The invention relates generally to apparatus and methods for establishing static and traversing thermal gradients along microfluidic devices.
The electronics industry routinely uses thick film pastes to produce conductors, resistors, and dielectrics for a multitude of applications. The pastes can be screen printed directly to non-conductive materials, or, for conductive materials, printed over a previously applied dielectric layer. Thick film pastes can also be embedded in a co-fireable material, such as ceramics.
All examples and features mentioned below can be combined in any technically possible way.
In one aspect, the invention features a microfluidic device for use in separation systems. The microfluidic device comprises a substrate having a fluidic channel and one or more heaters made of a thick film material integrated with the substrate and in thermal communication with the fluidic channel of the substrate. The one or more heaters produce a thermal gradient within the fluidic channel in response to a current flowing through the one or more heaters.
Embodiments of the microfluidic device may include one of the following features, or any combination thereof.
The microfluidic device may further include a plurality of electrically conductive taps in electrical communication with the one or more heaters. The plurality of electrically conductive taps provides an electrically conductive path to the one or more heaters by which an electrical supply can produce the current flowing through the one or more heaters. One or more heaters are made of a thick film material formed within or on the substrate. At least one heater of the one or more heaters may be trapezoidal in shape with a narrow end and a wide end, wherein the trapezoidal shape of the at least one heater produces a warm-to-cool thermal gradient from the narrow end to the wide end.
Further, at least one heater of the one or more heaters may be comprised of a plurality of spatially separated heater segments connected in series by a plurality of electrically conductive taps. Each heater segment is electrically connected to one or more of the electrically conductive taps. Additionally, each of the heater segments may be independently and individually controllable through the electrically conductive taps in electrical communication with that heater segment.
Also, the substrate of the microfluidic device may further include one or more channels formed therein that each operate as a thermal break for the thermal gradient produced by the one or more heaters. The fluidic channel may traverse the thermal gradient formed by the one or more heaters. The one or more thermal breaks may produce multiple thermal zones on the microfluidic device, and the fluidic channel of the substrate may traverse a portion of each of the multiple thermal zones. In addition, the fluidic channel of the substrate may have a spiral shape in one of the multiple thermal zones that transitions to a serpentine shape in another of the multiple thermal zones. A pitch of the fluidic channel of the substrate may vary within one or more of the multiple thermal zones.
The microfluidic device may further comprise a cooling element in thermally conductive contact with a first region of the substrate to cool that first region and to shape the thermal gradient within a second region of the substrate bounded by the cooling element.
The microfluidic device may further comprise a temperature sensor made of thick film material integrated with the substrate of the microfluidic device and in thermal communication with the one or more heaters, or one or more of a resistor, conductor, inductor, or dielectric made of thick film material integrated with the substrate.
In addition, the one or more heaters may include first and second spatially separated heaters, the first heater being disposed above the second heater. Each heater is independently operable to contribute to a shape of the thermal gradient within the fluidic channel. Also, the thick film material of one or more heaters may be ferromagnetic.
In another aspect, the invention features a separation system comprising a microfluidic device having a substrate with a fluidic channel. The microfluidic device further includes one or more heaters made of a thick film material integrated with the substrate and in thermal communication with the fluidic channel of the substrate. The separation system further comprises an electrical supply operatively coupled to the one or more heaters to cause a current to flow through the one or more heaters such that the one or more heaters produce a thermal gradient within the fluidic channel.
Embodiments of the separation system may include one of the following features, or any combination thereof.
The one or more heaters made of a thick film material may be formed within or on the substrate. At least one heater of the one or more heaters may be trapezoidal in shape with a narrow end and a wide end, wherein the trapezoidal shape of the at least one heater produces a warm-to-cool thermal gradient from the narrow end to the wide end. At least one heater of the one or more heaters may be comprised of a plurality of spatially separated heater segments connected in series by a plurality of electrically conductive taps that provide an electrically conductive path to the one or more heaters by which the electrical supply can cause the current to flow through the one or more heaters. Each heater segment is electrically connected to one or more of the electrically conductive taps. Each of the heater segments may be independently and individually controllable through the electrically conductive taps in electrical communication with that heater segment.
In addition, the substrate of the microfluidic device of the separation system may further include one or more channels formed therein that each operate as a thermal break for the thermal gradient produced by the one or more heaters. The fluidic channel may traverse the thermal gradient formed by the one or more heaters. The one or more thermal breaks may produce multiple thermal zones on the microfluidic device, and the fluidic channel of the substrate may traverse a portion of each of the multiple thermal zones. In addition, the fluidic channel of the substrate may have a spiral shape in one of the multiple thermal zones that transitions to a serpentine shape in another of the multiple thermal zones. A pitch of the fluidic channel of the substrate may vary within one or more of the multiple thermal zones.
