Apparatus and methods for delivery of prosthetic mitral valve

Information

  • Patent Grant
  • 11318012
  • Patent Number
    11,318,012
  • Date Filed
    Thursday, April 25, 2019
    5 years ago
  • Date Issued
    Tuesday, May 3, 2022
    a year ago
Abstract
A method for delivery and deployment of a prosthetic mitral valve into a heart includes inserting an introducer sheath having a prosthetic mitral valve disposed therein in a collapsed configuration into the left atrium of a patient's heart, through a gap between the native mitral valve leaflets, the left ventricle and apex of the heart. An epicardial pad device coupled to the prosthetic valve via a tether is moved distally out of the sheath. The introducer sheath is withdrawn into the left atrium of the heart. An inner delivery sheath is extended distally from within the introducer sheath and disposed within the left atrium. The prosthetic mitral valve is moved distally out of the inner delivery sheath and assumes a biased expanded configuration. The valve is positioned within the mitral annulus of the heart, and secured in place via the tether and epicardial pad device.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic valves, and particularly to devices and methods for delivering expandable prosthetic mitral valves.


Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus, elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.


While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.


SUMMARY

Apparatus and methods are described herein for use in the delivery and deployment of a prosthetic mitral valve into a heart. As described herein, in some embodiments, a method includes delivering and deploying a prosthetic mitral valve via a transatrial approach or a transjugular approach. In either approach, an outer frame of a prosthetic mitral valve can have a biased expanded configuration and be inverted relative to an inner frame of the prosthetic mitral valve prior to delivery.


After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of an inner delivery sheath such that the mitral valve is moved to a collapsed configuration. The inner delivery sheath is moveably disposed within an introducer sheath and the introducer sheath can be inserted into an opening in a wall of the left atrium of a patient's heart in a transatrial approach, or through the jugular vein in a transjugular approach and through the atrial septum and into the left atrium of the patient. The introducer sheath can be moved between the native mitral valve leaflets (i.e., the mitral valve gap) and through the ventricle and apex of the heart of the patient until a distal end portion of the introducer sheath is disposed outside of and adjacent to the apex of the heart. An epicardial pad device is moved distally out of the introducer sheath and disposed outside of and adjacent to the apex of the heart. The introducer sheath is withdrawn proximally back through the left ventricle, mitral valve gap and a distal end is disposed within the left atrium of the heart. The inner delivery sheath is extended distally relative to the introducer sheath and within the atrium of the heart. The prosthetic mitral valve is then moved distally out of the inner delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. The prosthetic mitral valve is then positioned within the native mitral annulus of the heart, and tensioned and secured in place via a tether coupled to the epicardial pad device.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1-6 are each a cross-sectional illustration of a heart with devices used during various stages in a procedure to transatrially deliver and deploy a prosthetic mitral valve, according to an embodiment.



FIGS. 7-9 are each a cross-sectional illustration of a heart with devices used during various stages in a procedure to transatrially deliver and deploy a prosthetic mitral valve, according to another embodiment.



FIGS. 10-12 are front, bottom, and top views of a prosthetic heart valve according to an embodiment.



FIG. 13 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIGS. 10-12, in an unexpanded configuration.



FIGS. 14 and 15 are side and bottom views, respectively, of the inner frame of FIG. 13 in an expanded configuration.



FIG. 16 is an opened and flattened view of the outer frame of the valve of FIGS. 10-12, in an unexpanded configuration.



FIGS. 17 and 18 are side and top views, respectively, of the outer frame of FIG. 16 in an expanded configuration.



FIGS. 19-21 are side, front, and top views of an assembly of the inner frame of FIGS. 13-15 and the outer frame of FIGS. 16-18.



FIG. 22 is a side perspective view of the assembly of the inner frame of FIGS. 13-15 and the outer frame of FIGS. 16-18 shown in a biased expanded configuration.



FIG. 23 is a side perspective view of the assembly of FIG. 19 with the outer frame shown inverted.



FIG. 24 is side view of the assembly of FIG. 23 shown in a collapsed configuration within a lumen of a delivery sheath.



FIG. 25 is a side view of the assembly of FIG. 24 shown in a first partially deployed configuration.



FIG. 26 is a side view of the assembly of FIG. 24 shown in a second partially deployed configuration.



FIG. 27 is a side view of the assembly of FIG. 24 shown in a third partially deployed configuration in which the inverted outer frame is substantially deployed outside of the delivery sheath.



FIG. 28 is a side view of the assembly of FIG. 24 shown in a fourth partially deployed configuration in which the outer frame has reverted and assumed a biased expanded configuration.



FIG. 29 is a side view of a prosthetic mitral valve in a collapsed configuration within a lumen of a portion of a delivery sheath and a balloon dilator device coupled to the delivery sheath.



FIG. 30 is a cross-sectional illustration of a heart with a portion of a delivery sheath shown after deploying a prosthetic mitral valve with the assistance of a wire assist structure, according to an embodiment.



FIG. 31 is a perspective view of the wire assist structure of FIG. 30 coupled to a portion of a prosthetic mitral valve, according to an embodiment.



FIG. 32 is a perspective view of an assist member coupled to a portion of a prosthetic mitral valve, according to an embodiment.



FIG. 33 is a flowchart illustrating a method of delivering a prosthetic mitral valve transatrially, according to an embodiment.



FIG. 34 is a side view of a portion of an epicardial pad device, according to an embodiment, and shown in a collapsed configuration within a delivery sheath.



FIG. 35 is a side perspective view of the epicardial pad device of FIG. 34 shown in an expanded configuration.



