Apparatus and methods for cleaning the lens of an endoscope

Information

  • Patent Grant
  • 8986199
  • Patent Number
    8,986,199
  • Date Filed
    Friday, February 17, 2012
    12 years ago
  • Date Issued
    Tuesday, March 24, 2015
    9 years ago
Abstract
An apparatus for cleaning a lens, or one or more lenses, of an endoscopic camera while the endoscope is deployed in a patient during a medical procedure, such as a minimally invasive procedure, or a therapeutic or diagnostic procedure, is disclosed. The cleaning apparatus generally includes a conduit having a fluid delivery port, an alignment system, and a flexible supply tube to fluidly connect the conduit to one or both of a source of a fluid and a suction device.
Description
BACKGROUND

i. Field of the Invention


The present application relates to methods and devices for use in medical procedures, including without limitation, minimally invasive surgical, therapeutic, and diagnostic procedures and, more particularly, to devices for cleaning the lenses of an endoscopic camera while positioned internally in a body cavity.


ii. Description of the Related Art


In minimally invasive medical procedures, such as laparoscopic surgery, a surgeon may place one or more small ports into a patient's abdomen to gain access to the abdominal cavity of the patient. Surgical and diagnostic instruments are delivered transcutaneously into the patient's body via one or more ports, through for example, a trocar or a trocar incision. Other minimally invasive surgical procedures include natural orifice transluminal endoscopic surgery (NOTES™) wherein surgical instruments and viewing devices are introduced into a patient's body through, for example, the mouth, vagina, nose, or rectum. Another class of such minimally invasive surgery includes magnetically-based systems (MAGS). MAGS devices typically include an internal device or end-effector that provides therapy to the patient (e.g. electro-cautery) or information to the surgeon or clinician (e.g. video camera) and an external magnet used to control the internal device.


In any of these procedures, a combination of a video camera or any suitable imaging equipment, and a source of illumination, is often used to guide the procedure. It is likely that at several points during the procedure, the camera lens will become smudged with bodily fluids or material, and a means for clearing the lens is necessary. When an endoscope is delivered ether via a NOTES pathway (flexible overtube) or transcutaneously through a trocar or trocar incision, the ability to remove and clean the lens becomes more difficult.


The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


SUMMARY

Disclosed herein is an apparatus and methods for cleaning a lens, or one or more lenses, of at least one of, and preferably both of, an endoscopic camera and an illumination source while the endoscope is deployed in a patient during a medical procedure, such as a minimally invasive procedure, or a therapeutic or diagnostic procedure.


More particularly, there is described an apparatus for cleaning a lens of at least one of, and preferably both of, a videoscopic camera and an illumination source that is deployable into an internal site of a patient. The apparatus includes a conduit, which in use is attached to the endoscope. The conduit defines a longitudinal axis and has a proximal end and a distal end and is structured for the passage of fluid therethrough. The distal end'of the conduit defines at least one fluid delivery port. The apparatus also includes an alignment system for aligning the delivery port in a desired position relative to a lens of the endoscope and a supply tube attached to the proximal end of the conduit, the tube defining at least one lumen for passage of fluid therethrough. The conduit is preferably rigid and the supply tube may be flexible along at least part of, and preferably all of its length. The conduit may comprise at least one passage formed along the length thereof extending in use from the proximal to the distal end of the endoscope. The at least one passage of the conduit is fluidly connected to the lumen of the supply tube for passage of fluid from the supply tube through the conduit passage to the fluid delivery port.


In various embodiments, the conduit may have two, three or more passages for delivery of liquid and/or gaseous cleaning fluids to the delivery ports and the camera and/or illumination source lens, and for suctioning fluid away from the lens or lenses. In various embodiments, the supply tube may have two, three or more lumens for delivery of liquid and/or gaseous cleaning fluids to the one or more conduit passages and for suctioning fluid away.


In various embodiments, the endoscope comprises a passage extending to the distal end of the endoscope for receiving the conduit. The passage may be positioned within the endoscope, or may be positioned on the exterior of the endoscope.


In various embodiments, the apparatus may comprise a carrier member, such as a sleeve or a tray, sized to at least partially encase and conform to at least a portion of the shape of the body of the endoscope. The carrier member may have at least a partial opening at the distal end thereof to expose at least the lens of the camera and the illumination source and may be fully open or have at least a partial opening at the proximal end thereof for passage of the supply conduit. In such embodiments, the conduit may be formed within, or be a separate component disposed within, the carrier member.


In certain embodiments, when the passage is positioned on the exterior of the endoscope, the apparatus may comprise a plurality of elastic prongs or a pair of opposing elastic prongs for releasably attaching the conduit to the endoscope. In the embodiments wherein the conduit is positioned in the passage on the exterior of the endoscope, the alignment system may comprise an engagement head positioned at the distal end of the conduit. The engagement head may extend outwardly from the longitudinal axis of the conduit to engage the endoscope and position the at least one fluid delivery port to a desired position adjacent the lens of one or both of the camera and the illumination source.


The conduit may be at least two, three or more passages formed along the length of the carrier member, each of which may be fluidly connected to the one or more corresponding lumen or lumens of the supply tube. A liquid fluid may pass through the lumen of the supply tube through one of the passages in the conduit to the fluid delivery port, and a gaseous fluid may pass through the lumen of the supply tube through another of the passages of the conduit to the fluid delivery port. A vacuum source may be fluidly connected to the proximal end of the supply tube, positioned at a site external to the patient to suction fluid away from one or both of the camera and illumination source lens.


In certain embodiments, the alignment system may comprise a protrusion that extends outwardly from the conduit in a direction generally transverse to the longitudinal axis of the conduit. The endoscope in such embodiments includes a recess formed therein for receiving the protrusion. The recess has a first recessed section for maintaining the protrusion in a locked position when received therein, and a second recessed section wherein the protrusion is in an unlocked position when received therein. The alignment system may also include a biasing member for maintaining the protrusion in the locked position. The delivery port is positioned on the conduit such that the delivery port is directed towards one or both of the lenses of the camera and the illumination source when the protrusion is in the locked position. The alignment system may further include a handle for moving the protrusion between the locked and unlocked positions.