The separation system may further comprise a cooling element in thermally conductive contact with a first region of the substrate of the microfluidic device to cool that first region and to shape the thermal gradient within a second region of the substrate bounded by the cooling element. The separation system may further comprise a temperature sensor made of thick film material integrated with the substrate of the microfluidic device and in thermal communication with the one or more heaters.
The microfluidic device of the separation system may further comprise one or more of a resistor, conductor, inductor, or dielectric made of thick film material integrated with the substrate. Also, the one or more heaters may include first and second spatially separated heaters, the first heater being disposed above the second heater. Each heater is independently operable to contribute to a shape of the thermal gradient within the fluidic channel. The thick film material may ferromagnetic, and the electrical supply may uses induction to cause the current to flow through the one or more heaters.
In another aspect, the invention features a method of fabricating a microfluidic device with an integrated thermal system. The method comprises producing a multilayer substrate. One or more of the layers of the substrate having a fluidic channel formed therein. One or more heaters made of a thick film material are screen-printed on one or more of the layers of the substrate. The one or more heaters are disposed in thermal communication with the fluidic channel to produce a thermal gradient within the fluidic channel when the one or more heaters are operated. The multilayer substrate is laminated, and the laminated multilayer substrate is sintered to produce a hardened monolithic microfluidic device.
Embodiments of the method may include one of the following features, or any combination thereof.
The one or more heaters may be disposed on an exterior surface of the substrate, wherein the screen-printing of the one or more heaters occurs after the sintering. Also, the one or more heaters may be disposed on an exterior surface of the substrate, wherein the screen-printing occurs before the sintering. In addition, the one or more heaters may be disposed within the substrate on an interior surface of the substrate, wherein the screen-printing of the one or more heaters occurs before the sintering.
The method may further comprise forming a plurality of electrically conductive taps that are in electrical communication with the one or more heaters.
In addition, the screen-printing of one or more heaters may include screen-printing first and second spatially separated heaters, each heater being independently operable to contribute to a shape of the thermal gradient within the fluidic channel. Further, a temperature sensor made of thick film material may be screen-printed on one of the layers of the substrate and in thermal communication with the one or more heaters. Also, the thick film material of the one or more heaters may be ferromagnetic.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The techniques described herein relate to the use of thick films to produce electronic elements, such as conductors, resistive heaters, heat spreaders, and sensors, on a microfluidic device by which to produce, shape, and control a thermal gradient on the microfluidic device. Direct application of shaped thick film heaters on the surface or embedded in the substrate of the microfluidic device adds design flexibility and control of the thermal gradient profile. An advantage achieved by the thick films is the ability to trim or shape a heater to linearize the thermal region. Shaping the resistive element (i.e., heater) can be an effective technique for thermal control. A trapezoid heater, for example, has a higher current density, and thus is warmer, at its narrow end than at its wide end.
In addition to establishing a thermal gradient, thick films can also operate to trim temperature spikes and droops (see, for example, temperature plots in
In addition, thick films are capable of high temperatures and heating rates needed for gas chromatography (GC), liquid chromatography (LC), supercritical fluid chromatography (SFC), capillary electrophoresis (CE), and other forms of separations.
Low-Temperature Co-fired Ceramic (LTCC) or High-Temperature Co-fired ceramic (HTCC) tapes can be used manufacture the microfluidic substrate on which the one or more thick film heaters are applied. Examples of LTCC tapes include the 951 Green Tape™ ceramic tape produced by DuPont Microcircuit Materials of Research Triangle Park, N.C., and LTCC ceramic tapes produced by ESL Electro Science of King of Prussia, Pa. LTCC technology enables low-temperature (about 850° C.) co-firing of the thick film heater and substrate layers of the multilayer microfluidic device. These microfluidic devices can be made, for example, of ceramic, silicon, silica, polymers, polyimide, stainless steel, or titanium. Examples of multilayer microfluidic devices are described in U.S. Pat. application Ser. No. 13/321,696, titled “Chromatography Apparatus and Methods Using Multiple Microfluidic Substrates”, the entirety of which is incorporated by reference herein. Although not shown, embodiments of thermal system can include a cooling element, such as a heat sink, fans, fluidic cooling, or a Peltier device, to reduce quickly the temperature of the microfluidic device whenever desired.