FIG. 36 is a side perspective view of a portion of a heart illustrating purse-string sutures at an apex of the heart prior to securing an epicardial pad device thereto.



FIG. 37 is a side perspective view of the epicardial pad device of FIG. 34 shown in the expanded configuration.



FIG. 38 is a bottom perspective view of a portion of a heart illustrating the epicardial pad device of FIG. 34 secured thereto.



FIG. 39 is an enlarged side perspective view and FIG. 40 is an enlarged bottom view of a portion A in FIG. 38 illustrating an integrated locking mechanism.



FIG. 41 is a side view of an epicardial pad device, according to another embodiment, and shown in a collapsed configuration.



FIG. 42 is a side perspective view of the epicardial pad device of FIG. 41 shown in an expanded configuration.



FIG. 43 is a side view of the epicardial device of FIG. 41 shown in the expanded configuration and being deployed near an apex of a heart.



FIG. 44 is a side view of an epicardial pad device, according to another embodiment, and shown in an expanded configuration being deployed near a heart.



FIG. 45 is a side view of the epicardial pad device of FIG. 44 shown in a collapsed configuration and deployed on the apex of the heart.



FIGS. 46 and 47 are each a side view of an epicardial pad device, according to another embodiment, and shown being deployed on an apex of a heart.



FIG. 48 is a bottom view of a heart with the epicardial pad of FIGS. 46 and 47 secured to the apex of the heart.



FIG. 49 is a front view of a portion of a patient's body illustrating an example location for a mini-thoracotomy.



FIGS. 50-55 are each a cross-sectional illustration of a heart with devices used during various stages in a procedure to transjugularly deliver and deploy a prosthetic mitral valve, according to an embodiment.



FIGS. 56-58 are each a cross-sectional illustration of a heart with devices used during various stages in a procedure to transjugularly deliver and deploy a prosthetic mitral valve, according to another embodiment.



FIG. 59 is a front view of a portion of a patient's body illustrating a stage of a transjugular delivery of a prosthetic mitral valve.





DETAILED DESCRIPTION

Apparatus and methods are described herein for use in the delivery and deployment of a prosthetic mitral valve into a heart. As described herein, in some embodiments, a method includes delivering a prosthetic mitral valve into a heart via a transatrial approach, and in some embodiments a method includes delivering a prosthetic mitral valve into a heart via a transjugular approach. In either approach, an outer frame of a prosthetic mitral valve can have a biased expanded configuration and be inverted relative to an inner frame of the prosthetic mitral valve prior to delivery. After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of an inner delivery sheath such that the mitral valve is moved to a collapsed configuration. The inner delivery sheath is moveably disposed within an introducer sheath and the introducer sheath can be inserted into an opening in a wall of the left atrium of a patient's heart in a transatrial approach, or through the jugular vein in a transjugular approach and through the atrial septum and into the left atrium of the patient. The introducer sheath can be moved between the native mitral valve leaflets (i.e., the mitral valve gap) and through the ventricle and apex of the heart of the patient until a distal end portion of the introducer sheath is disposed outside of and adjacent to the apex of the heart. An epicardial pad device is moved distally out of the introducer sheath and disposed outside of and adjacent to the apex of the heart. The introducer sheath is withdrawn proximally back through the left ventricle, mitral valve gap and a distal end is disposed within the left atrium of the heart. The inner delivery sheath is extended distally relative to the introducer sheath and within the atrium of the heart. The prosthetic mitral valve is then moved distally out of the inner delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. The prosthetic mitral valve is then positioned within a mitral annulus of the heart, and tensioned and secured in place using a tether coupled to the epicardial pad device.


Transatrial delivery of the prosthetic mitral valve, and associated components (e.g., epicardial pad and tether), is a desirable delivery approach in many instances. Transatrial delivery, as described below with respect to FIGS. 1-6, for example, can be accomplished using only a single incision (i.e., a single access point) in the patient's body. Limiting the number of body incisions, in this manner, provides for a safer, more repeatable procedure with expedited recovery, while limiting complications and infections during the procedure and recovery of the patient.


Transjugular delivery of the prosthetic mitral valve, and associated components (e.g., epicardial pad and tether), is also a desirable delivery approach in many instances. Transjugular delivery, as described below with respect to FIGS. 50-55, for example, can be accomplished using only a single incision (i.e., a single access point) in the patient's body. Limiting the number of body incisions, in this manner, provides for a safer, more repeatable procedure with expedited recovery, while limiting complications and infections during the procedure and recovery of the patient.



FIGS. 1-6 illustrate a method of delivering a prosthetic mitral valve 200 (shown in FIGS. 3-6) to a left atrium LA of a heart H, e.g., via introduction through a mini-thoracotomy (see FIG. 49). As shown in FIG. 1, a distal end portion of an introducer sheath 226 is inserted through a trans-atrial puncture in an atrial wall Aw of the heart H, extended into the left atrium LA, through a mitral valve gap and into the left ventricle LV, and then through a trans-apical puncture through the ventricular wall at the apex Ap of the heart H. A dilator 235 and a guidewire 234 are moveably disposed within a lumen of the introducer sheath 226 and are used to aid in the insertion and maneuvering of the introducer sheath 226 described above. For example, during delivery of the introducer sheath 226 from the atrial access site through the apex Ap of the heart H, the dilator 235 can extend distally from the distal end portion of the introducer sheath 226 and aid in creating space (e.g., by dilating nearby tissue) through which the introducer sheath 226 can maneuver. The guidewire 234 can be used to guide the introducer sheath 226 along a desired path (i.e., from the atrium to the ventricle and through the apex AP). The prosthetic mitral valve 200 (also referred to herein as “valve”) is coupled to or disposed about a tether 236 (see e.g., FIG. 4), and an end portion of the tether 236 is coupled to an epicardial pad device 239, each of which is movably disposed within an inner delivery sheath 264 (see e.g., FIG. 3) which can be movably disposed within the introducer sheath 226 during delivery of the introducer sheath 226.


