Apparatus and methods for delivery of braided prostheses

Information

  • Patent Grant
  • 8574282
  • Patent Number
    8,574,282
  • Date Filed
    Friday, April 1, 2011
    13 years ago
  • Date Issued
    Tuesday, November 5, 2013
    10 years ago
Abstract
Blood vessels and other body lumens are expanded using an evertible braided prosthesis. The braided prosthesis is delivered to the blood vessel in a radially collapsed configuration. A leading edge of the braided prosthesis is then everted so that it expands as it is advanced through the blood vessel. Optionally, the prosthesis can be provided with a biologically active substance in order to inhibit hyperplasia or have other desired biological effects.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention.


The present invention relates generally to medical devices and methods. More particularly, the present invention relates to apparatus and methods for delivering braided and other everting prostheses within a body lumen, such as a blood vessel.


Coronary artery disease is the leading cause of death and morbidity in the United States and Western society. In particular, atherosclerosis in the coronary arteries can cause myocardial infarction, commonly referred to as a heart attack, which can be immediately fatal or even if survived, cause damage to the heart which can incapacitate the patient.


While coronary artery bypass surgery can be an effective treatment for stenosed arteries resulting from atherosclerosis or other causes, it is a highly invasive, costly procedure, which typically requires substantial hospital and recovery time. Percutaneous transluminal coronary angioplasty, commonly referred to as balloon angioplasty, is less invasive, less traumatic, and significantly less expensive than bypass surgery. Heretofore, however, balloon angioplasty has not been considered as effective a treatment as bypass surgery. The effectiveness of balloon angioplasty, however, has improved significantly with the introduction of stenting, which involves the placement of a scaffold structure within the artery which has been treated by balloon angioplasty. The stent inhibits abrupt reclosure of the artery and has some benefit in inhibiting subsequent restenosis resulting from hyperplasia.


Recently, experimental trials have demonstrated that coating stents with anti-proliferative drugs, such as paclitaxel, can significantly reduce the occurrence of hyperplasia in angioplasty treated coronary arteries which have been stented with the coated stents.


While the combination of balloon angioplasty with drug-coated stents holds great promise, significant challenges still remain. Of particular interest to the present invention, the treatment of extended or disseminated disease within an artery remains problematic. Most stents have a fixed length, typically in the range from 10 mm to 30 mm, and the placement of multiple stents to treat disease over a longer length requires the successive use of multiple balloon stent delivery catheters. Moreover, it can be difficult to stent an angioplasty-treated region of a blood vessel with the optimum stent length.


For these reasons, it would be desirable to provide improved stents, stent delivery systems, stenting methods, and the like, for the treatment of patients having coronary artery disease, as well as other occlusive diseases of the vasculature and other body lumens. In particular, it would be desirable to provide stents, delivery systems, and methods for the treatment of disseminated and variable length stenotic regions within the vasculature. For example, it would be desirable to provide a practical method which permits a physician to deliver extended lengths of braided prostheses to blood vessels and other body lumens. At least some of these objectives will be met by the inventions described hereinafter.


2. Description of the Background Art.


U.S. Pat. No. 5,755,772 describes a tubular prosthesis and method for its implantation by positioning the prosthesis at a target site, and everting an end section to lock the stent after expansion has been completed; and U.S. Pat. No. 5,769,882 describes conformable tubular prostheses and their placement in blood vessels.


BRIEF SUMMARY OF THE INVENTION

The present invention provides methods and apparatus for the stenting of body lumens, typically blood vessels, and more typically coronary arteries. The methods and systems will also find significant use in the peripheral vasculature, the cerebral vasculature, and in other ducts, such as the biliary duct, the fallopian tubes, and the like. The terms “stent” and “stenting” are defined to include any of the wide variety of expandable scaffolds which are designed to be intraluminally introduced to a treatment site and expanded in situ to apply a radially outward force against the inner wall of the body lumen at that site. Stents commonly comprise an open lattice structure, typically formed from a malleable or elastic metal.


The stents of the present invention will comprise evertible structures which radially expand upon eversion to assume a non-collapsible diameter which remains in place within the body lumen to support the luminal wall. Typically, the evertible stent structures will comprise braided structures, but other structures, such as counterwound helices, will also be capable of eversion. In some instances, laser cut helical and other patterned metal tubes, particularly those formed from nickel titanium and other shape memory alloys, may be used. Thin wall tubes formed from polymeric materials, such as polyethylene terephthalate (PET), expanded polytetrafluoroethyolene (e PTFE), may also find use, even without patterning.


The braided and other evertible stent structures of the present invention may be formed from metals, including both malleable metals and elastic metals, such as shape memory metals, as well as from polymeric materials. Usually, the braided structures will comprise individual ribbons of the desired material which are interwoven to form a braid so that the braid may be axially elongated to assume a narrow diameter configuration and thereafter be everted to assume a larger diameter configuration. By “evert” it is meant that a leading edge of the prosthesis is turned outwardly and backwardly relative to the narrow diameter portion thereof. In the preferred methods and apparatus of the present invention, as described in more detail below, such eversion will be achieved by initially holding the prosthesis in its narrow diameter configuration with the leading portion everted and fixed to an outer portion of a catheter. This leading portion is referred to as the “fixed end.” The remainder of the prosthesis which remains in its narrow diameter configuration is held within a passage or lumen of a delivery catheter, and means are provided for pushing the “advanceable end” of the prosthesis which is in the lumen forwardly relative to the fixed end. In this way, the leading edge of the prosthesis moves forward continuously relative to the fixed end as it everts radially outwardly.