The thermal gradient can be statically maintained to attain a particular temperature profile, or dynamically controlled to vary or move the thermal gradient as desired by individually controlling the voltage or current supplied through the electrically conductive taps 14. For example, consider that initially all heater segments 12 are turned off. Then consider that the heater segments 12 are turned on, one at a time in sequence, with the previously turned on heater segment being turned off; for instance, the first heater 12-1 segment turns on, while the others are off; then the first heater segment 12-1 turns off while the second heater segment 12-2 turns on, and likewise so on, down the length of the heater 11 to the last heater segment 12-n. Hence, by dynamically turning individual heater segments 12 on and off at precise moments, the warm region of the thermal gradient marches along the full length of the segmented heater 11. In addition, the march of the warm region along the segmented heater 11 can be synchronized or coordinated with the flow of fluid through a fluidic channel within the microfluidic device 10. This is but one example how individual control of heater segments 12 can manipulate the shape and placement of a thermal gradient.
Because the current density is greater at the narrow end of the trapezoid than at the wide end, the current flow through the heater 17 produces a thermal gradient from cooler (dark) temperatures at the wide end to warmer (light) temperatures at the narrow end. Other thick film heater shapes can be formed to produce a desired thermal gradient.
A thermal break 22 is formed in the substrate of the microfluidic device 10. In this example, the thermal break 22 is disposed within the eleventh bend of the serpentine chromatography column 21. The placement of the thermal break 22 operates to partition the thermal system 6 into two thermal zones 24-1 and 24-2. It is to be understood that the particular location of the thermal break 22 is only one example, used to illustrate a technique for producing multiple thermal zones. In addition, one or more thermal breaks of the same, similar, or different shapes and sizes may be deployed in conjunction with one or more thick film heaters to produce a thermal system with more than two thermal zones. Not shown are electrically conductive taps; in one embodiment, there is one tap at each end of the heater 15 for causing a current to flow through the heater, producing heat by resistive heating; in another embodiment the taps partition the heater 15 into multiple heater segments.
A secondary heater 23, shown in phantom, can be employed in the second thermal zone 24-2, disposed adjacent and parallel to the thermal break 22. Any of the aforementioned embodiments of rectangular thick film heaters (i.e., segmented, continuous) can be used to implement this secondary heater 23. Other placement locations for the rectangular thick-film heater 23 can be at the other end of the microfluidic device 10 opposite the thermal break 22, lengthwise (perpendicular to the thermal break 22) along the top or bottom of the microfluidic device 10, lengthwise (perpendicular or angled with respect to the thermal break 22) in a layer above or below the serpentine portion of the column 21, or any combination of such aforementioned locations, depending upon the particular desired thermal gradient, if any, within the second thermal zone 24-2.
A thermal break 22 is formed in the substrate of the microfluidic device 10 where the spiral shape transitions to the serpentine shape. The thermal break 22 operates to partition the thermal system 6 into two thermal zones 28-1 and 28-2. It is to be understood that one or more thermal breaks of the same, similar, or different shapes and sizes may be deployed in conjunction with one or more thick film heaters to produce a thermal system with more than two thermal zones. The spacing, or pitch, of the column 26 may or may not be constant in either or both of the zones 28-1, 28-2. For example, the pitch (or spacing between neighboring curves of the spiral) of the column 26 may vary as the column 26 traverses the spiral zone 28-1. Varying the pitch of the column 26 in the spiral zone 28-1 and or the spacing in the serpentine zone 28-2 can serve to linearize the spacial gradient in the column 26 if the thermal gradient is non-linear. Not shown are electrically conductive taps; in one embodiment, there is one tap at each end of the heater 25 for causing a current to flow through the heater, producing heat by resistive heating; in another embodiment the taps partition the ring-shaped heater 25 into multiple heater segments.
The multi-zone thermal system 7 of
Further, a secondary heater can be employed in the second thermal zone 28-2 to enhance thermal uniformity or produce a thermal gradient, if desired, within the second thermal zone. For example, a rectangular thick-film heater may be used for when the column 26 is serpentine within the second thermal zone 28-2, or a donut-shaped thick-film heater, similar to the heater 25, may be used for when the column 26 has a spiral shape within the second thermal zone 28-2.