After the introducer sheath 226 has been extended through the atrial puncture site Aps and the apex Ap of the heart H, the dilator 235 and the guidewire 234 can be pulled or otherwise withdrawn proximally through a proximal end portion of the lumen of the introducer sheath 226, and a pusher device (not shown) can be used to deliver and/or deploy the epicardial pad device 239. The epicardial pad device 239 can be used to secure the tether 236 and the valve 200 in position within the mitral annulus, as described further herein with respect to FIG. 6.


The epicardial pad device 239 can be delivered and/or deployed by pushing with the pusher device (not shown) such that the epicardial pad device 239 and a portion of the tether 236 exit both the distal end portion of the inner delivery sheath 264 (shown in FIG. 3) and the distal end of the introducer sheath 226 and such that the epicardial pad device 239 is disposed outside the heart H, as shown in FIG. 2. For example, an epicardial pad device as described in International Patent Application No. PCT/US14/49218 (“the '218 PCT application”), the disclosure of which is incorporated herein by reference in its entirety, can be used. In some embodiments, an expandable epicardial pad can be used to secure the tether and valve in position. Example embodiments of expandable pads that can be used are described herein with reference to FIGS. 34-48. Such an epicardial pad can be smaller in size such that the pad can be delivered to the heart via a small incision and small catheter or delivery sheath (e.g., the same as or similar to the inner delivery sheath 264, or the same as or similar to the introducer sheath 226). In some embodiments, a positioning device can be used to help position the valve and deploy the epicardial pad device. For example, a positioning device as described in the '218 PCT application incorporated by reference above, or devices described in International Patent Application No. PCT/US14/61046, the disclosure of which is incorporated herein by reference in its entirety, can be used. In some embodiments, rather than securing the prosthetic mitral valve with a tether and epicardial pad, the prosthetic mitral valve can be secured with clips or other coupling methods to a portion(s) of the mitral valve apparatus and/or to the ventricular wall of the heart. For example, such coupling methods are described in International Patent Application No. PCT/US14/58826 (“the '826 PCT application”), the disclosure of which is incorporated herein by reference in its entirety.


After the epicardial pad device 239 is disposed outside the heart, as shown in FIG. 2, the introducer sheath 226 can be withdrawn proximally relative to the inner delivery sheath 264 through the atrial puncture site Aps and outside the heart H. During removal from the heart H of the introducer sheath 226, the inner delivery sheath 264 (with the valve 200 disposed therein) remains in the heart to aid in delivery and deployment of the valve 200.


The valve 200 can be formed with a shape-memory material (as described in more detail below) and can have a biased undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original undeformed shape. For example, the valve 200 can be in a collapsed or deformed configuration when disposed within the lumen of the inner delivery sheath 264, and can be moved to its biased, expanded or undeformed configuration when delivered from the inner delivery sheath 264 and deployed within the heart H. The valve 200 can be, for example, constructed the same as or similar to, and function the same as or similar to any of the valves described herein (e.g., the valve 500) or in PCT International Application No. PCT/US2015/014572 (referred to herein as “the '572 PCT Application), U.S. Provisional Application No. 62/137,384 (referred to herein as “the '384 Application), and/or U.S. Provisional Application No. 62/187,896 (referred to herein as “the '896 Application), the entire disclosures of which are incorporated herein by reference in their entireties. In some embodiments, actuator wires (not shown) can be used to selectively (e.g., by an operator) assist and/or control expansion, deployment and/or articulation of the valve 200 as the valve 200 is delivered to the heart. For example, actuator wires as described in the '384 Application and/or the '896 Application, both incorporated by reference above, can be used.


To deliver and deploy the valve 200, a pusher device (not shown) movably disposed within the inner delivery sheath 264 can push the valve 200 out of the distal end of the inner delivery sheath 264 and within the left atrium of the heart H, as shown in FIG. 3. Optionally, the inner delivery sheath 264 can also be pulled proximally as the pusher moves the valve 200 distally. As the valve 200 exits the inner delivery sheath 264, the valve 200 can assume its biased expanded or deployed configuration within the left atrium LA. With the valve 200 movably coupled to the tether 236, the pusher can be used to push or move the valve 200 relative to the tether 236 to position the valve 200 within the mitral annulus. Simultaneously, the tether 236 is pulled proximally such that the epicardial pad device 239 is pulled proximally and into contact with the apex Ap of the heart H, and the portion of the tether 236 disposed between the epicardial pad device 239 and the valve 200 is pulled taut. The tether 236 in a taut configuration can aid in movement of the valve 200 as the valve 200 is moved relative to the tether 236 and positioned within the mitral annulus. In some embodiments, the pusher device can also be used to aid in positioning the valve 200 in a desired radial orientation within the left atrium LA. For example, the pusher device can define an internal lumen (not shown) that can be placed over an inner frame portion of the valve 200 to hold the inner frame portion in a small diameter, which can help enable the valve 200 to be positioned in a desired radial orientation and be seated within the annulus of the mitral valve. Further examples of such a valve assist device are described below with reference to FIGS. 30-32.