The use of such braided and other evertible prostheses provides a number of advantages. For example, the braided structure is highly flexible, particularly in its narrow diameter configuration, allowing the introduction of relatively long stent segments without significantly limiting the ability of the delivery catheter to pass through torturous regions of the vasculature or other body lumens. Additionally, by everting the prosthesis so that its outer portion remains stationary relative to the fixed end (and thus also relative to the delivery catheter), the stent will be able to pass through relatively small body lumens since it advances much like a tractor tread in moving forwardly through the lumen. In the case of vascular treatments, the stents of the present invention will usually be used following other primary interventions, such as angioplasty, atherectomy, aneurysm repair, or the like. It will be possible, however, in certain instances, to deliver the stent without prior intervention because of the ability to advance through tight lesions and to dilate the lesion as it passes therethrough.


Usually, the methods and apparatus of the present invention will be used to deliver a single stent having a predetermined length. In other instances, however, it will be possible to provide a means for severing the stent on the catheter itself. In such cases, the methods and apparatus of the present invention will be capable of delivering variable lengths of stent depending on the nature and extent of the disease being treated. That is, the apparatus will be used to deliver the stent under fluoroscopic or other observation, and after a desired length of stent has been deployed, the deployed length can be severed from the length which remains carried within the delivery catheter.


In one aspect of the present invention, a method for delivering a prosthesis to a body lumen comprises positioning a metallic tubular prosthesis at a target site within the body lumen. The prosthesis is then everted so that an inside surface is exposed radially outwardly and advanced over a length of the wall of the body lumen. Usually, positioning comprises introducing a delivery catheter having a passage which carries the tubular prosthesis at least partly in a radially collapsed configuration. Everting usually comprises pushing the tubular prosthesis from the catheter so that a leading portion of the prosthesis everts and radially expands as it exits the catheter or passage. This is usually accomplished by forwardly advancing a portion of the catheter to push the prosthesis from the catheter. In a preferred aspect of the present invention, an advanceable segment of the prosthesis is carried in the passage in the radially collapsed configuration. A fixed end of the prosthesis is held stationary relative to the catheter in a partially everted configuration. Everting then comprises pushing a proximal end (i.e., an end or portion of the prosthesis which is radially collapsed within the delivery catheter) to cause a middle portion of the prosthesis to progressively evert and advance distally relative to the fixed end. In the case of braided prostheses, the braided structure will shorten as the radius expands so that the “advanceable” proximal end prosthesis is pushed forward at a rate which is faster than the rate at which the everted prosthesis covers the wall of the body lumen. In preferred embodiments, the prosthesis releases an active substance which inhibits hyperplasia after the prosthesis has been placed in the body lumen.


In another aspect of the present invention, a method for delivering a stent to a blood vessel comprises positioning the stent at a target site within the blood vessel and everting the stent so that an inside surface is exposed radially outwardly and advanced over a length of a wall of the blood vessel. The stent, in turn, inhibits restenosis in the blood vessel.


In another aspect of the present invention, a method for delivering a prosthesis to a body lumen involves positioning a tubular prosthesis at a target site within the body lumen, the tubular prosthesis having a total length. The tubular prosthesis is then everted so that an inside surface is exposed radially outwardly and a desired length of the tubular prosthesis is advanced over a length of a wall of the body lumen, the desired length being less than the total length. The method then includes severing a portion of the tubular prosthesis having the desired length to allow the portion to remain in the body lumen.


In another aspect of the present invention, a method for delivering a prosthesis to a body lumen involves positioning a delivery catheter carrying a tubular prosthesis at a target site within the body lumen, everting the tubular prosthesis so that an inside surface is exposed radially outwardly and advanced over a desired length of a wall of the body lumen, and deploying a portion of the tubular prosthesis having the desired length. A second length of the tubular prosthesis remains carried within the delivery catheter.


In another aspect of the present invention, an apparatus for delivering a prosthesis to a body lumen includes a catheter having a passage, a metallic tubular prosthesis carried in the passage at least partially in a radially collapsed configuration, and a slidable member in the catheter for advancing the prosthesis from the passage so that the prosthesis everts and radially expands as it is advanced. In some embodiments, the metallic tubular prosthesis is a shape memory metal. In some embodiments, the metallic tubular prosthesis comprises a braided metal structure. Alternatively, the metallic tubular prosthesis may comprise an open lattice structure.


In yet another embodiment of the present invention, an apparatus for delivering a prosthesis to a blood vessel includes a catheter having a passage, a stent carried in the passage at least partially in a radially collapsed configuration, and a slidable member in the catheter for advancing the prosthesis from the passage so that said prosthesis everts and radially expands as it is advanced. The stent is configured to inhibit restenosis in the blood vessel.


In another aspect of the invention, an apparatus for delivering a prosthesis to a body lumen includes a catheter having a passage, a tubular prosthesis carried in the passage at least partially in a radially collapsed configuration, a slidable member in the catheter for advancing the prosthesis from the passage so that said prosthesis everts and radially expands as it is advanced, and a severing member in the catheter for severing a portion of the prosthesis to allow the portion to remain in the body lumen while a second portion of the prosthesis remains carried in the catheter.


These and other aspects and embodiments of the present invention will be described in further detail below, with reference to the attached drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view illustrating a stent delivery catheter constructed in accordance with the principles of the present invention.



FIGS. 2A-2D illustrate use of the catheter in FIG. 1 for deploying a braided stent within a stenosed region in a blood vessel.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, the stent delivery catheter 10 comprises a catheter body 12 having a proximal end 14 and a distal end 16. The catheter body 12 is formed from a conventional catheter material, such as a natural or synthetic polymer, such as silicone rubber, polyethylene, polyvinylchloride, polyurethane, polyester, polytetrafluoroethylene, nylon, and the like. The body may be formed as a composite having one or more reinforcement layers incorporated within a polymeric shell in order to enhance strength, flexibility, and toughness. For intravascular use, the catheter body will typically have a length in the range from 40 cm to 150 cm, usually being between 40 cm and 120 cm for peripheral blood vessels and between 110 cm and 150 cm for coronary arteries. The outer diameter of the catheter body may vary depending on the intended use, typically being between 3 French and 15 French, usually from 5 French to 9 French (one French=0.33 mm).


