This application generally relates to apparatus and methods for coupling a blood pump to the heart.
The human heart is comprised of four major chambers with two ventricles and two atria. Generally, the right-side heart receives oxygen-poor blood from the body into the right atrium and pumps it via the right ventricle to the lungs. The left-side heart receives oxygen-rich blood from the lungs into the left atrium and pumps it via the left ventricle to the aorta for distribution throughout the body. Due to any of a number of illnesses, including coronary artery disease, high blood pressure (hypertension), valvular regurgitation and calcification, damage to the heart muscle as a result of infarction or ischemia, myocarditis, congenital heart defects, abnormal heart rhythms or various infectious diseases, the left ventricle may be rendered less effective and thus unable to adequately pump oxygenated blood throughout the body.
The Centers for Disease Control and Prevention (CDC) estimates that about 5.1 million people in the United States suffer from some form of heart failure. Heart failure is generally categorized into four different stages with the most severe being end stage heart failure. End stage heart failure may be diagnosed where a patient has heart failure symptoms at rest in spite of medical treatment. Patients at this stage may have systolic heart failure, characterized by decreased ejection fraction. In patients with systolic heart failure, the walls of the ventricle are weak and do not squeeze as forcefully as a healthy patient. Consequently, during systole a reduced volume of oxygenated blood is ejected into circulation, a situation that continues in a downward spiral until death. Patients may alternatively have diastolic heart failure wherein the heart muscle becomes stiff or thickened making it difficult for the affected chamber to fill with blood. A patient diagnosed with end stage heart failure has a one-year mortality rate of approximately 50%.
For patients that have reached end stage heart failure, treatment options are limited. In addition to continued use of drug therapy commonly prescribed during earlier stages of heart failure, cardiac transplantation and implantation of a mechanical assist device are typically recommended. While a cardiac transplant may significantly prolong the patient's life beyond the one year mortality rate, patients frequently expire while on a waitlist for months and sometimes years awaiting a suitable donor heart. Presently, the only alternative to a cardiac transplant is a mechanical implant. While in recent years mechanical implants have improved in design, typically such implants will prolong a patient's life by a few years at most, and include a number of co-morbidities.
One type of mechanical implant often used for patients with end stage heart failure is a left ventricular assist device (LVAD). The LVAD is a surgically implanted pump that draws oxygenated blood from the left ventricle and pumps it directly to the aorta, thereby off-loading (reducing) the pumping work of the left ventricle. LVADs typically are used either as “bridge-to-transplant therapy” or “destination therapy.” When used for bridge-to-transplant therapy, the LVAD is used to prolong the life of a patient who is waiting for a heart transplant. When a patient is not suitable for a heart transplant, the LVAD may be used as a destination therapy to prolong the life, or improve the quality of life, of the patient, but generally such prolongation is for only a couple years.
Notwithstanding the type of LVAD device employed, an LVAD generally includes an inflow cannula, a pump, and an outflow cannula, and is coupled to an extracorporeal battery and control unit. The inflow cannula typically directly connects to the left ventricle, e.g., at the apex, and delivers blood from the left ventricle to the pump. The outflow cannula typically extends outside of the heart and includes an extra-cardiac return line that is routed through the upper chest and connects to the aorta distal to the aortic valve. As such the outflow cannula delivers blood from the pump to the aorta via the return line, which typically consists of a tubular structure, such as a Dacron graft, that is coupled to the aorta via an anastomosis. A sternotomy or thoracotomy is required to implant the pump within the patient. In addition, a separate aortic anastomosis procedure is also required to connect the pump to the aorta.
What is a needed is a more efficient apparatus and method for removeably coupling the inflow cannula of the blood pump to the heart, e.g., at the apex of the heart, such that the inflow cannula is in fluidic communication with the left ventricle of the heart.