In various embodiments, the alignment system may include a clamp mounted on the proximal end of the conduit for rotational movement about the longitudinal axis of the conduit between a locked position and an unlocked position. The clamp in such an embodiment may have an engagement surface for locking engagement with the engagement surface on the endoscope structured for locking engagement with the engagement surface of the clamp. The alignment system may also include a spring member for biasing the clamp in the distal direction, and a stop for limiting the movement of the endoscope in the distal direction. The endoscope in such embodiments preferably includes a first recess formed therein for receiving the proximal end of the conduit and a second recess formed circumferentially about a portion of the endoscope transverse to the first recess for receiving the clamp when in the locked position. The engagement surface of the endoscope may be positioned in the second recess.


In various embodiments, the endoscope defines a passage therein. The passage may extend, for example, from the first recess to the distal end of the endoscope and may receive the conduit. The stop for limiting the movement of the endoscope in the distal direction may be positioned in the passage.


A method for cleaning a lens of one or both of a camera and an illumination source is also provided. The method includes attaching a cleaning apparatus to the endoscope, the cleaning apparatus comprising a rigid conduit defining a longitudinal axis and having a proximal end and a distal end, and being structured for the passage of fluid therethrough. In various embodiments the conduit may be constructed of a compliant material. The distal end of the conduit defines at least one fluid delivery port. The apparatus also includes an alignment system for aligning the fluid delivery port in a desired position relative to a lens of one or both of the camera and the illumination source and a flexible supply tube attached to the proximal end of the conduit. The compliant conduit would allow for an interference fit with the alignment feature. The supply tube comprises at least two lumens for passage of fluid therethrough. The method further includes aligning the fluid delivery port into the desired position facing the lens of one or both of the camera and the illumination source, locking the conduit and the fluid delivery port into the desired position, and directing a cleaning fluid selected from a liquid, a gas or a combination thereof from at least one source of cleaning fluid external to the patient through the supply tube, the conduit and to the at least one delivery port. The method may further include attaching the proximal end of the supply tube to a source of vacuum external to the patient, and drawing fluid away from the lens of one or both of the camera and the illumination source through at least one opening in the delivery port by applying suction from the vacuum source through the supply tube and the conduit.





FIGURES

Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.



FIG. 1 shows an exemplary endoscope for internal use during a medical, therapeutic, or surgical procedure with the distal tip of an embodiment of a cleaning conduit extending from the distal face of the endoscope.



FIG. 2 shows a section view through the longitudinal axis of the endoscope of FIG. 1.



FIG. 3 shows a section view of the opposite side of the endoscope of FIG. 2 through the longitudinal axis of the cleaning conduit.



FIG. 4 is a perspective cut away view of the proximal end of an embodiment of an internal endoscope showing a double lumen supply line leading to a cleaning conduit.



FIG. 5 is a cut away view of an embodiment of a transition from a double lumen to a single lumen supply line.



FIG. 6 is a perspective view of an embodiment of a locking and alignment member at a junction between the cleaning conduit and the supply line.



FIG. 7 shows the locking and alignment member of FIG. 6 positioned in the endoscope of FIG. 1.



FIG. 8 is a view of the distal tip of the cleaning conduit of FIG. 1 showing an opening for delivery of fluid in the direction of the lens of the endoscope of FIG. 1.



FIG. 9 is a perspective view of the distal tip of the cleaning conduit of FIG. 8 removed from the endoscope.



FIG. 10 is a perspective view of an embodiment of a cleaning conduit showing an alternative locking and alignment member and an alternative distal tip.



FIG. 11 is a section view of the locking and alignment member of FIG. 10 at the proximal end of the cleaning conduit.



FIG. 12 is a section view of the distal end of the endoscope and the distal tip of the cleaning conduit of FIG. 10.



FIG. 13 is a view of the proximal end of the cleaning conduit and locking and alignment member of FIG. 10 positioned in an internal endoscope in an unlocked position.



FIG. 14 is a perspective view of an embodiment of a magnetic internal endoscope showing the locking and alignment member of FIG. 10 in a locked positioned.



FIG. 15 shows a section view of the locking and alignment member of FIG. 14, in the locked position.



FIG. 16 shows a perspective view of the proximal end of the endoscope of FIG. 14 showing the locking and alignment member in the locked position.



FIGS. 17A-C show an alternative embodiment of the cleaning conduit separate from and positioned in a conduit carrier on an embodiment of an internal endoscope.



FIG. 18 shows an embodiment of a conduit carrier in the form of a sleeve for a cleaning conduit mounted on an internal endoscope.



FIG. 19 shows a close up view of the engagement member of the sleeve carrier of FIG. 18.



FIG. 20 shows a perspective view from the proximal end of an alternative embodiment of a conduit carrier for attachment to an internal endoscope.



FIG. 21 shows a section view of the conduit carrier of FIG. 20, showing a channel.



FIG. 22 shows a perspective view from the distal end of the embodiment of the conduit carrier of FIG. 20.



FIG. 23 is a section view of the conduit carrier of FIG. 22 showing the engagement with the endoscope.



FIG. 24 shows a perspective view of the proximal end of an alternative embodiment of the conduit carrier of FIG. 20 having a dual lumen.



FIG. 25 shows a view of the conduit carrier of FIG. 24 from the distal end.



FIG. 26 is a section view of an alternative embodiment of the conduit carrier of FIG. 20 or 25 showing three channels for porting fluid.



FIG. 27 shows a view of an alternative embodiment of a conduit carrier from the distal end mounted to an internal endoscope.



FIG. 28 shows a view of the conduit carrier of FIG. 27 from the proximal end.



FIG. 29 shows a view of the conduit carrier of FIG. 27 from the distal end.



FIG. 30 shows a view of the conduit carrier of FIG. 27 with a double sided attachment tape adhered to the conduit carrier.



FIG. 31 shows an external control unit connected to the supply tube on one end and vacuum and irrigation lines on the other end.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DESCRIPTION

Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.


It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located farthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down”, “top” and “bottom” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.