Catheter 10 further comprises a handle 18 at its proximal end 14. The handle has a guidewire port 20 at its distal end as well as a handle grip 24 which is actuable to extend and release evertible prosthesis 30 from the distal end 16. The catheter body 12 comprises an outer tube 32, a middle tube 34 which is coaxially and slidably mounted within a lumen of the outer tube 32, and an inner tube 36 which is slidably and coaxially mounted within a lumen of the middle tube 34. Inner tube 36 has a central lumen for receiving a guidewire, as described in detail below.


Referring now to FIGS. 2A-2D, delivery of the prosthesis 30 within a stenosed region SR of a blood vessel BV is described. The distal end 16 of the catheter 10 is introduced over a guidewire GW to the stenosed region SR as shown in FIG. 2A.


At that point, the prosthesis 30 is advanced forwardly or distally into the stenosed region SR of the blood vessel BV, as shown in FIG. 2B. In particular, both the inner tube 36 and the middle tube 34 are advanced forwardly or distally relative to the outer tube 32. This causes the leading edge 40 of the prosthesis 30 to advance into the stenosed region SR, engaging and partially dilating the lumen wall within this region.


As the inner tube 36 and middle tube 34 are further advanced, as shown in FIG. 2C, the leading edge 40 of the prosthesis advances out through the other end of the stenosed region SR. During this entire deployment, fixed end 42 of the prosthesis has remained on the distal end of the outer tube 32 of the delivery catheter 10.


Once the prosthesis 30 is fully deployed, the outer tube 32 would be disengaged from the fixed end 42 of the prosthesis, e.g., by rotating or otherwise separating the catheter from the prosthesis, leaving the prosthesis 30 in place, as shown in FIG. 2D. As can be seen in FIG. 2D, the deployment of the prosthesis 30 has dilated the stenotic region. At this point, if the dilation is insufficient, or further anchoring of the prosthesis 30 is desired, a balloon or other expandable member may be expanded within the prosthesis 30 in a conventional manner. In one embodiment, for example, a balloon may be coupled with the outer tube 32 in such a way as to allow the balloon to be inflated to further anchor the prosthesis 30 in place.


It will be appreciated that the lengths, pitches, adjacent spacings, and the like, of the braided and other elements deployed according to the methods of the present invention can be controlled at the discretion of the treating physician. Thus, the methods and apparatus of the present invention provide useful flexibility for the treating physician to treat extended and disseminated disease in the vasculature and other body lumens.


Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practices within the scope of the appended claims.

Claims
  • 1. A method for delivering a prosthesis to a body lumen, said method comprising: positioning a delivery catheter at a target site, the tubular catheter comprising:an outer tube having a passage;a tubular prosthesis carried in the passage of the outer tube at least partially in a radially collapsed configuration; andan inner tube slidably disposed within the passage of the outer tube, the inner tube having a lumen for receiving a guidewire; andadvancing the inner tube distally relative to the outer tube to evert the tubular prosthesis so that an inside surface is exposed radially outwardly and advanced over a length of a wall of the body lumen.
  • 2. The method of claim 1, further comprising radially expanding the tubular prosthesis with an expandable member of the delivery catheter so that the tubular prosthesis applies a radially outward force against inner wall.
  • 3. The method of claim 1, further comprising severing the tubular prosthesis with a separation element so that a first portion of the tubular prosthesis is deployed at the target site while another portion of the tubular prosthesis remains carried in the passage.
  • 4. The method of claim 1, further comprising operating a handle at a proximal end of the delivery catheter to advance the inner tube to evert the tubular prosthesis.
  • 5. The method of claim 1, further comprising inflating a balloon so as to anchor the tubular prosthesis to the body lumen.
  • 6. The method of claim 1, wherein the delivery catheter further comprises a middle tube slidably disposed within the passage of the outer tube and slidably disposed over the inner tube, and wherein the method further comprises advancing the middle tube with the inner tube to evert the tubular prosthesis.
  • 7. The method of claim 1, further comprising releasing a therapeutic agent from the tubular prosthesis after deployment thereof.
  • 8. The method of claim 7, wherein the therapeutic agent inhibits restenosis.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 12/040,598, filed Feb. 29, 2008, which is a continuation of U.S. patent application Ser. No. 10/966,806, filed Oct. 14, 2004 (now U.S. Pat. No. 7,357,812 B2), which is a continuation of U.S. patent application Ser. No. 10/306,620, filed Nov. 27, 2002 (now U.S. Pat. No. 7,147,656), which claims priority to U.S. Provisional Patent Application Ser. No. 60/336,607, filed Dec. 3, 2001, the full disclosures of which are incorporated herein by reference.