As shown by progression in FIGS. 5 and 6, and as described above, as the valve 200 is deployed within the left atrium LA of the heart H, the valve 200 is allowed to assume its biased expanded or deployed configuration. The inner delivery sheath 264 can be removed from the patient and the valve 200 can be positioned, secured or locked, and tensioned in a desired position within the mitral annulus. For example, as described above, the valve 200 can be moved relative to the tether 236 to obtain the desired or optimal location in the native mitral annulus and minimize perivalvular leaks, and the tether 236 can be pulled taut. Once the valve 200 is disposed in a desirable position and the tether 236 is desirably tensioned, the valve 200 can be secured or locked relative to the tether 236. The valve 200 can be secured or locked to the tether 236 in any suitable manner such that the valve 200 is prevented from moving or translating about or along the tether 236 during normal heart functioning conditions (e.g., during systole and/or diastole).


For example, a locking mechanism (not shown) can be used to secure the tether 236 to the valve 200. In some embodiments, for example, a locking mechanism can be coupled to or included with the valve 200 and can include a tether attachment member (not shown) that defines at least a portion of a tether passageway (not shown) through which a portion of the tether 236 can be received therethrough. The tether attachment member can further define a locking pin channel that intersects the tether passageway. A locking pin (not shown) is disposable within the locking pin channel and movable between a first position in which the locking pin is at a spaced distance from the tether passageway, and a second position in which the locking pin intersects the tether passageway and can engage the portion of the tether 236 disposed therein to secure the tether to the tether attachment member. In some embodiments, the tether attachment member and the valve 200 can be monolithically constructed, while in other embodiments the tether attachment member and the valve 200 can be formed separately and coupled together. In such embodiments, in some instances, the tether attachment member can be coupled to the valve and then delivered to and deployed within the heart H, while in other instances, the tether attachment member and the valve 200 can be delivered to the heart H together, and can then engage one another to secure or lock the valve to the tether 236. In such instances, the tether attachment member can be configured to be disposed about the tether 236 such that it can translate or move along the tether 236 and be moved into engagement with the valve 200 when the valve is in a desired position and configuration. In some embodiments, a tool (not shown) separate from the locking mechanism can be used to deploy or otherwise cause the locking mechanism to engage the valve 200 and/or the tether 236 for securement. In some instances, the tool can be disposed about the tether 236 and translate or move along the tether 236.


After the valve 200 is deployed, proper tension is achieved between the valve 200 and the epicardial pad device 239, and the valve 200 is secured or locked in position relative to the tether 236, an excess portion (i.e., a proximal portion) of the tether 236 can be cut or otherwise removed from the heart H. As shown in FIG. 5, a tether cutting tool 231 can be used to cut the proximal portion of the tether 236 for removal of the proximal portion from the left atrium LA of the heart H. In some embodiments, the tether cutting tool 231 can define an inner lumen therebetween configured to receive at least a portion of the tether 236 (e.g., the proximal portion of the tether 236). In this manner, the tether cutting tool can be disposed about and translate along the tether 236 until it reaches a desirable position to cut the tether 236. The tether cutting tool 231 can be configured to remove from the heart H the portion of the tether 236 that it cut. Upon cutting and removal of a portion of the tether 236, the valve 200, secured to the tether 236 and the epicardial pad device 239 (disposed outside the heart) as shown in FIG. 6, can remain within and function within the heart H (e.g. to limit or prevent mitral valve regurgitation, as discussed further herein). In some embodiments, the tether cutting tool 231 can, in addition to being configured to cut a portion of the tether 236, be configured to deliver and/or deploy the locking mechanism used to secure the valve 200 to the tether 236.


In other embodiments, instead of delivering and deploying an epicardial pad via the introducer sheath through the left atrium, mitral valve gap and ventricle wall, an epicardial pad can be delivered from outside the heart and to the apex of the heart. For example, similar to the procedure described above with respect to the valve 200, a guide wire and introducer sheath can be routed from the left atrium to the left ventricle of the heart and through the ventricle wall to deliver a distal portion of a tether outside the heart near the apex of the heart. The tether can be coupled to a valve (e.g., valve 200) and inserted through an inner delivery sheath movably disposed with the introducer sheath as described above with respect to valve 200 and FIGS. 1-6. An epicardial pad can be delivered via a separate device different than the introducer sheath to near the apex of the heart. The distal free end of the tether can be threaded through and coupled to the epicardial pad. The introducer sheath can be withdrawn, and the valve can be delivered, deployed, tensioned and secured or locked, as discussed above with respect to the valve 200.


In other embodiments, a snare device can be used to grab or snare the tether to move it from a location within the heart (e.g., from an atrium or a ventricle) through a ventricle wall at or near the apex Ap and outside of the heart H. FIGS. 7-9 illustrate another method of transatrially delivering a prosthetic mitral valve 800 to a left atrium LA of a heart H, e.g., via introduction through a mini-thoracotomy. As with the previous embodiment, a distal end portion of an introducer sheath 826 is inserted through a trans-atrial puncture Aps in an atrial wall Aw of the heart H and extended into the left atrium LA of the heart H. The prosthetic mitral valve 800 (also referred to herein as “valve”) is coupled to or disposed about a tether 836, each of which is movably disposed within an inner delivery sheath 864 (see e.g., FIG. 8), which is movably disposed within the introducer sheath 826. As shown in FIG. 7, a distal portion of the tether 836 extends distally from a distal end portion of the lumen of the introducer sheath 826.