As used herein, the term “patient,” refers to any human or animal on which a medical procedure, such as a surgical, therapeutic, or diagnostic procedure, may be performed. As used herein, the term “internal site” of a patient means a lumen, body cavity or other location in a patient's body including, without limitation, sites accessible through natural orifices or through incisions. As used herein, the term “transverse” means being situated or lying across something or extending outwardly from something, for example, at an angle to an axis of something. Transverse may include, but is not limited to, being situated perpendicular to the axis of something. As used herein, the term “generally” means usually or mostly, such that “generally transverse” means the thing referenced may mostly be situated across or extending outwardly at an angle from something else.


In a MAGS system, an external control unit (not shown) having one or more permanent magnets or electro-magnetic magnets housed therein is positioned on the outer surface of the patient's body. An endoscope may be carried in an internal magnetic sled (not shown) having its own magnets, which are attracted to the external control unit. Movement of the external control unit moves the internal magnetic and the endoscope carried in the sled. Alternately, the endoscope and magnetic sled may be integrated into a single unit wherein the magnets are housed in a unit that also carries the various lighting, image capture and relay components of the endoscope.


Disclosed herein is an apparatus for cleaning a lens, or one or more lenses, such as one or preferably both the camera and illumination lenses of an endoscope while the endoscope is deployed in a patient during a medical procedure, such as a minimally invasive procedure, or a therapeutic or diagnostic procedure. In various embodiments, the endoscope may be a MAGS-based camera equipped with an onboard magnet or source of a magnetic field that will magnetically couple the endoscope to an external manipulation unit for moving the endoscope while the endoscope is deployed in an internal site of a patient.


The cleaning apparatus generally includes a conduit having a fluid delivery port, an alignment system, and a generally flexible supply tube to fluidly connect the conduit to one or both of a source of a fluid and a suction device.


Referring to FIG. 1, an embodiment of an endoscope 10 for use in an internal site of a patient is shown. The endoscope 10 includes a distal face 12, a proximal end 14, a top side 22 and a bottom side 24. The top side 22 would typically be oriented in use, for example, toward the patient's abdominal wall or other external surface. In a MAGS endoscope, the top side would typically be oriented toward and magnetically coupled to an external magnetic control unit. The bottom side 24 would typically be oriented in use, for example, towards the interior of the patient.


At the distal end 12 of the endoscope 10, illumination source 18 and a lens 20 are shown. At the proximal end 14 of the endoscope, a tether 16 and a supply tube 60 are shown. The tether 16 may contain wires or other power, illumination source and/or communication lines to deliver power to the endoscope and to return images to an external viewer external to the patient. Endoscopes with power, illumination, and communication lines are known in the art. These features therefore, need not be described in detail herein.


Also at the distal face 12 of endoscope 10, the distal tip 42 of a conduit for delivering cleaning fluid to the lens 20 of the camera is shown. Referring to FIG. 2, an embodiment of a conduit 40 having a lumen 50 through which fluid flows is shown positioned in channel 28 of the endoscope. When endoscope 10 is a MAGS endoscope, an internal magnet 26 will be housed in the endoscope body. FIG. 2 also shows the illumination source, such as a Light Emitting Diode (LED) 18a, a lens 18b shaped to focus the light, and sealed covers 18c for illumination sources 18. An electronic CMOS array, CCD array, or circuit board for the camera 20a is provided. A copper heat sink 106 absorbs heat given off from electronics boards 108 and 20a.


The distal tip 42 of the cleaning conduit 40 has a delivery port such as an opening or slot 46 shown in FIG. 3, through which cleaning fluid may be directed toward lens 20. In the embodiments herein, slot 46 is on the medial side 48 of distal tip 42 and forms an arc, for example, in the 6:00 o'clock to the 12 o'clock position.


In various embodiments, conduit 40 may have the same internal diameter along its full length. The supply line 60 internal diameter may be greater than the internal diameter of the conduit 40 over its length, or may be smaller than the internal diameter of the conduit's lumen. The relative diameters of lumen 50 and lumen 62 will influence the pressure and/or speed of the fluid coming out of the delivery port, slot 46. To maintain a steady luminal flow of fluid at a consistent pressure across the lens from the delivery port, lumen 50 and lumen 62 are preferably the same, or substantially the same, in cross-section and the fluid is preferably delivered at a constant, or substantially constant, pressure. The distal face 12 of endoscope 10 is angled relative to the top side 22 and bottom side 24 of endoscope 10. The distal tip 42 of conduit 40 is also angled. The angle of slot 46 is parallel to the angle of the distal face 12 of endoscope 10.


The cleaning apparatus also includes a supply line 60 fluidly connected to conduit 40 at the proximal end 44 of conduit 40. Referring to FIGS. 2-5, an embodiment of conduit 40 and supply line 60 are shown which are joined at a junction 62 where lumen 50 of conduit 40 meets single lumen 62 of supply line 60.


In the embodiment shown in FIGS. 4 and 5, the lumen 62 of supply line 60 includes a transitional section 54 wherein single lumen 62 transitions into a double lumen 56. Double lumen 56 and camera tether 16 are dimensioned to allow them to pass through the space 104 remaining between a tool 102 and the internal channel wall of a trocar 100 (or through the space between the exterior of a trocar and an incision in the patient) to the exterior of the patient. Double lumen 56 is fluidly connected to an external source of fluid for cleaning lens 20. In any of the embodiments discussed herein, the cleaning fluid may be a liquid, such as water or saline, or a gas such as sterile air or CO2. The cleaning fluid must be sterile and biocompatible.


The two sets of supply tubing, single lumen 60 and double lumen 56, may be joined at a three way intersection in transitional section 64 by an adhesive, any suitable engaging members, or a combination of adhesive and engagement members. Alternatively, they may be molded as a single unit with two different sections. The proximal end of supply line 60 is fluidly connected to a source of a cleaning fluid (not shown). An inline trumpet valve 310 shown in FIG. 31 may be used to allow the clinician to control the fluid flow from the source of cleaning fluid through the supply line 60. Valve 310 is preferably located at a site external to the patient, sufficiently close to the clinician to allow quick delivery of cleaning fluid (liquid or gas) and suction through irrigation line 320 and vacuum line 330, respectively, through the trumpet valve 310 to supply line 60 and conduit 40 to clean a dirty or obstructed lens 20 as needed. A vacuum control button 340 and an irrigation control button 350 are provided on trumpet valve 310 for use by the clinician control the flow of cleaning fluid or the application of suction by pushing the appropriate button. A clip 312 is provided to releasably connect the trumpet valve control unit to a surgical drape.