US Referenced Citations (515)
Number Name Date Kind
4069825 Akiyama Jan 1978 A
4468224 Enzmann et al. Aug 1984 A
4512338 Balko Apr 1985 A
4564014 Fogarty et al. Jan 1986 A
4580568 Gianturco Apr 1986 A
4681110 Wiktor Jul 1987 A
4690684 McGreevy et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4748982 Horzewski et al. Jun 1988 A
4762129 Bonzel Aug 1988 A
4770176 McGreevy et al. Sep 1988 A
4775337 Van Wagener et al. Oct 1988 A
4776337 Palmaz Oct 1988 A
4886062 Wiktor Dec 1989 A
4891225 Langer et al. Jan 1990 A
4950227 Savin et al. Aug 1990 A
4988356 Crittenden et al. Jan 1991 A
4994066 Voss Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4994298 Yasuda Feb 1991 A
5013318 Spranza, III May 1991 A
5035706 Giantureo et al. Jul 1991 A
5040548 Yock Aug 1991 A
5061273 Yock Oct 1991 A
5064435 Porter Nov 1991 A
5092877 Pinchuk Mar 1992 A
5102417 Palmaz Apr 1992 A
5104404 Wolff Apr 1992 A
5122154 Rhodes Jun 1992 A
5135535 Kramer Aug 1992 A
5158548 Lau et al. Oct 1992 A
5192297 Hull Mar 1993 A
5195984 Schatz Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5217495 Kaplan et al. Jun 1993 A
5219355 Parodi et al. Jun 1993 A
5226913 Pinchuk Jul 1993 A
5246421 Saab Sep 1993 A
5273536 Savas Dec 1993 A
5282824 Gianturco Feb 1994 A
5300085 Yock Apr 1994 A
5312415 Palermo May 1994 A
5328469 Coletti Jul 1994 A
5334187 Fischell et al. Aug 1994 A
5391172 Williams et al. Feb 1995 A
5421955 Lau et al. Jun 1995 A
5443498 Fontaine Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5456713 Chuter Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5470315 Adams Nov 1995 A
5478349 Nicholas Dec 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5490837 Blaeser et al. Feb 1996 A
5496346 Horzewski et al. Mar 1996 A
5501227 Yock Mar 1996 A
5507768 Lau et al. Apr 1996 A
5507771 Gianturco Apr 1996 A
5514093 Ellis et al. May 1996 A
5514154 Lau et al. May 1996 A
5522882 Gaterud et al. Jun 1996 A
5527354 Fontaine et al. Jun 1996 A
5531735 Thompson Jul 1996 A
5533968 Muni et al. Jul 1996 A
5534007 St. Germain et al. Jul 1996 A
5545209 Roberts et al. Aug 1996 A
5549551 Peacock, III et al. Aug 1996 A
5549563 Kronner Aug 1996 A
5549635 Solar Aug 1996 A
5554181 Das Sep 1996 A
5562725 Schmitt et al. Oct 1996 A
5571086 Kaplan et al. Nov 1996 A
5591195 Taheri et al. Jan 1997 A
5593412 Martinez et al. Jan 1997 A
5607444 Lam Mar 1997 A
5607463 Schwartz et al. Mar 1997 A
5628755 Heller et al. May 1997 A
5628775 Jackson et al. May 1997 A
5634928 Fischell et al. Jun 1997 A
5639274 Fischell et al. Jun 1997 A
5662675 Polanskyj Stockert et al. Sep 1997 A
5662703 Yurek et al. Sep 1997 A
5670161 Healy et al. Sep 1997 A
5676654 Ellis et al. Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5690644 Yurek et al. Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5697948 Marin et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5702418 Ravenscroft Dec 1997 A
5702419 Berry et al. Dec 1997 A
5709701 Parodi Jan 1998 A
5716393 Lindenberg et al. Feb 1998 A
5722669 Shimizu et al. Mar 1998 A
5723003 Winston et al. Mar 1998 A
5735869 Fernandez-Aceytuno Apr 1998 A
5741323 Pathak et al. Apr 1998 A
5749848 Jang et al. May 1998 A
5749890 Shaknovich May 1998 A
5749921 Lenker et al. May 1998 A
5755772 Evans et al. May 1998 A
5755776 Al-Saadon May 1998 A
5755781 Jayaraman May 1998 A
5769882 Fogarty et al. Jun 1998 A
5772669 Vrba Jun 1998 A
5776141 Klein et al. Jul 1998 A
5792144 Fischell et al. Aug 1998 A
5797951 Mueller et al. Aug 1998 A
5800519 Sandock Sep 1998 A
5807398 Shaknovich Sep 1998 A
5824040 Cox et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5833694 Poncet Nov 1998 A
5836964 Richter et al. Nov 1998 A
5843092 Heller et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5858556 Eckert et al. Jan 1999 A
5870381 Kawasaki et al. Feb 1999 A
5879370 Fischell et al. Mar 1999 A
5891190 Boneau Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5899935 Ding May 1999 A
5902332 Schatz May 1999 A
5919175 Sirhan Jul 1999 A
5921971 Agro et al. Jul 1999 A
5922020 Klein et al. Jul 1999 A
5941869 Patterson et al. Aug 1999 A
5951585 Cathcart et al. Sep 1999 A
5961536 Mickley et al. Oct 1999 A
5968069 Dusbabek et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5976107 Mertens et al. Nov 1999 A
5976155 Foreman et al. Nov 1999 A
5980484 Ressemann et al. Nov 1999 A
5980486 Enger Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
5980552 Pinchasik et al. Nov 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