A snare device 856, as shown in FIG. 7, can be used to snare or capture the tether 836 within the left ventricle LV of the heart H and pull it out through the ventricular wall at or near the apex Ap of the heart H. A procedure catheter 857 can be used to introduce the snare device 856 into the heart. In use, a distal end of the procedure catheter 857 is inserted through an incision or opening in a ventricular wall of the heart H (e.g., at or near the apex Ap of the heart H) such that the distal end of the procedure catheter 857 is disposed within the left ventricle LV of the heart H. The snare device 856 is moved distally within a lumen of the procedure catheter 857 until a distal end of the snare device 856 is disposed within the left ventricle LV (or within the left atrium if necessary to capture the tether 836). The distal portion of the tether 836 extending from the distal end portion of the lumen of the introducer sheath 826 and the distal portion of the valve 800, disposed within the heart H (e.g., the left atrium, the left ventricle, or a portion therebetween) is snared with the snare device 856, as shown in FIG. 7. The tether 836 is pulled with the snare device 856 through the lumen of the procedure catheter 857 such that the distal end of the tether 836 is pulled out the proximal end of the procedure catheter 857 outside of the heart H. Said another way, a distal end of the tether 836 is threaded through a distal opening defined by the procedure catheter 857, through the lumen defined by the procedure catheter 857 and out a proximal opening defined by the procedure catheter 857. The procedure catheter 857 is removed, leaving the distal portion of the tether 836 extending through the incision in the ventricular wall and outside the heart H, as shown in FIG. 8.


The valve 800 can be formed with a shape-memory material (as described in more detail herein) and can have a biased undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original undeformed shape. For example, the valve 800 can be in a collapsed or deformed configuration when disposed within the lumen of the delivery sheath 864, and can be moved to its biased, expanded or undeformed configuration when delivered from the delivery sheath 864 and deployed within the heart H. The valve 800 can be, for example, constructed the same as or similar to, and function the same as or similar to any of the valves described herein (e.g., the valve 200, the valve 500) or in the '572 PCT Application, the '384 Application, and/or the '896 Application, incorporated herein by reference above. In some embodiments, actuator wires (not shown) can be used to selectively (e.g., by an operator) assist and/or control expansion, deployment and/or articulation of the valve 800 as the valve 800 is delivered to the heart H. For example, actuator wires as described in the '384 Application and/or the '896 Application, both incorporated by reference above, can be used.


To deliver and deploy the valve 800, the delivery sheath 864 can be pulled proximally towards and through the atrial puncture site Aps such that the valve 800, which remains coupled or disposed about the tether 836, exits the distal end portion of the delivery sheath 864 (as shown by progression in FIGS. 8 and 9) and remains in the left atrium LA of the heart H, as shown in FIG. 9. As the valve 800 is deployed within the left atrium LA of the heart H, the valve 800 is allowed to assume its biased expanded or deployed configuration. Alternatively, or additionally, a pusher device (not shown) can be used to push the valve 800 outside of the distal end portion of the delivery sheath 864. In some instances, for example, the pusher device can be used to push the valve 800 while the delivery sheath 864 is pulled and removed from the valve 800. In other words, the valve 800 can be delivered and deployed by pushing the valve 800 with the pusher device, by pulling the inner delivery sheath 864, or both. The tether 836, coupled to the valve 800, can also be used during the deployment of the valve 800. For example, to position the valve 800 within the native mitral annulus, the tether 236 can be pulled proximally after or simultaneously with the pusher device pushing the valve 800 outside the lumen of the delivery sheath 864. The pusher device can also be used to aid in positioning the valve 800 in a desired radial orientation within the left atrium LA. For example, the pusher device can define an internal lumen (not shown) that can be placed over an inner frame portion of the valve 800 to hold the inner frame portion in a small diameter, which can help enable the valve 800 to be positioned in a desired radial orientation and be seated within the annulus of the mitral valve. Further examples of such a valve assist device are described below with reference to FIGS. 30-32.


After the valve 800 is deployed within the left atrium LA, the delivery sheath 864 can be removed from the patient, and the valve 800 can be positioned within the mitral annulus as described above using the tether 836 and/or pusher device. With the valve 800 in a desired position within the mitral annulus, the tension on the tether 836 between the prosthetic mitral valve 800 and the incision at the apex Ap of the heart H can be adjusted and the tether 836 can be secured at the apex Ap on the ventricular wall of the heart H with epicardial pad device 839. For example, with the tether 836 extending outside of the heart, the tether 836 can be threaded through a center opening of the epicardial pad device 839 and through a lumen of an epicardial pad delivery catheter (not shown) (also referred to herein as “pad catheter”) such that the epicardial pad 839 is disposed at a distal end of the pad catheter. An outer delivery device 896 can be laced over the pad delivery catheter to collapse the epicardial pad device 839. The outer delivery catheter 896 (with the epicardial pad 839 and pad catheter disposed therein) can have a relatively small outer diameter such that it can be inserted through a small incision in the skin of a patient. When the distal end of the outer delivery catheter 896 is at a desired location near the apex Ap of the heart H, the epicardial pad device 839 can be moved outside of the outer delivery catheter 896 such that the epicardial pad 839 can assume a biased expanded configuration, as shown in FIG. 9.


To move the epicardial pad device 839 outside of the lumen of the outer delivery catheter 896, the pad catheter can be moved distally within the outer delivery catheter 896 to push the epicardial pad device 839 out of the lumen of the outer delivery catheter 896. In an alternative embodiment, the epicardial pad device 839, rather than using a pad catheter as described above, the tether 836 can be threaded through the outer delivery catheter 896 and the outer delivery catheter 896 can collapse the epicardial pad device 839 within the lumen of the outer delivery catheter 896. The outer delivery catheter 896 be positioned near the apex Ap as described above, and a push rod (not shown) or an inner sheath (not shown) can be used to move the epicardial pad device 839 distally outside of the lumen of the outer delivery catheter 896.