The present invention overcomes the drawbacks of previously-known devices by providing an apparatus for coupling a blood pump to a patient's heart. The apparatus includes a sewing ring designed to be sutured to the patient's heart, wherein the sewing ring has an opening sized and shaped to receive an inflow cannula of the blood pump. The apparatus further includes a locking element coupled to a housing of the blood pump and transitionable between a closed state and an open state. The locking element is structured to receive the sewing ring in the open state and engage the sewing ring in the closed state to prevent translational and rotational movement of the locking element relative to the sewing ring. In addition, the apparatus includes a biased structure designed to bias the locking element in the closed state.
For example, in accordance with one aspect of the present invention, the locking element may include a plurality of horizontal crenellations disposed along a circumferential opening of the locking element, the plurality of horizontal crenellations of the locking device separated by a plurality of gaps, the plurality of gaps sized and shaped to receive a plurality of horizontal crenellations disposed adjacent the opening of the sewing ring when the locking element is in the open state. Accordingly, in the closed state, the plurality of horizontal crenellations of the locking element are aligned with the horizontal crenellations of the sewing ring to prevent translational movement of the locking element relative to the sewing ring. In addition, the housing of the blood pump may include a plurality of vertical crenellations, the plurality of vertical crenellations of the housing of the blood pump sized and shaped to receive corresponding indentations of the sewing ring to prevent rotational movement of the locking element relative to the sewing ring.
In this embodiment, the biased structure may include a first end and a second end, such that the biased structure is disposed circumferentially about a longitudinal axis of the blood pump between the first and second ends. The first end of the biased structure may be coupled to the housing of the blood pump, and the second end of the biased structure may be coupled to the locking element via a locking pin. The locking pin may be moveable within a groove on the housing of the blood pump to permit movement of the second end of the biased structure. Further, the locking element is designed to rotate about a longitudinal axis of the housing of the blood pump to transition from the closed state to the open state. Accordingly, rotation of the locking element causes the second end of the biased structure to move from a first position in the closed state to a second position toward the first end in the open state, thereby compressing the biased structure in the open state.
Moreover, the locking element may include a plurality of brackets designed to engage with the housing of the blood pump. The plurality of brackets each have a groove sized and sized to accept one or more guide rails disposed on a surface of the housing of the blood pump such that the plurality of brackets moves along the one or more guide rails as the locking element transitions between the closed state and the open state. In addition, the housing of the blood pump may include a stop designed to limit rotation of the locking element relative to the housing of the blood pump. Accordingly, a notch of the locking element may engage the stop in the open state.
In accordance with another aspect of the present invention, the locking element includes one or more hook portions designed to engage with the sewing ring in the closed state. For example, the locking element may include two hook portions, the two hook portions positioned opposite one another along the housing of the blood pump. The one or more hook portions may include a sloped surface such that contact between the sloped surface of the one or more hook portions and an inner surface of the sewing ring causes the one or more hook portions to move radially inward toward the inflow cannula of the blood pump. Accordingly, the sewing ring may include one or more slots sized and shaped to receive the one or more hook portions of the locking element in the closed state.
The locking element may move from a first position in the closed state to a second position radially inward toward the inflow cannula of the blood pump in the open state. In this embodiment, the biased structure is disposed circumferentially about a longitudinal axis of the blood pump, such that the biased structure is compressed when the locking element is in the second position. In addition, the biased structure includes first and second ends sized and shaped to slidably move radially along first and second grooves of the housing of the pump body, wherein the first and second tabs are positioned opposite one another and 45 degrees from the locking element. Moreover, the apparatus may include a hood having an opening sized and shaped to receive the locking element therethrough.
In accordance with yet another aspect of the present invention, a method for coupling a blood pump to a patient's heart is provided. The method includes suturing the sewing ring to the patient's heart, transitioning the locking element coupled to the housing of the blood pump from the closed state to the open state, inserting the inflow cannula of the blood pump through the opening of the sewing ring and engaging the sewing ring with the locking element in the open state, and transitioning the locking element from the open state to the closed state to prevent translational and rotational movement of the locking element relative to the sewing ring.
