This invention relates generally low-cost motion control systems.
Motion control systems are well-known in the art. In many applications, it is necessary to position a movable component with precision and repeatability. One type of motion control system utilizes an encoder strip that is optically scanned by sensors on the movable component.
Inkjet printing systems are also are well-known in the art. Small droplets of liquid ink, propelled by thermal heating, piezoelectric actuators, or some other mechanism, are deposited by a printhead on a print media, such as paper.
In scanning-carriage inkjet printing systems, inkjet printheads are typically mounted on a carriage that is moved back and forth across the print media. As the printheads are moved across the print media, the printheads are activated to deposit or eject ink droplets onto the print media to form text and images. The print media is generally held substantially stationary while the printheads complete a “print swath”, typically an inch or less in height; the print media is then advanced between print swaths. The need to complete numerous carriage passes back and forth across a page has meant that inkjet printers have typically been significantly slower than some other forms of printers, such as laser printers, which can essentially produce a page-wide image.
The ink ejection mechanisms of inkjet printheads are typically manufactured in a manner similar to the manufacture of semiconductor integrated circuits. The print swath for a printhead is thus typically limited by the difficulty in producing very large semiconductor chips or “die”. Consequently, to produce printheads with wider print swaths, other approaches are used, such as configuring multiple printhead dies in a printhead module, such as a “page wide array”. Print swaths spanning an entire page width, or a substantial portion of a page width, can allow inkjet printers to compete with laser printers in print speed.
One type of inkjet printing system utilizes multiple printhead modules that each print a substantial portion of a page width; the modules are on carriages that must be accurately positioned such that visible print defects are not introduced where the separately-printed portions of the page meet. The carriages may also be repositioned during the printing process, such as to allow wider page sizes to be printed using multiple print passes.
Printing is a highly-competitive field, and motion control techniques that may be appropriate in industrial applications are often not cost effective in a printing system. Lower cost materials may also be employed in a printing system; these materials may be more susceptible to environmental effects such as heat and humidity.
There is thus a need for apparatus and methods that allow for the precise and repeatable positioning of movable components at a reasonable cost.
Exemplary embodiments of the invention include apparatus and methods for compensating for the change in length of an encoder strip due to environmental effects such as temperature and humidity. The apparatus and methods utilize two simple optical sensors spaced apart and mounted on a substrate having a different coefficient of thermal expansion than the encoder strip; the substrate is mounted to the movable component which is to be positioned, such as a printer carriage. Embodiments of the methods utilize information from the two sensors, in conjunction with information from the analog encoder used to position movable component, to compensate for environmental effects.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
a) and 6(b) schematically illustrate an exemplary apparatus and method of the invention, showing how the sensors are moved along the encoder strip according to an embodiment of the invention;
Embodiments of the invention are described with respect to an exemplary inkjet printing system; however, the invention is not limited to the exemplary system, nor to the field of inkjet printing, but may be utilized as well in other systems.
In the following specification, for purposes of explanation, specific details are set forth in order to provide an understanding of the present invention. It will be apparent to one skilled in the art, however, that the present invention may be practiced without these specific details. Reference in the specification to “one embodiment” or “an exemplary embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase “in one embodiment” in various places in the specification do not necessarily refer to the same embodiment.
For multi-pass printing, the print media 230 may be held to the drum 210 by suction for more than one complete revolution of the drum, with printheads on the carriage assemblies 242, 244 depositing ink during each pass of the print media. The printer may include drying mechanisms (not shown) to accelerate the drying of the printed media, which may, for example, be placed near the bottom of the drum 210 such that the printed media may be at least partially dried between printing passes. The carriage assemblies 242, 252 permit the printheads to be moved side-to-side to different locations on the drum or off the drum entirely for servicing, or to reposition the printheads for different paper configurations.
Inkjet printing systems may typically utilize a process known as Automatic Pen Alignment (APA) to initially calibrate the positions of the printheads and carriages. Various APA techniques are described, for example, in U.S. Pat. No. 5,250,956, Haselby et al.; U.S. Pat. No. 5,262,797, Boeller et al.; U.S. Pat. No. 5,289,208, Haselby; U.S. Pat. No. 5,448,269, Beauchamp et al.; U.S. Pat. No. 5,451,990, Sorenson et al.; U.S. Pat. No. 5,600,350, Cobbs et al.; and U.S. Pat. No. 6,234,602, Soto et al. In this process, a pattern is printed on print media which is then detected by optical sensors; the sensed information is utilized to adjust the printing mechanisms or to provide calibration factors to the printer software or firmware. Automatic Pen Alignment typically requires significant time to complete, however, and therefore is not suitable for detecting short-term changes due to environmental factors. Environmental changes subsequent to APA may cause misalignments in a multi-carriage printing system.
Misalignments between print carriages greater then one-half dot row are generally perceived to be unacceptable. Misalignments may be caused, for example, by changes in the length of the encoder strips used to position the print carriages, as discussed below. In one exemplary printing system having two print carriages, temperature changes of 10 degrees centigrade (° C.) subsequent to Automatic Pen Alignment (and without further compensation or correction) have been observed to cause misalignments between the carriages on the order of two dot rows; changes in relative humidity of 30% have been observed to cause misalignments on the order of one dot row. In other terms, the changes due to temperature and humidity easily reach tens of microns during the course of operation of a printer; a 10 micron shift in the absence of any other error is just visible, and shifts greater than 10 microns are unacceptable.