Prior to moving the epicardial pad device 839 into position on the apex Ap of the heart H, conventional purse string sutures (not shown) at the incision through which the tether 836 extends out of the heart H at the apex Ap of the heart H can be closed. The epicardial pad device 839 can then be positioned on the apex Ap of the heart, as shown in FIG. 9.


Although as described above the snare device 856 is introduced into the heart H via the procedure catheter 857, and the epicardial pad device 839 is delivered to the apex Ap of the heart H via the outer delivery catheter 896, in other embodiments, both a snare device and an epicardial pad device can be introduced or delivered via the same catheter, e.g., the procedure catheter 857. In such embodiments, after use of the snaring device to snare the tether and removal from the heart of the snaring device via the procedure catheter, the epicardial pad device and pad catheter described above can be inserted or loaded into the procedure catheter. Similarly, in some embodiments, the distal end of the tether can be threaded through the center opening of the epicardial pad device and through the lumen defined by the procedure catheter (rather than the pad catheter). The epicardial pad device can then be delivered and deployed as discussed above with respect to FIGS. 8 and 9.


Various different types and/or configurations of an epicardial pad device can be used to anchor the prosthetic mitral valve 800 as described above. For example, any of the epicardial anchor devices described herein, in the '218 PCT application incorporated by reference above, and/or in U.S. Provisional Application No. 62/212,803, can be used. For example, an epicardial pad device can include a frame member (not shown) and a fabric cover (not shown). The frame member can be formed with, for example, a shape-memory material such as Nitinol® such that the epicardial pad can have a biased expanded configuration, and can be moved to a collapsed configuration. For example, the epicardial pad can be placed within a lumen of a delivery sheath (e.g., pad catheter 896) to move the epicardial pad device to the collapsed configuration. During delivery, the epicardial pad can be moved outside of the delivery sheath, as discussed above with respect to FIGS. 8 and 9, such that the epicardial pad can assume its biased expanded configuration. The fabric cover can be formed with various suitable material(s) such as, for example, polyester, polyethylene or ePTFE.


In an alternative, the valve 800 can be coupled to the tether 836 such that the valve 800 is movable or can translate relative to the tether 836 as described above for valve 200. In such an embodiment, a locking mechanism (not shown) can be used to secure the tether 836 to the valve 800 as described above for valve 200. In such an embodiment, a snare device can be used to pull the tether 836 through the wall of the left ventricle and out of the heart and an epicardial pad can be attached to the tether 836 as described above, however adjustment and securement of the valve would be performed in a similar or same manner as described for valve 200. For example, the valve 800 can be translated relative to the tether 836 to position the valve in the mitral annulus and the locking mechanism can be used to secure the valve 800 to the tether 836 as previously described for valve 200. For example, the locking mechanism can include a tether attachment member (not shown) that defines at least a portion of a tether passageway (not shown) through which a portion of the tether 836 can be received therethrough. The tether attachment member further defines a locking pin channel that intersects the tether passageway. A locking pin (not shown) is disposable within the locking pin channel and movable between a first position in which the locking pin is at a spaced distance from the tether passageway, and a second position in which the locking pin intersects the tether passageway and can engage the portion of the tether 836 disposed therein to secure the tether to the tether attachment member. In some embodiments, the tether attachment member and the valve 800 can be monolithically constructed, while in other embodiments the tether attachment member and the valve 800 can be formed separately and coupled together. In such embodiments, in some instances, the tether attachment member can be coupled to the valve and then delivered to and deployed within the heart H, while in other instances, the tether attachment member and the valve 800 can be delivered to the heart H, and can then engage one another to secure or lock the valve to the tether 836. In such instances, the tether attachment member can be configured to be disposed about the tether 836 such that it can translate or move along the tether 836 and engage with the valve 800 when the valve is in its desirable position and configuration. In some embodiments, a tool (not shown) separate from the locking mechanism can be used to deploy or otherwise cause the locking mechanism to engage the valve 800 and/or the tether 836 for securement. In some instances, the tool can be disposed about the tether 836 and translate or move along the tether 836.


After the valve 800 is deployed, proper tension is achieved between the valve 800 and the epicardial pad device 839, and the valve 800 is secured or locked in position relative to the tether 836, an excess portion (i.e., a proximal portion) of the tether 836 can be cut or otherwise removed from the heart H, similar to as described above with respect to FIG. 5. For example, a tether cutting tool (not shown) can be used to cut the proximal portion of the tether 836 for removal of the proximal portion from the left atrium LA of the heart H. In some embodiments, the tether cutting tool can define an inner lumen therebetween configured to receive at least a portion of the tether 836 (e.g., the proximal portion of the tether 836). In this manner, the tether cutting tool can be disposed about and translate along the tether 836 until it reaches a desirable position to cut the tether 836. The tether cutting tool can be configured to remove from the heart H the portion of the tether 836 that it cut. Upon cutting and removal of a portion of the tether 836, the valve 800, secured to the tether 836 and the epicardial pad device 839 (disposed outside the heart) as shown in FIG. 9, can remain within and function in a desirable fashion within the heart H (e.g. to limit or prevent mitral valve regurgitation, as discussed further herein). In some embodiments, the tether cutting tool can, in addition to be configured to cut a portion of the tether 836, be configured to deliver and/or deploy the locking mechanism.



FIGS. 10-12 illustrate an embodiment of a prosthetic heart valve that can be delivered and deployed within a left atrium of a heart using a transatrial delivery approach as described above. FIGS. 10-12 are front, bottom, and top views, respectively, of a prosthetic heart valve 500 according to an embodiment. Prosthetic heart valve 500 (also referred to herein as “valve”) is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 500 includes an outer frame assembly 510 and an inner valve assembly 540 coupled to the outer frame assembly 510.