In addition to the fluid delivery, the proximal end of supply line 60 may be connected to a vacuum source, such as a pump (not shown) to provide suction through conduit 40 to draw fluid away from lens 20.


In the dual lumen embodiments, one lumen may be used for delivering a liquid cleaning agent to the lens 20 and the second lumen may be used to deliver a gas to the lens 20. Alternatively, one lumen may be used for delivering a fluid (liquid or gas) and the other lumen may be used to suction fluid away from lens 20. In certain embodiments, there may be at least three lumens; two lumens for delivery of fluid to the lens and at least one lumen for drawing fluid away from the lens, for example, by suction. Independent channeling to separate the suctioning and fluid delivery eliminates vision blocking debris that may form while the lens is being cleaned.


The cleaning apparatus includes an alignment system 70 for aligning the delivery port in a desired position relative to the lens 20 of endoscope 10. In various embodiments of the cleaning apparatus, the alignment system 70 may include one or more members to bias conduit 40 in a desired position. In the embodiment shown in FIGS. 2, 3, 6, and 7, the alignment system 70 includes a spring 72, a ring or sleeve 74 defining a bore 78. A pin 76 is positioned on the exterior surface of ring 74. Ring 74 is fixedly attached to conduit 40 so that movement of ring 74 moves conduit 40 in like manner.


As shown in FIG. 7, endoscope 10 includes a recess 30 and J-groove 32. J-groove 32 receives pin 76 of ring 74. J-groove 32 includes a longer groove 36 and a shorter groove 34 joined by a lateral groove 35. In the embodiment shown, spring 72 is positioned in recess 30 over conduit 40 between the distal end of ring 74 and the proximal end of an annular shoulder 64 surrounding the opening to channel 28. The spring loaded alignment system resembles a bayonet system where a small twist of the ring 74 locks the slot 46 of conduit 40 in the correct orientation, facing the lens 20. In a locked position, the spring 72 biases pin 76 in the shorter groove 34 to lock pin 76 in to the position that positions slot 46 towards lens 20 (see FIGS. 8-9). To release the pin 76, ring 74 is pushed distally enough to move pin 74 from groove 34 to lateral groove 35 to longer groove 36, thereby releasing the compression on spring 72 as pin 76 moves proximally to the end of longer groove 36 to assume the unlocked position. Because conduit 40 is attached to ring 74, conduit 40 moves with ring 74 as it moves longitudinally in the distal or proximal direction, and as it rotates as pin 76 moves between the longer and shorter grooves 36 and 34, respectively, of J-groove 32.


A handle 58 may be positioned in certain embodiments at the proximal end of ring 74 to facilitate rotating ring 74 to move pin 76 between the locked and unlocked positions. To maintain a streamlined outer contour for endoscope 10 to facilitate passage through a trocar or a trocar incision, the recess 30 in endoscope 10 may also include a recessed area to seat handle 58 so that it does not extend outwardly from the endoscope body.


An alternative embodiment of an alignment system is shown in FIGS. 10-16. In this embodiment, a clamp 80 is pivotally attached about pivot axis 82 to the proximal end of conduit 40, by sleeve member 92 sliding over conduit 40. Clamp 80 may include an engagement portion, for example, a latch portion 86, and a clamp handle 84. Clamp handle 84 may be made of an elastomeric material structured to define a compressible leaf spring surround an opening 90. Sleeve 92 includes a truncated conical section 94 at the proximal end of sleeve 92 to connect conduit 40 and sleeve member 92 to the supply line 60.


The outer diameter of a distal end portion 98 of conduit 40 in the embodiment shown in FIGS. 10-16, is smaller than the outer diameter of the remaining portion of conduit 40. A shoulder 110 marking the transition to distal end portion 98 of conduit 40 abuts mating shoulder 112 in channel 28 of endoscope 10 which marks the transition in channel 28 to a distal end channel 38 having a smaller external diameter than that of the remainder of channel 28. The internal diameter of the embodiment of conduit 40 shown is constant along its length, including the internal diameter of distal end portion 98. Shoulders 110 and 112 interact to act as a stop to prevent further movement of conduit 40 distally thereby aligning the delivery port, slot 46, with the distal face 12 of endoscope 10.


The axial orientation of the alignment system is maintained at the proximal end of conduit 40 by clamp 80. FIG. 13 illustrates the clamp in the open position. The proximal end of conduit 40 with sleeve 92 and clamp 80 attached is positioned in longitudinal recess 116 of endoscope 10. A radial recess 118 in endoscope 10 transverse to the axis of longitudinal recess 116 mates with clamp 80 when clamp 80 is latched into a closed position, as shown in FIGS. 14-16. Clamp engagement portion 86, which may be a thickened end portion of clamp 80, is positioned in notch 120 of endoscope 10 when clamp 80 is in the closed position and gripping edge 88 of engagement portion 86 is pressed against mating edge 122 of notch 120 to hold clamp 80 in the closed position. The leaf spring portion 96 of handle 84 is pressed into opening 90 by the proximal edge of radial engagement surface 118 to bias conduit 40 distally so that shoulder 110 is against shoulder 112 of channel 28.


In various embodiments of the cleaning apparatus, the conduit 40 need not be housed in the endoscope 10. Instead, conduit 40 may be secured to endoscope 10 by a sled-like or sleeve-like carrier 130. The carriers 130 may conform to a portion of the external shape of endoscope 10, or may form a sleeve encircling all, or at least a portion of endoscope 10.