5993484 Shmulewitz Nov 1999 A
5997563 Kretzers et al. Dec 1999 A
6004328 Solar Dec 1999 A
6007517 Anderson Dec 1999 A
6010530 Goicoechea Jan 2000 A
6022359 Frantzen Feb 2000 A
6022374 Imran Feb 2000 A
6027519 Stanford Feb 2000 A
6033434 Borghi Mar 2000 A
6036725 Avellanet Mar 2000 A
6039721 Johnson et al. Mar 2000 A
6042589 Marianne Mar 2000 A
6056722 Jayaraman May 2000 A
6063111 Hieshima et al. May 2000 A
6066155 Amann et al. May 2000 A
6068655 Seguin et al. May 2000 A
6070589 Keith et al. Jun 2000 A
6090063 Makower et al. Jul 2000 A
6090136 McDonald et al. Jul 2000 A
6102942 Ahari Aug 2000 A
6106530 Harada Aug 2000 A
RE36857 Euteneuer et al. Sep 2000 E
6120522 Vrba et al. Sep 2000 A
6123712 Di Caprio et al. Sep 2000 A
6123723 Konya et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129756 Kugler Oct 2000 A
6132460 Thompson Oct 2000 A
6139572 Campbell et al. Oct 2000 A
6143016 Bleam et al. Nov 2000 A
6165167 Delaloye Dec 2000 A
6165210 Lau et al. Dec 2000 A
6171334 Cox Jan 2001 B1
6179878 Duering Jan 2001 B1
6183509 Dibie Feb 2001 B1
6187034 Frantzen Feb 2001 B1
6190402 Horton et al. Feb 2001 B1
6196995 Fagan Mar 2001 B1
6200337 Moriuchi et al. Mar 2001 B1
6217585 Houser et al. Apr 2001 B1
6238991 Suzuki May 2001 B1
6241691 Ferrera et al. Jun 2001 B1
6241758 Cox Jun 2001 B1
6248122 Klumb et al. Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6251134 Alt et al. Jun 2001 B1
6254612 Hieshima Jul 2001 B1
6254628 Wallace et al. Jul 2001 B1
6258117 Camrud et al. Jul 2001 B1
6264688 Herklotz et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270524 Kim Aug 2001 B1
6273895 Pinchuk et al. Aug 2001 B1
6273911 Cox et al. Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6287291 Bigus et al. Sep 2001 B1
6312458 Golds Nov 2001 B1
6315794 Richter Nov 2001 B1
6319277 Rudnick et al. Nov 2001 B1
6322586 Monroe et al. Nov 2001 B1
6325823 Horzewski et al. Dec 2001 B1
6334871 Dor et al. Jan 2002 B1
6340366 Wijay Jan 2002 B2
6344272 Oldenburg et al. Feb 2002 B1
6348065 Brown et al. Feb 2002 B1
6350252 Ray et al. Feb 2002 B2
6350277 Kocur Feb 2002 B1
6357104 Myers Mar 2002 B1
6361558 Hieshima et al. Mar 2002 B1
6375676 Cox Apr 2002 B1
6379365 Diaz Apr 2002 B1
6383171 Gifford et al. May 2002 B1
6394995 Solar et al. May 2002 B1
6409753 Brown et al. Jun 2002 B1
6415696 Erickeson et al. Jul 2002 B1
6416543 Hilaire et al. Jul 2002 B1
6419693 Fariabi Jul 2002 B1
6425898 Wilson et al. Jul 2002 B1
6428811 West et al. Aug 2002 B1
6451025 Jervis Sep 2002 B1
6451050 Rudakov et al. Sep 2002 B1
6464720 Boatman et al. Oct 2002 B2
6468298 Pelton Oct 2002 B1
6468299 Stack et al. Oct 2002 B2
6485510 Camrud et al. Nov 2002 B1
6488694 Lau et al. Dec 2002 B1
6488702 Besselink Dec 2002 B1
6511468 Cragg et al. Jan 2003 B1
6520986 Martin et al. Feb 2003 B2
6520987 Plante Feb 2003 B1
6527789 Lau et al. Mar 2003 B1
6527799 Shanley Mar 2003 B2
6530944 West et al. Mar 2003 B2
6540777 Stenzel Apr 2003 B2
6551350 Thornton et al. Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558415 Thompson May 2003 B2
6562067 Mathis May 2003 B2
6569180 Sirhan et al. May 2003 B1
6575993 Yock Jun 2003 B1
6579305 Lashinski Jun 2003 B1
6579309 Loos et al. Jun 2003 B1
6582394 Reiss et al. Jun 2003 B1
6582460 Cryer Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589273 McDermott Jul 2003 B1
6592549 Gerdts et al. Jul 2003 B2
6599296 Gillick et al. Jul 2003 B1
6599314 Mathis Jul 2003 B2
6602226 Smith et al. Aug 2003 B1
6602282 Yan Aug 2003 B1
6605062 Hurley et al. Aug 2003 B1
6605109 Fiedler Aug 2003 B2
6607553 Healy et al. Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6629992 Bigus et al. Oct 2003 B2
6645517 West Nov 2003 B2
6645547 Shekalim et al. Nov 2003 B1
6656212 Ravenscroft et al. Dec 2003 B2
6660031 Tran et al. Dec 2003 B2
6660381 Halas et al. Dec 2003 B2
6663660 Dusbabek et al. Dec 2003 B2
6666883 Seguin et al. Dec 2003 B1
6676693 Belding et al. Jan 2004 B1
6676695 Solem Jan 2004 B2
6679909 McIntosh et al. Jan 2004 B2
6685730 West et al. Feb 2004 B2
6692465 Kramer Feb 2004 B2
6699280 Camrud et al. Mar 2004 B2
6699281 Vallana et al. Mar 2004 B2
6699724 West et al. Mar 2004 B1
6702843 Brown Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709440 Callol et al. Mar 2004 B2
6712827 Ellis et al. Mar 2004 B2
6712845 Hossainy Mar 2004 B2
6723071 Gerdts et al. Apr 2004 B2
6736842 Healy et al. May 2004 B2
6743219 Dwyer et al. Jun 2004 B1
6743251 Eder Jun 2004 B1
6761734 Suhr Jul 2004 B2