As shown, outer frame assembly 510 includes an outer frame 520, covered on all or a portion of its outer face with an outer covering 530, and covered on all or a portion of its inner face by an inner covering 532. Outer frame 520 can provide several functions for prosthetic heart valve 500, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 540, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 500 and the native heart valve apparatus.


Outer frame 520 is configured to be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, outer frame 520 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.


As best shown in FIG. 10, outer frame assembly 510 has an upper end (e.g., at the atrium portion 516), a lower end (e.g., at the ventricle portion 512), and a medial portion (e.g., at the annulus portion 514) therebetween. The medial portion of the outer frame assembly 510 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve. The upper end of the outer frame assembly 510 has a perimeter that is larger than the perimeter of the medial portion. In some embodiments, the perimeter of the upper end of the outer frame assembly 510 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 12, the upper end and the medial portion of the outer frame assembly 510 has a D-shaped cross-section. In this manner, the outer frame assembly 510 promotes a suitable fit into the annulus of the native atrioventricular valve.


Inner valve assembly 540 includes an inner frame 550, an outer covering 560, and leaflets 570. As shown, the inner valve assembly 540 includes an upper portion having a periphery formed with multiple arches. The inner frame 550 includes six axial posts or frame members that support outer covering 560 and leaflets 570. Leaflets 570 are attached along three of the posts, shown as commissure posts 552 (best illustrated in FIG. 11), and outer covering 560 is attached to the other three posts, 554 (best illustrated in FIG. 11), and optionally to commissure posts 552. Each of outer covering 560 and leaflets 570 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of outer covering 560 may be joined to inner covering 532 of outer frame assembly 510, and the lower, ventricle end of leaflets 570 may form free edges 575, though coupled to the lower ends of commissure posts 552.


Although inner valve assembly 540 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 570 are movable between an open configuration and a closed configuration in which the leaflets 570 coapt, or meet in a sealing abutment.


Outer covering 530 of the outer frame assembly 510 and inner covering 532 of outer frame assembly 510, outer covering 560 of the inner valve assembly 540 and leaflets 570 of the inner valve assembly 540 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 532 of the outer frame assembly 510, the outer covering 560 of the inner valve assembly 540, and the leaflets 570 of the inner valve assembly 540 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 530 of the outer frame assembly 510 is formed, at least in part, of polyester.


Inner frame 550 is shown in more detail in FIGS. 13-15. Specifically, FIGS. 13-15 show inner frame 550 in an undeformed, initial state (FIG. 13), a side view of the inner frame 550 in a deployed configuration (FIG. 14), and a bottom view of the inner frame 550 in a deployed configuration (FIG. 15), respectively, according to an embodiment.


In this embodiment, inner frame 550 is formed from a laser-cut tube of Nitinol®. Inner frame 550 is illustrated in FIG. 13 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Inner frame 550 can be divided into four portions, corresponding to functionally different portions of the inner frame 550 in final form: atrial portion 541, body portion 542, strut portion 543, and tether clamp or connecting portion 544. Strut portion 543 includes six struts, such as strut 543A, which connect body portion 542 to tether clamp portion 544.


Connecting portion 544 includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Connecting portion 544 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, connecting portion 544 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in term firmly fixed to the tether line.


In contrast to connecting portion 544, atrial portion 541 and body portion 542 are configured to be expanded radially. Strut portion 543 forms a longitudinal connection, and radial transition, between the expanded body portion and the compressed connecting portion 544.


Body portion 542 includes six longitudinal posts, such as post 542A. The posts can be used to attach leaflets 570 to inner frame 540, and/or can be used to attach inner assembly 540 to outer assembly 510, such as by connecting inner frame 550 to outer frame 520. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.


Inner frame 550 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in FIGS. 14 and 15, respectively.


Outer frame 520 of valve 500 is shown in more detail in FIGS. 16-18. In this embodiment, outer frame 520 is also formed from a laser-cut tube of Nitinol®. Outer frame 520 is illustrated in FIG. 16 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Outer frame 520 can be divided into a coupling portion 571, a body portion 572, and a cuff portion 573, as shown in FIG. 16. Coupling portion 571 includes multiple openings or apertures, such as 571A, by which outer frame 520 can be coupled to inner frame 550, as discussed in more detail below.


Outer frame 520 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in FIGS. 17 and 18, respectively. As best seen in FIG. 18, the lower end of coupling portion 571 forms a roughly circular opening (identified by “O” in FIG. 18). The diameter of this opening preferably corresponds approximately to the diameter of body portion 542 of inner frame 550, to facilitate coupling of the two components of valve 500.


Outer frame 520 and inner frame 550 are shown coupled together in FIGS. 19-21, in front, side, and top views, respectively. The two frames collectively form a structural support for a prosthetic valve such as valve 500. The frames support the valve leaflet structure (e.g., leaflets 570) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 530, inner covering 532, outer covering 560) for the two frames to provide a barrier to blood leakage between the atrium and ventricle, and couple to the tether (e.g., tether assembly 590) (by the inner frame 550) to aid in holding the prosthetic valve in place in the native valve annulus by the tether connection to the ventricle wall. The outer frame 520 and the inner frame 550 are connected at six coupling points (representative points are identified as “C”). In this embodiment, the coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through an aperture (such as aperture 571A) in coupling portion 571 of outer frame 520 and corresponding openings in longitudinal posts (such as post 542A) in body portion 542 of inner frame 550. Inner frame 550 is thus disposed within the outer frame 520 and securely coupled to it.