Referring to FIGS. 17a-c, a carrier 130 is shown attached by any suitable means to the bottom 24 of endoscope 10. The carrier 130 includes a groove 132 for receiving a conduit 40′ between opposing receiver sections 134 that run along the length of the bottom 24 of endoscope 10. The groove 132 may be tooled into the bottom 24 of the endoscope 10 or may be in a separate carrier 130 attached to the bottom of the endoscope, extending outwardly from it. In the latter embodiment, the endoscope body may, for example, have a groove or recess in the proximal and/or distal ends, and preferably may have multiple grooves spaced along the length of the endoscope body to receive tabs or protrusions from carrier 130 to secure the carrier to the endoscope body. The carrier 130 preferably fits tightly to the endoscope body and snaps into the grooves or recesses to maintain a streamlined profile and to aggressively secure the cleaning conduit to the endoscope. Other means of connecting the carrier to the endoscope body are described herein. In such embodiments, the distal tip 140 of conduit 40′ is curved upwardly. The delivery port is positioned on the upwardly curved tip and is defined by an opening 142 directed in use towards the camera and/or illumination source lens 20.



FIGS. 18-19 illustrate a circumferential embodiment of a carrier sleeve 150 for attaching the cleaning apparatus to a endoscope 10. In the embodiment shown, the carrier sleeve 150 is made, at least in part, of a pliable or flexible material to facilitate sliding the sleeve 150 over the endoscope 10 body. Sleeve 150 is generally cylindrical in shape and includes a distal panel 154 that is configured to cover the lower portion of the distal face 12 of endoscope 10. Panel 154 includes a cut out section, such as U-shaped cut out 156 shown in FIG. 18, to expose lens 20 and position fluid delivery ports 158 and 160 on each side of lens 20 when the sleeve 150 is on endoscope 10 to provide a bidirectional flow of cleaning fluid to lens 20.


A conduit may be formed in sleeve 150 along its length. The conduit (not shown) has one or more lumens, such as a single lumen that branches into separate paths leading to ports 158 and 160. The conduit extends from the proximal to the distal end of sleeve 150 to deliver cleaning fluid to delivery ports 158 and 160 or to draw fluid away from lens 20 by suction, as described above. The proximal end of the conduit is fluidly connected to supply line 60, as described in any of the embodiments described above.


Sleeve 150 additionally may be secured to endoscope 10 by engagement tab 152 as shown in FIG. 19. Extension 162 of tab 152 snaps into engagement with shoulder 164 on neck 166 of endoscope 10 at the proximal end 14 of endoscope 10. The shoulder 164 acts as a stop to prevent extension 162 and sleeve 150 from moving farther distally. The engagement of extension 162 and shoulder 164 serves to position panel 154 against distal face 12 and thereby align delivery ports 158,160 with lens 20 to ensure the flow of fluid against lens 20.


In certain embodiments, the conduit carrier 130 may not fully encircle endoscope 10, but may instead only partially cover the endoscope 10. FIGS. 20-26 illustrate a conduit carrier 130 having a semi circular cross-section structured to encase the bottom 245 and a portion of the sides of endoscope 10. Referring to FIGS. 20-26, a carrier sleeve 170 having a distal panel 174 and a proximal panel 184 is shown. Distal panel 174 may include a cut out portion 176 to expose lens 20 of endoscope 10 and to position first and fluid delivery ports 178 and 180 adjacent lens 20 for bidirectional delivery of cleaning fluid to lens 20. Alternatively, as shown in FIG. 26, there may be more than two delivery ports, such as three or four or multiple spaced ports to effect a spray of cleaning fluid from multiple directions aimed towards lens 20. Any of the embodiments of the cleaning apparatus described herein may have multiple fluid delivery and/or suction ports to effect unidirectional or multi-directional flow, or spray cleaning fluid with or without suction from one or more positions around lenses 20.


Sleeve 170, sleeve 150, or any of the conduit carriers 130 may be made of a rigid or pliable material, preferably a somewhat rigid but elastomeric material, that allows sleeve 170 to snap onto and conform closely to the shape of the bottom portion of endoscope 10.


Referring to FIGS. 21 and 23, sleeve 170 may be secured to endoscope 10 by engagement tabs 188 that extend preferably along the length of each side of sleeve 170 to mate with complementary engagement grooves 190 that extend in a complementary manner along the length of each side of endoscope 10. The engagement tabs 188 with grooves 190 align distal panel 174 and cut out 176 in a desired position relative to lens 20. Proximal panel 184 prevents sleeve 170 from being advanced too far distally, thereby accurately positioning ports 178, 180 to direct the flow of cleaning fluid to lens 20.



FIGS. 24-25 illustrate an embodiment of sleeve 170 having a dual lumen supply line 182. One lumen, for example 182, may be for delivery of a cleaning fluid to delivery port 178 and another lumen, for example 192, may be for suction to draw fluid away from lens 20 through port 180. Lumens 182, 192 may be fluidly connected to supply line 60 as described above. FIG. 26 illustrates an embodiment of sleeve 170 having a three lumen conduit 194 extending along the length of the carrier sleeve between the proximal and the distal ends of the sleeve. One lumen, for example 194a, may be used for suction and the other two lumens, for example 194b and c, may be used to deliver cleaning fluid to multiple ports 178, 180 to lens 20.


As described above, the lumens 194 of the conduit in sleeve 170, sleeve 150 or any of the embodiments of the conduit carrier sleeves 130, are fluidly connected to supply line 60 by any suitable means, including any of the embodiments of supply line 60 described previously herein, supply line 60 is connected at its proximal end to a source of cleaning fluid (liquid or gaseous) and/or a source of vacuum to provide cleaning fluid or suction or both, as desired, to lens 20 of endoscope 10.


The lumens of conduit carriers 130 may themselves function as the conduit for delivery of the cleaning fluid or suction to the delivery ports or may function as channels for receiving separate conduits in each lumen, appropriately ported to one or more delivery ports.