In the instance of a serpentine-shaped column in the second thermal zone 28-2, a rectangular thick-film heater 29, shown in phantom, may be disposed adjacent and parallel to the thermal break 22 within the second thermal zone 28-2. Any of the aforementioned embodiments of rectangular thick film heaters (i.e., segmented, continuous) can be used to implement this secondary heater 29. Other placement locations for the rectangular thick-film heater 29 can be at the other end of the serpentine column 26 opposite the thermal break 22, lengthwise (perpendicular to the thermal break 22) along the top or bottom of the microfluidic device 10, lengthwise (perpendicular or angled with respect to the thermal break 22) in a layer above or below the serpentine portion of the column 26, or any combination of such aforementioned locations, depending upon the particular desired thermal gradient within the second thermal zone 28-2.
Although shown connected in parallel for joint activation (i.e., either both are on or both are off), the heaters 30-1, 30-2 can alternatively be connected to be independently operable. Multiple independently operable heaters facilitate dynamic control of the thermal gradient within a fluidic channel. One heater 30-1 can serve as a primary heater, and another heater 30-2 as a supplemental heater. Consider, for example, that two stacked heaters 30-1, 30-2 are configured to produce thermal gradients in opposite directions; that is, the primary heater produces a warm-to-cool gradient in a reverse direction than the thermal gradient produced by the supplemental heater. Further consider that the primary heater is activated, while the supplemental heater is off. To neutralize quickly the thermal gradient produced by the primary heater, the primary heater can be turned off and the supplemental heater turned on. After neutralization, the thermal gradient can then be made to reverse.
The temperature profile 40 indicates that the thermal gradient 36-1 produced by the trapezoidal heater 30-1 ranges from about 60° C. at the wide end of the heater to a peak temperature of about 180° C. near its narrow end. The drop off in temperature at the narrow end of the heater 30-1 may be attributable to the cooling effect of the conductive tap 34.
The temperature profile 42 indicates that the thermal gradient 36-2 produced by the rectangular heater 30-2 ranges from about 60° C. at the left end of the heater to a peak temperature of about 145° C. near its right end. For a majority of the length of the heater 30-2, the temperature produced is relatively constant; the temperatures are lowest where the heater 30-2 makes contact with the electrically conductive taps 34. It is to be understood that such terms like above, below, upper, lower, left, right, top, bottom, front, and rear are relative terms used for purposes of simplifying the description of features as shown in the figures, and are not used to impose any limitation on the structure or use of a thermal system or heater configuration.
Heat transfers laterally from the sides and from the ends of the heater 15; a thermal gradient 70 forms with the warmer (light colored) temperatures being adjacent the heater 15. A cooling element 72 (e.g., a passive cooling element such as a heat sink or an active cooling element such as a Peltier device) is in thermally conductive contact with a surface of the microfluidic device 10 surrounding the heater 15. The cooling element 72 can maintain the surrounding region at ambient temperature. A region of the surface of the microfluidic device 10 remains uncovered by the cooling element 72. The shape of the uncovered region shapes the thermal gradient 74. In this embodiment, the cooling element 72 surrounds a tapered (teardrop) shaped uncovered region. The surrounded region is cooler where it is near or abuts the cooling element 72, and warmer with greater lateral distances from the cooling element 72. The resulting teardrop-shaped thermal gradient 74 (warm to cool being represented by lighter colors transitioning to darker colors) is warm near the sides and top of the heater 15 and increasingly cooler as it progresses nearer to the cooling element 72.
At step 104, one or more heaters of thick film material are screen printed on one or more layers of the microfluidic device. The one or more heaters can be screen printed on one or more exterior layers of the microfluidic device, one or more interior layers, or any combination thereof. Other electronic elements, for example, dielectrics, resistors, conductors, etc., can be screen-printed in addition to the heaters. In this embodiment of the process 100, the screen-printing occurs before the microfluidic device is sintered (step 110).
The layers are stacked (step 106) and the stack of layers is then laminated (step 108). The laminated stack of layers is sintered (step 110) in a furnace to harden the layers into a monolithic substrate of the microfluidic device. Accordingly, in this embodiment of the process 100, the one or more thick film heaters, and any other screen-printed electronic elements, are co-fired with the layers of the microfluidic device.
While this invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications, and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, it is intended to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of this invention.
This application claims the benefit of and priority to co-pending U.S. provisional application No. 61/862,154, filed Aug. 5, 2013, titled “Methods for Creating a Static and Traversing Thermal Gradient on a Microfluidic Device,” the entirety of which application is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/49616 | 8/4/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61862154 | Aug 2013 | US |