For example, in the embodiment where the locking element includes a plurality of horizontal crenellations disposed along the circumferential opening of the locking element, engaging the sewing ring with the locking element in the open state includes aligning the plurality of gaps of the locking element with the plurality of horizontal crenellations of the sewing ring. Accordingly, transitioning the locking element from the open state to the closed state may include aligning the plurality of horizontal crenellations of the locking device the plurality of horizontal crenellations of the sewing ring to prevent translational movement of the locking element relative to the sewing ring. In addition, in the embodiment where the locking element includes one or more hook portions, transitioning the locking element from the open state to the closed state comprises moving the locking element from the first position in the closed state to the second position radially inward toward the inflow cannula of the blood pump in the open state.
Embodiments of the present invention are directed to apparatus and methods for removeably coupling the inflow cannula of the blood pump to the heart.
Referring now to
Blood pump 12 may be any heart pump designed to be affixed to a patient's heart, e.g., an LVAD designed to shunt blood from the left ventricle to the aorta of the heart such as the heart pumps disclosed in U.S. Pat. No. 9,968,720 to Botterbusch, U.S. Pat. No. 10,166,319 to Botterbusch, and U.S. Pat. No. 10,188,779 to Polverelli, assigned to the assignee of the instant application, the entire contents of each of which are incorporated herein by reference. For example, blood pump 12 includes inflow cannula 14 for receiving blood from a source of blood, e.g., the left ventricle of the heart. Inflow cannula 14 has a cylindrical shape and is positioned at the upper portion of blood pump 12.
Sewing ring 18 includes a fabric portion (not shown) that may be sutured to the heart using methods already known in the art of cardiology, and a metal portion that is designed to be removeably coupled to locking element 20. Locking element 20 includes opening 11 sized and shaped to receive inflow cannula 14 of blood pump 12. In addition, as shown in
As illustrated in
Referring now to
As illustrated in
The housing of blood pump 12 further may include a pattern of vertical crenellations 44 disposed circumferentially about the upper surface of the housing of blood pump 12 adjacent to inflow cannula 14. Vertical crenellations 44 are sized and shaped to be received within vertical indentations 40 of sewing ring 18 such that when sewing ring 18 is received within locking element 20, rotational movement of sewing 18 relative to locking element is prevented. In addition, the housing of blood pump 12 may include ring 46 made of, e.g., rubber, disposed circumferentially about the external surface of inflow cannula 14. Accordingly, inflow cannula 14 may include a groove disposed circumferentially about the external surface of inflow cannula 14, the groove sized and shaped to receive ring 46 to form an impermeable seal against vertical portion 34 of sewing ring 18.
As illustrated in
Referring now to
Blood pump 62 may be any heart pump designed to be affixed to a patient's heart, e.g., an LVAD designed to shunt blood from the left ventricle to the aorta of the heart such as the heart pumps disclosed in U.S. Pat. No. 9,968,720 to Botterbusch, U.S. Pat. No. 10,166,319 to Botterbusch, and U.S. Pat. No. 10,188,779 to Polverelli, assigned to the assignee of the instant application, the entire contents of each of which are incorporated herein by reference. For example, blood pump 62 includes inflow cannula 64 for receiving blood from a source of blood, e.g., the left ventricle of the heart. Inflow cannula 64 has a cylindrical shape and is positioned at the upper portion of blood pump 62.
Sewing ring 66 includes a fabric portion (not shown) that may be sutured to the heart using methods already known in the art of cardiology, and a metal portion that is designed to be removeably coupled to locking element 70. In addition, locking mechanism 60 may include hood 68 positioned on the upper surface of the housing of blood pump 62, and over locking mechanism 70.
Referring now to
As illustrated in
In addition, hood 68 includes opening 84 for receiving hook portion 86 of locking element 70. As illustrated in
As illustrated in
While various illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made herein without departing from the invention. It will further be appreciated that the devices described herein may be implanted in other positions in the heart. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application No. 62/775,888, filed Dec. 5, 2018, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/060144 | 11/26/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62775888 | Dec 2018 | US |