6776771 van Moorlegem et al. Aug 2004 B2
6778316 Halas et al. Aug 2004 B2
6790227 Burgermeister Sep 2004 B2
6800065 Duane et al. Oct 2004 B2
6825203 Pasternak et al. Nov 2004 B2
6837901 Rabkin et al. Jan 2005 B2
6849084 Rabkin et al. Feb 2005 B2
6852252 Halas et al. Feb 2005 B2
6855125 Shanley Feb 2005 B2
6858034 Hijlkema et al. Feb 2005 B1
6878161 Lenker Apr 2005 B2
6884257 Cox Apr 2005 B1
6893417 Gribbons et al. May 2005 B2
6896695 Mueller et al. May 2005 B2
6899728 Phillips et al. May 2005 B1
6913619 Brown et al. Jul 2005 B2
6918928 Wolinsky et al. Jul 2005 B2
6939376 Shulz et al. Sep 2005 B2
6945989 Betelia et al. Sep 2005 B1
6945995 Nicholas Sep 2005 B2
6951053 Padilla et al. Oct 2005 B2
6962603 Brown et al. Nov 2005 B1
6964676 Gerberding et al. Nov 2005 B1
6991646 Clerc et al. Jan 2006 B2
6994721 Israel Feb 2006 B2
7005454 Brocchini et al. Feb 2006 B2
7022132 Kocur Apr 2006 B2
7029493 Majercak et al. Apr 2006 B2
7037327 Salmon et al. May 2006 B2
7090694 Morris et al. Aug 2006 B1
7101840 Brocchini et al. Sep 2006 B2
7131993 Gregorich Nov 2006 B2
7137993 Acosta et al. Nov 2006 B2
7141063 White et al. Nov 2006 B2
7147655 Chermoni Dec 2006 B2
7147656 Andreas et al. Dec 2006 B2
7169172 Levine et al. Jan 2007 B2
7169174 Fischell et al. Jan 2007 B2
7172620 Gilson Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7182779 Acosta et al. Feb 2007 B2
7192440 Andreas et al. Mar 2007 B2
7208001 Coyle et al. Apr 2007 B2
7208002 Shelso Apr 2007 B2
7220275 Davidson et al. May 2007 B2
7220755 Betts et al. May 2007 B2
7223283 Chouinard May 2007 B2
7238197 Sequin et al. Jul 2007 B2
7241308 Andreas et al. Jul 2007 B2
7244336 Fischer et al. Jul 2007 B2
7270668 Andreas et al. Sep 2007 B2
7294146 Chew et al. Nov 2007 B2
7300456 Andreas et al. Nov 2007 B2
7309350 Landreville et al. Dec 2007 B2
7314480 Eidenschink et al. Jan 2008 B2
7320702 Hammersmark et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7351255 Andreas Apr 2008 B2
7534449 Saltzman et al. May 2009 B2
7699886 Sugimoto Apr 2010 B2
7918881 Andreas et al. Apr 2011 B2
7993388 Lee et al. Aug 2011 B2
8257427 Andersen et al. Sep 2012 B2
8317850 Kusleika Nov 2012 B2
20010020154 Bigus et al. Sep 2001 A1
20010020173 Klumb et al. Sep 2001 A1
20010020181 Layne Sep 2001 A1
20010035902 Iddan et al. Nov 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010049547 Moore Dec 2001 A1
20020007212 Brown et al. Jan 2002 A1
20020037358 Barry et al. Mar 2002 A1
20020045914 Roberts et al. Apr 2002 A1
20020052642 Cox et al. May 2002 A1
20020087186 Shelso Jul 2002 A1
20020091439 Baker et al. Jul 2002 A1
20020092536 LaFontaine et al. Jul 2002 A1
20020107560 Richter Aug 2002 A1
20020111671 Stenzel Aug 2002 A1
20020123786 Gittings et al. Sep 2002 A1
20020128706 Ospyka Sep 2002 A1
20020138132 Brown Sep 2002 A1
20020151924 Shiber Oct 2002 A1
20020151955 Tran et al. Oct 2002 A1
20020156496 Chermoni Oct 2002 A1
20020165599 Nasralla Nov 2002 A1
20020168317 Daighighian et al. Nov 2002 A1
20020177890 Lenker Nov 2002 A1
20020183763 Callol et al. Dec 2002 A1
20020188343 Mathis Dec 2002 A1
20020188347 Mathis Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20030045923 Bashiri et al. Mar 2003 A1
20030093143 Zhao et al. May 2003 A1
20030097169 Brucker et al. May 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114919 McQuiston et al. Jun 2003 A1
20030114922 Iwasaka et al. Jun 2003 A1
20030125791 Sequin et al. Jul 2003 A1
20030125800 Shulze et al. Jul 2003 A1
20030125802 Callol et al. Jul 2003 A1
20030135259 Simso Jul 2003 A1
20030135266 Chew et al. Jul 2003 A1
20030139796 Sequin et al. Jul 2003 A1
20030139797 Johnson et al. Jul 2003 A1
20030139798 Brown et al. Jul 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030176909 Kusleika Sep 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030195609 Berenstein Oct 2003 A1
20030199821 Gerdts et al. Oct 2003 A1
20030204238 Tedeschi Oct 2003 A1
20030208223 Kleiner Nov 2003 A1
20030212447 Euteneuer Nov 2003 A1
20030225446 Hartley Dec 2003 A1
20040015224 Armstrong et al. Jan 2004 A1
20040024450 Shulze et al. Feb 2004 A1
20040030380 Shulze et al. Feb 2004 A1
20040044395 Nelson Mar 2004 A1
20040073290 Chouinard Apr 2004 A1
20040088044 Brown et al. May 2004 A1
20040093061 Acosta et al. May 2004 A1
20040093067 Israel May 2004 A1
20040106979 Goicoechea Jun 2004 A1
20040111145 Serino et al. Jun 2004 A1
20040117008 Wnendt et al. Jun 2004 A1
20040143322 Litvack et al. Jul 2004 A1
