinion of the International Searching Authority, Mar. 6, 2009.
App No. PCT/US/2011/21074 International Search Report, May 23, 2011.
App No. PCT/US/2011/21074 Written Opinion of the International Searching Authority, May 23, 2011.
App No. PCT/US/2011/021735 International Search Report, May 25, 2011.
App No. PCT/US/2011/021735 Written Opinion of the International Searching Authority, May 25, 2011.
App No. PCT/US/2011/027597 International Search Report, Jul. 6, 2011.
App No. PCT/US/2011/027597 Written Opinion of the International Searching Authority, Jul. 6, 2011.
App No. PCT/US/2011/027602 International Search Report, Jul. 5, 2011.
App No. PCT/US/2011/027602 Written Opinion of the International Searching Authority, Jul. 5, 2011.
App No. PCT/US/2012/028145 International Search Report, Sep. 13, 2012.
App No. PCT/US/2012/028145 Written Opinion of the International Searching Authority, Sep. 13, 2012.
State Intellectual Property Office of China, First Office Action, Chinese Patent Application No. 201180013862.2, Aug. 8, 2014.
State Intellectual Property Office of China, First Search Report, Chinese Patent Application No. 201180013862.2, Aug. 8, 2014.
Japanese Patent Office, First Office Action, Japanese Patent Application No. JP2012-550091, Sep. 19, 2014.
Related Publications (1)
Number Date Country
20110190832 A1 Aug 2011 US
Provisional Applications (2)
Number Date Country
61296722 Jan 2010 US
61389507 Oct 2010 US