In an alternative embodiment of a conduit carrier, a carrier tray 210 that adheres to the bottom 24 of endoscope 10 may be used to attach the cleaning apparatus to endoscope 10. As shown in FIGS. 27-29, tray 210 conforms to the shape of the bottom 24 of endoscope 10, for example, curved. Those skilled in the art will appreciate that other shapes are possible. Tray 210, as shown, includes a distal panel 214 having a lens cut out portion 216 and a proximal panel 218. One, two, three or more delivery ports 224 may be provided along the edge of cut out portion 216 to direct cleaning fluid or suction or both to lens 20. A conduit having one, two, or three lumens extends from line 220 through the body of tray 210 to delivery ports 224 in the manner described previously for carrier sleeves 150 and 170, for example.


Tray 210 may be completely rigid. Tray 210 may be made of a magnetic alloy, such as a ferrous alloy, so that the magnets carried in endoscope 10 when it is a MAGS endoscope, attract and hold tray 210 to endoscope 10. Panels 214 and 218 abut distal and proximal faces 12, 14 of endoscope 10. The magnetic hold in addition to the positioning provided by distal and proximal panels 214 and 218, respectively, serve to align the cut out portion 216 and delivery port or ports 224 with lens 20.


An alternative means of attaching a conduit carrier to endoscope 10 is shown in FIG. 30. A double sided tape 230 made of a biocompatible adhesive material may be placed on the interior surface of the carrier, such as tray 210 as shown, to tape one side of the tape 230 to the carrier. The other side of the double sided tape 230 adheres to the endoscope bottom 24. The double sided tape 230, while shown with tray 210, may be used with any of the conduit carrier embodiments described herein.


The conduit carrier may be held to the endoscope 10 with a chemical or an adhesive having the following properties: i) water/salt-based fluid impervious, ii) strong enough to hold the conduit in place for the length of the medical procedure, iii) able to be released by any suitable means after the endoscope has been retrieved from the patient, that does not damage the endoscope, for example, by dissolving the adhesive with a chemical, with heat, or by separating the endoscope from the attachment means by physical force.


The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small, keyhole incisions.


Endoscopic minimally invasive therapeutic or diagnostic surgical medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small, keyhole incision (usually 0.5-2.5-2 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.


The cleaning apparatus described herein is preferably a disposable device, intended for a single use. Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new cleaning apparatus and a new or used instrument, such as endoscope 10 and trocars are obtained and if necessary cleaned. The instruments can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam. Alternately, the device may be of a single-use disposable nature, and would be delivered sterilized and disposed of after a procedure.


Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


It should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.