20040176832 Hartley et al. Sep 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186551 Kao et al. Sep 2004 A1
20040193245 Deem et al. Sep 2004 A1
20040215165 Coyle et al. Oct 2004 A1
20040215312 Andreas et al. Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040230285 Gifford, III et al. Nov 2004 A1
20040243217 Andersen et al. Dec 2004 A1
20040249434 Andreas et al. Dec 2004 A1
20040249439 Richter et al. Dec 2004 A1
20050004657 Burgermeister Jan 2005 A1
20050010276 Acosta et al. Jan 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050038505 Shulze et al. Feb 2005 A1
20050049673 Andreas et al. Mar 2005 A1
20050080474 Andreas et al. Apr 2005 A1
20050080475 Andreas et al. Apr 2005 A1
20050085897 Bonsignore Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050123451 Nomura Jun 2005 A1
20050125051 Eidenschink et al. Jun 2005 A1
20050131008 Betts et al. Jun 2005 A1
20050137622 Griffin Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050149168 Gregorich Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050171568 Duffy Aug 2005 A1
20050182477 White Aug 2005 A1
20050209674 Kutscher et al. Sep 2005 A1
20050209676 Kusleika Sep 2005 A1
20050209680 Gale et al. Sep 2005 A1
20050222671 Schaeffer et al. Oct 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050245637 Hossainy et al. Nov 2005 A1
20050249777 Michal et al. Nov 2005 A1
20050278011 Peckham Dec 2005 A1
20050288764 Snow et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060069424 Acosta et al. Mar 2006 A1
20060173529 Blank Aug 2006 A1
20060200223 Andreas et al. Sep 2006 A1
20060206190 Chermoni Sep 2006 A1
20060229700 Acosta et al. Oct 2006 A1
20060229706 Shulze et al. Oct 2006 A1
20060271150 Andreas et al. Nov 2006 A1
20060271151 McGarry et al. Nov 2006 A1
20060282147 Andreas et al. Dec 2006 A1
20060282149 Kao Dec 2006 A1
20060282150 Olson et al. Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20070010869 Sano Jan 2007 A1
20070027521 Andreas et al. Feb 2007 A1
20070043419 Nikolchev et al. Feb 2007 A1
20070067012 George et al. Mar 2007 A1
20070088368 Acosta et al. Apr 2007 A1
20070088420 Andreas et al. Apr 2007 A1
20070088422 Chew et al. Apr 2007 A1
20070100423 Acosta et al. May 2007 A1
20070100424 Chew et al. May 2007 A1
20070106365 Andreas et al. May 2007 A1
20070118202 Chermoni May 2007 A1
20070118203 Chermoni May 2007 A1
20070118204 Chermoni May 2007 A1
20070129733 Will et al. Jun 2007 A1
20070135906 Badylak et al. Jun 2007 A1
20070156225 George et al. Jul 2007 A1
20070156226 Chew et al. Jul 2007 A1
20070179587 Acosta et al. Aug 2007 A1
20070219612 Andreas et al. Sep 2007 A1
20070219613 Kao et al. Sep 2007 A1
20070265637 Andreas et al. Nov 2007 A1
20070270936 Andreas et al. Nov 2007 A1
20070276461 Andreas et al. Nov 2007 A1
20070281117 Kaplan et al. Dec 2007 A1
20070292518 Ludwig Dec 2007 A1
20080004690 Robaina Jan 2008 A1
20080046067 Toyokawa Feb 2008 A1
20080071345 Hammersmark et al. Mar 2008 A1
20080077229 Andreas et al. Mar 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097299 Andreas et al. Apr 2008 A1
20080097574 Andreas et al. Apr 2008 A1
20080125850 Andreas et al. May 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080147162 Andreas et al. Jun 2008 A1
20080177369 Will et al. Jul 2008 A1
20080199510 Ruane et al. Aug 2008 A1
20080208311 Kao et al. Aug 2008 A1
20080208318 Kao et al. Aug 2008 A1
20080234795 Snow et al. Sep 2008 A1
20080234798 Chew et al. Sep 2008 A1
20080234799 Acosta et al. Sep 2008 A1
20080243225 Satasiya et al. Oct 2008 A1
20080249607 Webster et al. Oct 2008 A1
20080269865 Snow et al. Oct 2008 A1
20090076584 Mao et al. Mar 2009 A1
20090105686 Snow et al. Apr 2009 A1
20090149863 Andreas et al. Jun 2009 A1
20090234428 Snow et al. Sep 2009 A1
20090248137 Andersen et al. Oct 2009 A1
20090248140 Gerberding Oct 2009 A1
20090264979 Kao et al. Oct 2009 A1
20090276030 Kusleika Nov 2009 A1
20100004729 Chew et al. Jan 2010 A1
Foreign Referenced Citations (86)
Number Date Country
1 953 1659 Mar 1997 DE
1 963 0469 Jan 1998 DE
199 50 756 Aug 2000 DE
101 03 000 Aug 2002 DE
0 203 945 Dec 1986 EP
0 274 129 Jul 1988 EP
0 282 143 Sep 1988 EP
0 364 787 Apr 1990 EP
0 505 686 Sep 1992 EP
0 533 960 Mar 1993 EP
0 596 145 May 1994 EP
0 696 447 Feb 1996 EP
0 714 640 Jun 1996 EP
0 797 963 Oct 1997 EP
0 947 180 Oct 1999 EP
1 254 644 Nov 2002 EP
1 258 230 Nov 2002 EP
1 266 638 Dec 2002 EP
1 277 449 Jan 2003 EP
1 290 987 Mar 2003 EP
1 318 765 Jun 2003 EP
1 470 834 Oct 2004 EP