While it would be possible to place temperature and humidity measurement capabilities near the encoder strips and adjust the desired positions to account for the expansions based on the temperature and humidity readings, such an approach is problematic. The sensors typically cost more than can be justified in the highly-competitive field of printing systems; the system would also be dependent on the correct placement of the sensors, and would be unable to compensate for transient behavior such as the time it takes for the encoder strip to reach the ambient temperature or humidity.
Printing system 300 typically includes a controller 320 which includes a processor 322 having access to memory 324. The memory may include the exemplary motion control algorithms 326 of the present invention, together with other programs, parameters, and print data.
The controller 320 typically generates print data for each carriage assembly 342, 352 in the printer, and also controls other printer mechanisms 332, such as, for example, controlling the drum rotation, paper feeding mechanism, and media dryers (not shown). Although two carriage assemblies are shown in
The substrate 510 comprises an “invariable” material that has a very small coefficient of thermal expansion (and substantially no hydroscopic expansion), such as invar, an alloy original developed for use in mechanical clocks. Invar is available in various grades; an exemplary embodiment may use invar with a linear coefficient of thermal expansion of 1.3/° C.; as compared to an exemplary mylar encoder strip which may have a linear coefficient of thermal expansion of 17/° C. (the linear coefficient of expansion is generally expressed as the fractional change in length per degree of temperature change, typically in parts-per-million per degree centigrade). Other materials are suitable, such as liquid crystal polymer (LCP); embodiments of the invention only require that the coefficient of thermal expansion of the substrate be substantially different than the coefficient of expansion of the encoder strip.
Mounted on the substrate are two circuit boards 512, 514, which comprise the electronic circuitry. The circuit board is “split” such that any expansion or contraction of the circuit board material itself does not adversely affect the results of the methods of the invention, as described below. The two circuit boards are then electrically coupled by a jumper 516. On circuit board 512 are the analog optical encoder 504, which detects the encoder markings on the encoder strip; a first opto-interrupter 502; and various other electronic circuitry. To insure that the first opto-interrupter is fixed in relationship to the substrate, multiple fasteners 520 bracket the opto-interrupter and fasten the circuit board 512 to the substrate.
It may be noted that a conventional carriage positioning system without embodiments of the present invention would generally include the analog optical encoder 504 and an opto-interrupter 502 to sense the encoder marks and index marks on the encoder strip. Thus, the additional components needed for embodiments of the invention are the substrate 510 and the second opto-interrupter 506. Like the first opto-interrupter 502, the second opto-interrupter 506 is bracketed by fasteners 520 which firmly attach it to the substrate. The substrate, then, functions to hold the two opto-interrupts an invariable distance “D” apart.
a) and 6(b) schematically illustrate an exemplary apparatus and method of the invention, showing how the various sensors are moved along the encoder strip according to an embodiment of the invention. The encoder strip 660 has first portion 664 that is clear except for one or more index marks (which are used to define one or more fixed points that carriage position may be determined in relation to), and a second portion 666 that contains encoder marks (typically at a fixed pitch, such as 200 lines per inch). As shown in
In an exemplary printing system, the procedure depicted in
After each periodic performance of the exemplary procedure the newly-determined measured difference ΔN is compared to the nominal value obtained during or immediately after Automatic Pen Alignment. The ratio of the two values allows positioning commands to the carriage to be corrected such that the expansion or contraction of the encoder strip does not affect the true position.
In mathematical terms, where
While the above-described embodiments provide a cost-effective motion control system that compensates for thermal and hydroscopic effects on the encoder strip, a further improvement can be achieved by compensating for the temperature effects on the “invariable” substrate itself. Materials such as invar are available in different grades; the cost is generally greater for grades with smaller coefficients of thermal expansion. Thus, a less expensive grade may be utilized, and the “second order” thermal effects due to expansion or contraction of the substrate may be corrected mathematically.
Where:
Utilizing the second order correction of equation 2, the substrate may be made of a lesser-grade material, so long as the coefficient of thermal expansion of the substrate material is different than that of the encoder strip. The second order correction assumes that all the expansion or contraction of the encoder strip is due to a change in temperature, rather than hydroscopic effects, however; and therefore a more invariable substrate material will generally provide better results.
The above is a detailed description of particular embodiments of the invention. It is recognized that departures from the disclosed embodiments may be within the scope of this invention and that obvious modifications will occur to a person skilled in the art. It is the intent of the applicant that the invention include alternative implementations known in the art that perform the same functions as those disclosed. This specification should not be construed to unduly narrow the full scope of protection to which the invention is entitled.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.
Number | Name | Date | Kind |
---|---|---|---|
3708681 | Ivers | Jan 1973 | A |
4465373 | Tamaki et al. | Aug 1984 | A |
5945824 | Obara et al. | Aug 1999 | A |
6010206 | Simons | Jan 2000 | A |
6193350 | Hadley | Feb 2001 | B1 |
6499827 | Elgee | Dec 2002 | B2 |
7252353 | Silverbrook et al. | Aug 2007 | B2 |
20030016266 | Urselmann | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070024659 A1 | Feb 2007 | US |