Claims
  • 1. An apparatus for cleaning at least one of a lens of an endoscopic camera and endoscopic illumination source of an endoscope, the endoscope being deployable into an internal site of a patient, the apparatus comprising: a conduit for removable attachment to the endoscope, the conduit defining a longitudinal axis and having a proximal end and a distal end and being structured for the passage of fluid therethrough;the distal end of the conduit defining at least one fluid delivery port;an alignment system for aligning the delivery port in a desired position relative to the lens of at least one of the camera and the illumination source of the endoscope, said alignment system comprising an alignment member on the conduit and a recess formed on the outer surface of the endoscope for receiving the alignment member, the recess having a recessed engaging section for maintaining the alignment member in a locked position when engaged therewith, and a recessed unlocking section, the alignment member movable between the recessed sections for movement between locking and unlocking positions;the alignment member comprising a protrusion extending outwardly from the conduit in a direction generally transverse to the longitudinal axis of the conduit, the recessed unlocking section maintains the protrusion in an unlocked position when received therein;a biasing member for maintaining the protrusion in the locked position;the at least one delivery port being positioned on the conduit such that the delivery port is directed towards the lens of at least one of the camera and the illumination source when the protrusion is in the locked position; and,a supply tube attached to the proximal end of the conduit, the tube defining at least one lumen for passage of fluid therethrough.
  • 2. The apparatus recited in claim 1 wherein the endoscope comprises a proximal end, a distal end, and a passage extending from the proximal to the distal end of the endoscope, the conduit being disposed within the passage.
  • 3. The apparatus recited in claim 2 wherein the passage is positioned within the endoscope and the conduit is rigid.
  • 4. The apparatus recited in claim 2 wherein the passage is positioned on the exterior of the endoscope.
  • 5. The apparatus recited in claim 4 further comprising a plurality of elastic prongs for releasably attaching the conduit to the passage of the endoscope.
  • 6. The apparatus recited in claim 5 wherein the conduit is flexible and the supply tube is flexible.
  • 7. The apparatus recited in claim 5 wherein the alignment system further comprises an engagement head positioned at the distal end of the conduit, the engagement head extending outwardly from the longitudinal axis of the conduit to engage the endoscope and position the at least one fluid delivery port adjacent the lens of at least one of the camera and the illumination source.
  • 8. The apparatus recited in claim 1 further comprising a carrier member having a distal end and a proximal end and being sized to at least partially encase the length of the endoscope, the carrier member having at least a partial opening at the distal end thereof to expose the lens of at least one of the camera and the illumination source and at least a partial opening at the proximal end thereof for passage of the supply conduit.
  • 9. The apparatus recited in claim 8 wherein the alignment system further comprises at least one engagement member for securing the carrier member to the endoscope.
  • 10. The apparatus recited in claim 8 wherein the carrier member comprises at least one passage formed along the length of the carrier member from the proximal to the distal end thereof, the passage fluidly connected to the at least one delivery port.
  • 11. The apparatus recited in claim 10 wherein the at least one passage of the carrier member forms the conduit.
  • 12. The apparatus recited in claim 10 wherein the at least one passage of the carrier member is sized to receive the conduit.
  • 13. The apparatus recited in claim 10 wherein the at least one passage is fluidly connected to the lumen of the supply tube for passage of fluid from the supply tube through the passage to the fluid delivery port.
  • 14. The apparatus recited in claim 10 wherein there are at least two passages formed along the length of the carrier member.
  • 15. The apparatus recited in claim 14 wherein the supply tube has a proximal end and a distal end, at least two lumens extending from the end, and wherein the supply tube is fluidly connected at the proximal end of at least one of the at least two lumens to a source of fluid and fluidly connected at the proximal end of another of the at least two lumens to a source of vacuum.
  • 16. The apparatus recited in claim 1 further comprising a handle for moving the protrusion between the locked and unlocked positions.
  • 17. A method for cleaning a lens of at least one of an endoscopic camera and an endoscopic illumination source, the endoscope being deployable into an internal site of a patient, the method comprising: attaching a removable cleaning apparatus to the endoscope, the cleaning apparatus comprising a conduit for removable attachment to the endoscope, the conduit defining a longitudinal axis and having a proximal end and a distal end and being structured for the passage of fluid therethrough; the distal end of the conduit defining at least one fluid delivery port; an alignment system for aligning the delivery port in a desired position relative to the lens of at least one of the camera and the illumination source of the endoscope, said alignment system comprising an alignment member on the conduit and a recess formed on the outer surface of the endoscope for receiving the alignment member, the recess having a recessed engaging section for maintaining the alignment member in a locked position when engaged therewith, and a recessed unlocking section, the alignment member movable between the recessed sections for movement between locking and unlocking positions, the alignment member comprises a protrusion extending outwardly from the conduit in a direction generally transverse to the longitudinal axis of the conduit; the recessed unlocking section maintains the protrusion in an unlocked position when received therein; a biasing member for maintaining the protrusion in the locked position; and, the at least one delivery port being positioned on the conduit such that the delivery port is directed towards the lens of at least one of the camera and the illumination source when the protrusion is in the locked position; and, a supply tube attached to the proximal end of the conduit, the tube defining at least one lumen for passage of fluid therethrough;aligning the fluid delivery port into the desired position facing the lens of the camera and the illumination source;locking the conduit and the fluid delivery port into the desired position;directing a cleaning fluid selected from a liquid, a gas or a combination thereof from at least one source of cleaning fluid external to the patient through the supply tube, the conduit and to the at least one delivery port;directing the cleaning fluid onto the surface of the lens of at least one of the camera and the illumination source; and,suctioning from the distal surface of the endoscope.
US Referenced Citations (1239)
Number Name Date Kind
645576 Tesla Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1625602 Gould et al, Apr 1927 A
2028635 Wappler Jan 1936 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3069195 Buck Dec 1962 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3595239 Petersen Jul 1971 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4085743 Yoon Apr 1978 A
4164225 Johnson et al. Aug 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4269174 Adair May 1981 A
4278077 Mizumoto Jul 1981 A
4281646 Kinoshita Aug 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4396021 Baumgartner Aug 1983 A
4406656 Hattler et al. Sep 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4655219 Petruzzi Apr 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4685447 Iversen et al. Aug 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4815450 Patel Mar 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4867140 Hovis et al. Sep 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4960133 Hewson Oct 1990 A
4977887 Gouda Dec 1990 A
4979950 Transue et al. Dec 1990 A
4984581 Stice Jan 1991 A
4991565 Takahashi et al. Feb 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5259366 Reydel et al. Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312416 Spaeth et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318589 Lichtman Jun 1994 A
5320636 Slater Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334198 Hart et al. Aug 1994 A
5344428 Griffiths Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5377695 An Haack Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5386817 Jones Feb 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395386 Slater Mar 1995 A
5401248 Bencini Mar 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5449021 Chikama Sep 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5478347 Aranyi Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5536248 Weaver et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5591179 Edelstein Jan 1997 A
5593420 Eubanks, Jr. et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5613975 Christy Mar 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5626578 Tihon May 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5630795 Kuramoto et al. May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653690 Booth et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5662663 Shallman Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5702438 Avitall Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5716326 Dannan Feb 1998 A
5730740 Wales et al. Mar 1998 A
5735849 Baden et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5803903 Athas et al. Sep 1998 A
5808665 Green Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5843017 Yoon Dec 1998 A
5843121 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5971995 Rousseau Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6030634 Wu et al. Feb 2000 A
6033399 Gines Mar 2000 A
6036685 Mueller Mar 2000 A
6053927 Hamas Apr 2000 A
6059719 Yamamoto et al. May 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6096046 Weiss Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6139555 Hart et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6148222 Ramsey, III Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6214007 Anderson Apr 2001 B1
6228096 Marchand May 2001 B1
6234958 Snoke et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6322578 Houle et al. Nov 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6402735 Langevin Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409727 Bales et al. Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6443970 Schulze et al. Sep 2002 B1
6443988 Felt et al. Sep 2002 B2
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6458076 Pruitt Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6470218 Behl Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491627 Komi Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6514239 Shimmura et al. Feb 2003 B2
6520954 Ouchi Feb 2003 B2
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6620193 Lau et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6626919 Swanstrom Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6652521 Schulze Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673058 Snow Jan 2004 B2
6673087 Chang et al. Jan 2004 B1
6679882 Kornerup Jan 2004 B1
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6736822 McClellan et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6758857 Cioanta et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6761722 Cole et al. Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6824548 Smith et al. Nov 2004 B2