1 523 959 Apr 2005 EP
1 523 960 Apr 2005 EP
2277875 Nov 1994 GB
03-133446 Jun 1991 JP
07-132148 May 1995 JP
10-503663 Apr 1998 JP
10-295823 Nov 1998 JP
11-503056 Mar 1999 JP
2935561 Aug 1999 JP
2001-190687 Jul 2001 JP
2002-538932 Nov 2002 JP
2004-121343 Apr 2004 JP
9427667 Dec 1994 WO
9526695 Oct 1995 WO
9529647 Nov 1995 WO
9626689 Sep 1996 WO
9633677 Oct 1996 WO
9637167 Nov 1996 WO
9639077 Dec 1996 WO
9710778 Mar 1997 WO
9746174 Dec 1997 WO
9748351 Dec 1997 WO
9820810 May 1998 WO
9837833 Sep 1998 WO
9858600 Dec 1998 WO
9901087 Jan 1999 WO
9965421 Dec 1999 WO
0012832 Mar 2000 WO
0015151 Mar 2000 WO
0025841 May 2000 WO
0032136 Jun 2000 WO
0041649 Jul 2000 WO
0050116 Aug 2000 WO
0051525 Sep 2000 WO
0056237 Sep 2000 WO
0062708 Oct 2000 WO
0072780 Dec 2000 WO
0126707 Apr 2001 WO
0134063 May 2001 WO
0170297 Sep 2001 WO
0191918 Dec 2001 WO
02071975 Sep 2002 WO
02085253 Oct 2002 WO
02098326 Dec 2002 WO
03022178 Mar 2003 WO
03021425 Jun 2003 WO
03047651 Jun 2003 WO
03075797 Sep 2003 WO
2004017865 Mar 2004 WO
2004043299 May 2004 WO
2004043301 May 2004 WO
2004043510 May 2004 WO
2004052237 Jun 2004 WO
2004087006 Oct 2004 WO
2004091441 Oct 2004 WO
2005009295 Feb 2005 WO
2005013853 Feb 2005 WO
2005023153 Mar 2005 WO
2006036939 Apr 2006 WO
2006047520 May 2006 WO
2007035805 Mar 2007 WO
2007053187 May 2007 WO
2007146411 Dec 2007 WO
2008005111 Jan 2008 WO
Non-Patent Literature Citations (23)
Entry
Chu et al., “Preparation of Thermo-Responsive Core-Shell Microcapsules with a Porous Membrane and Poly(N-isopropylacrylamide) Gates,” J Membrane Sci, Oct. 15, 2001; 192(1-2):27-39.
Colombo, “The Invatec Bifurcation Stent Solution” Bifurcation Stents: Novel Solutions, TCT 2003, Washington: Sep. 15-19, 2003, 24 pages total.
Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMs and Microfluidic Systems,” Proceedings, SPIE Conference on Microfluidics and BioMEMs, (Oct. 2001).
“Drug Delivery Stent With Holes Located on Neutral Axis” Research Disclosure, Kenneth Mason Publications, Hampshire, CB, No. 429, Jan. 2000, p. 13.
Evans Analytical Group, “Functional Sites on Non-polymeric Materials: Gas Plasma Treatment and Surface Analysis,” http://www.eaglabs.com.
Joung et al., “Estrogen Release from Metallic Stent Surface for the Prevention of Restenosis,” J Control Release. Sep. 19, 2003;92(1-2):83-91.
Lefevre et al. “Approach to Coronary Bifurcation Stenting in 2003,” Euro PCR, (May 2003) 28 pages total.
“Stent”. Definitions from Dictionary.com. Unabridged 9v1.01). Retrieved Sep. 22, 2006, from Dictionary.com website: <http://dictionary.reference.com/search?q=stent>.
Stimpson et al., “Parallel Production of Oligonucleotide Arrays Using Membranes and Reagent Jet Printing,” BioTechniques 25:886-890 (Nov. 1998).
Tilley , “Biolimus A9-Eluting Stent Shows Promise,” Medscape Medical News, Oct. 5, 2004; retrieved from the internet: <http://www.medscape.com/viewarticle/490621>, 2 pages total.
Weir et al., “Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation,” Proc Inst Mech Eng H. 2004;218(5):321-30.
U.S. Appl. No. 60/336,607, filed Dec. 3, 2001, first named inventor: Bernard Andreas.
U.S. Appl. No. 60/336,767, filed Dec. 3, 2001, first named inventor: Bernard Andreas.
U.S. Appl. No. 60/336,967, filed Dec. 3, 2001, first named inventor: Sunmi Chew.
U.S. Appl. No. 60/364,389, filed Mar. 13, 2002, first named inventor: Sunmi Chew.
U.S. Appl. No. 60/440,839, filed Jan. 17, 2003, first named inventor: Bernard Andreas.
U.S. Appl. No. 60/561,041, filed Apr. 9, 2004, first named inventor: Jeffry Grainger.
U.S. Appl. No. 60/784,309, filed Mar. 20, 2006, first named inventor: Bernard Andreas.
U.S. Appl. No. 60/810,522, filed Jun. 2, 2006, first named inventor: Stephen Kaplan.
U.S. Appl. No. 60/890,703, filed Feb. 20, 2007, first named inventor: Patrick Ruane.
Supplementary European Search Report of EP Patent Application No. 07758831, dated Dec. 14, 2009.
Supplementary European Search Report of EP Patent Application No. 05744136, dated Mar. 26, 2008, 3 pages total.
Supplementary European Search Report of EP Patent Application No. 05727731.1, dated Mar. 25, 2008, 2 pages total.
Related Publications (1)
Number Date Country
20110178589 A1 Jul 2011 US
Provisional Applications (1)
Number Date Country
60336607 Dec 2001 US
Continuations (3)
Number Date Country
Parent 12040598 Feb 2008 US
Child 13078749 US
Parent 10966806 Oct 2004 US
Child 12040598 US
Parent 10306620 Nov 2002 US
Child 10966806 US