6836688 Ingle et al. Dec 2004 B2
6837847 Ewers et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6881216 Di Caprio et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6889089 Behl et al. May 2005 B2
6896683 Gadberry et al. May 2005 B1
6896692 Ginn et al. May 2005 B2
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6939327 Hall et al. Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6955683 Bonutti Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7029450 Gellman Apr 2006 B2
7035680 Partridge et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052489 Griego et al. May 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083629 Weller et al. Aug 2006 B2
7083635 Ginn Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7117703 Kato et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150655 Mastrototaro et al. Dec 2006 B2
7152488 Hedrich et al. Dec 2006 B2
7153321 Andrews Dec 2006 B2
7163525 Franer Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7188627 Nelson et al. Mar 2007 B2
7195612 Van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204820 Akahoshi Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211092 Hughett May 2007 B2
7220227 Sasaki et al. May 2007 B2
7223272 Francere et al. May 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7250027 Barry Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255675 Gertner et al. Aug 2007 B2
7270663 Nakao Sep 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7308828 Hashimoto Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7468066 Vargas et al. Dec 2008 B2
7488295 Burbank et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7507200 Okada Mar 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559887 Dannan Jul 2009 B2
7559916 Smith et al. Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7575548 Takemoto et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7588557 Nakao Sep 2009 B2
7618398 Holman et al. Nov 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7674259 Shadduck Mar 2010 B2
7713189 Hanke May 2010 B2
7713270 Suzuki May 2010 B2
7721742 Kalloo et al. May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7758577 Nobis et al. Jul 2010 B2
7762949 Nakao Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7771416 Spivey et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7780691 Stefanchik Aug 2010 B2
7794409 Damarati Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815659 Conlon et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7828186 Wales Nov 2010 B2
7837615 Le et al. Nov 2010 B2
7846171 Kullas et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7892220 Faller et al. Feb 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7909809 Scopton et al. Mar 2011 B2
7914513 Voorhees, Jr. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7945332 Schechter May 2011 B2
7947000 Vargas et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
7988685 Ziaie et al. Aug 2011 B2
8029504 Long Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8070759 Stefanchik et al. Dec 2011 B2
8075572 Stefanchik et al. Dec 2011 B2
8075587 Ginn Dec 2011 B2
8088062 Zwolinski Jan 2012 B2
8100922 Griffith Jan 2012 B2
8114072 Long et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8118821 Mouw Feb 2012 B2
8157834 Conlon Apr 2012 B2
8172772 Zwolinski et al. May 2012 B2
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030124009 Ravi et al. Jul 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040002683 Nicholson et al. Jan 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040206859 Chong et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119613 Moenning et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069425 Hillis et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095031 Ormsby May 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149131 Or Jul 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060247576 Poncet Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070010801 Chen et al. Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106118 Moriyama May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070142780 Van Lue Jun 2007 A1
20070154460 Kraft et al. Jul 2007 A1
20070156028 Van Lue et al. Jul 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070162101 Burgermeister et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070198057 Gelbart et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 Macnamara et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070250038 Boulais Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080021416 Arai et al. Jan 2008 A1
20080022927 Zhang et al. Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080071264 Azure Mar 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080097159 Ishiguro Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080177135 Muyari et al. Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner et al. Oct 2008 A1
20080249567 Kaplan Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090112059 Nobis Apr 2009 A1
20090112062 Bakos Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090125042 Mouw May 2009 A1
20090131751 Spivey et al. May 2009 A1
20090131932 Vakharia et al. May 2009 A1
20090131933 Ghabrial et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090143818 Faller et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090198253 Omori Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090227828 Swain et al. Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287206 Jun Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090299135 Spivey Dec 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090299406 Swain et al. Dec 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306658 Nobis et al. Dec 2009 A1
20090306683 Zwolinski et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326561 Carroll, II et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100010510 Stefanchik Jan 2010 A1
20100010511 Harris et al. Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056861 Spivey Mar 2010 A1
20100056862 Bakos Mar 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100057108 Spivey et al. Mar 2010 A1
20100076451 Zwolinski et al. Mar 2010 A1
20100081877 Vakharia Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130975 Long May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100179510 Fox et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198005 Fox Aug 2010 A1
20100198149 Fox Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331758 Davalos et al. Dec 2010 A1
20100331774 Spivey Dec 2010 A2
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110105850 Voegele et al. May 2011 A1
20110106221 Neal, II et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110124964 Nobis May 2011 A1
20110152609 Trusty et al. Jun 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152612 Trusty et al. Jun 2011 A1
20110152858 Long et al. Jun 2011 A1
20110152859 Long et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190764 Long et al. Aug 2011 A1
20110245619 Holcomb Oct 2011 A1
20110306971 Long Dec 2011 A1
20120004502 Weitzner et al. Jan 2012 A1
20120088965 Stokes et al. Apr 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120089093 Trusty Apr 2012 A1
20120116155 Trusty May 2012 A1
Foreign Referenced Citations (152)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19713797 Oct 1997 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
1281356 Feb 2003 EP
0947166 May 2003 EP
0836832 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
0941128 Oct 2004 EP
1411843 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 Aug 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
0723462 Mar 2009 EP
1769749 Nov 2009 EP
1493397 Sep 2011 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2335860 Oct 1999 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
63309252 Dec 1988 JP
4038960 Feb 1992 JP
8-29699 Feb 1996 JP
2000245683 Sep 2000 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
2006297005 Nov 2006 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9900060 Jan 1999 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0035358 Jun 2000 WO
WO 0110319 Feb 2001 WO
WO 0126708 Apr 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03081761 Oct 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004037149 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006012630 Feb 2006 WO
WO 2006040109 Apr 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007013059 Feb 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008033356 Mar 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008079440 Jul 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008108863 Sep 2008 WO
WO 2008151237 Dec 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2009121017 Oct 2009 WO
WO 2010027688 Mar 2010 WO
WO 2010080974 Jul 2010 WO
WO 2010088481 Aug 2010 WO
Non-Patent Literature Citations (71)
Entry
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006).
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994).
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006.
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006.
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998).
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006.
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Decembre 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Intent Radiol, (1995), vol. 6(4), pp. 539-545.
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317.
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784.
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475.
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101.
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490.
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767.
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632.
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676.
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages).
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages).
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869.
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259.
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP—Overview&navRe1Id=1000.1003&method=D . . . , accessed Jul. 18, 2008 (4 pages).
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998).
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406.
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007).
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007).
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008).
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000).
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000).
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001).
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000).
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422—152000; accessed Aug. 28, 2009 (3 pages).
“Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603—120000; accessed Aug. 28, 2009 (3 pages).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo—port—modular—laparo . . . ; accessed Jan. 5, 2010 (4 pages).
Hakko Retractors, obtained Aug. 25, 2009 (5 pages).
Zadno et al., “Linear Superelasticity in Cold-Worked Ni—Ti,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article—id=218392121; accessed online Nov. 1, 2011 (2 pages).
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.htm (7 pages).
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011.
U.S. Appl. No. 13/013,147, filed Jan. 25, 2011.
U.S. Appl. No. 13/036,895, filed Feb. 28, 2011.
U.S. Appl. No. 13/036,908, filed Feb. 28, 2011.
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011.
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011.
U.S. Appl. No. 13/352,495, filed Jan. 18, 2012.
U.S. Appl. No. 13/420,805, filed Mar. 15, 2012.
U.S. Appl. No. 13/420,818, filed Mar. 15, 2012.
U.S. Appl. No. 13/425,103, filed Mar. 20, 2012.
Related Publications (1)
Number Date Country
20130217970 A1 Aug 2013 US