FIGS. 22-28 illustrate a method of reconfiguring a prosthetic heart valve 300 (e.g., prosthetic mitral valve) prior to inserting the prosthetic heart valve 300 into a delivery sheath 326 (see, e.g., FIGS. 24-28) for delivery into the heart via an access point in the atrium (e.g., the left atrium). The prosthetic heart valve 300 (also referred to herein as “valve”) can be constructed the same as or similar to, and function the same as or similar to the valve 500 described above. Thus, some details regarding the valve 300 are not described below. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valve 500.


As shown in FIG. 22, the valve 300 has an outer frame 320 and an inner frame 350. As discussed above for valves 200 and 500, the outer frame 320 and the inner frame 350 of valve 300 can each be formed with a shape-memory material and have a biased expanded or deployed configuration. The outer frame 320 and the inner frame 350 can be moved to a collapsed or undeployed configuration for delivery of the valve 300 to the heart. In this example method of preparing the valve 300 for delivery to the heart, the outer frame 320 of the valve 300 is first disposed in a prolapsed or inverted configuration as shown in FIG. 23. Specifically, the elastic or superelastic structure of outer frame 320 of valve 300 allows the outer frame 320 to be disposed in the prolapsed or inverted configuration prior to the valve 300 being inserted into the lumen of the delivery sheath 326. As shown in FIG. 23, to dispose the outer frame 320 in the inverted configuration, the outer frame 320 is folded or inverted distally such that the outer frame 320 is pointed away from the inner frame 350. In this inverted configuration, the overall outer perimeter or outer diameter of the valve 300 is reduced and the overall length is increased. For example, the diameter D1 shown in FIG. 22 is greater than the diameter D2 shown in FIG. 23, and the length L1 in FIG. 19 is less than the length L2 in FIG. 23. With the outer frame 320 in the inverted configuration, the valve 300 can be placed within a lumen of a delivery sheath 326 as shown in FIG. 24 for delivery of the valve 300 to the left atrium of the heart. By disposing the outer frame 320 in the inverted configuration, the valve 300 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath, than would be possible if the valve 300 in the configuration shown in FIG. 22 were collapsed radially. This is because in the configuration shown in FIG. 22, the two frames are concentric, and thus the outer frame 320 must be collapsed around the inner frame 350, whereas in the configuration shown in FIG. 23, the two frames are coaxial but not concentric, such that the outer frame 320 can be collapsed without needing to accommodate the inner frame 350 inside it.


The procedure to deliver the valve 300 to the heart can be the same as or similar to the procedures described with reference to FIGS. 1-9. With the distal end portion of the delivery sheath 326 disposed within the left atrium of the heart, the valve 300 can be deployed outside of the delivery sheath 326. For example, although not shown, a tether such as tether 236 described above for the valve 200 can be attached to the valve 300, and a pusher device (not shown) can be used to push the valve distally along the tether and deploy the valve 300. Thus, as described above for valve 200, the valve 300 can be deployed by pushing with the pusher device, pulling with the tether, or both.


As the valve 300 exits the lumen of the delivery sheath 326, the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of FIGS. 25-27. After the outer frame assembly 310 is fully outside of the lumen of the delivery sheath 326, the outer frame 320 can revert to its expanded or deployed configuration as shown in FIG. 28. In some embodiments, the pusher device and/or the tether can be used to aid in the reversion of the outer frame assembly 310. The valve 300 can continue to be deployed until the inner frame 350 is fully deployed with the left atrium and the valve 300 is in the expanded or deployed configuration (as shown in FIG. 22).


In some embodiments, a balloon dilator device can be used during a procedure for transatrial delivery of a prosthetic heart valve to the heart. For example, a balloon dilator as described in International Patent Application No. PCT/US15/14572 (“the '572 PCT application”), the disclosure of which is incorporated herein by reference in its entirety, can be used (e.g., the same as or similar to the balloon dilator device 445). FIG. 29 illustrates such an optional balloon dilator device that can be used during a procedure for transatrial delivery of a prosthetic heart valve to the heart. FIG. 29 illustrates a valve 400 disposed within a lumen of a delivery sheath 426. The valve 400 can be constructed the same as or similar to, and function the same as or similar to, the valves 200, 500 and 300 described above. For example, the valve 400 can include an outer frame 420 and an inner frame 450 as described above for previous embodiments. A tether 436 can be coupled to the valve 400.


The balloon dilator device 445 includes a balloon member 446 that can be disposed at least partially within the distal end portion of the lumen of the delivery device 426, and distal of the valve 400, as shown in FIG. 29. The balloon dilator device 445 also includes an elongate member 447 coupled to the balloon member 446 and that defines an inflation lumen in fluid communication with an interior of the balloon member 446. The elongate member 447 can be coupled to a source of an inflation medium (not shown) configured to supply the inflation medium to the balloon member 446. With the balloon dilator device 445 coupled to the delivery sheath 426 as shown in FIG. 29, the balloon member 446 can be inflated. The delivery sheath 426 can then be inserted into the left atrium LA. The balloon member 446 provides a smooth surface to aid in maneuvering the delivery sheath 426 through an opening in the left atrium LA and into the heart. With the distal end portion of the delivery sheath 426 disposed within the left atrium LA, the balloon member 446 can be deflated and removed through the apical access site. The valve 400 can then be deployed and positioned within the mitral annulus as described above for FIGS. 1-9. For example, a pusher device 438 (see FIG. 29) can be used to push the valve 400 out of the lumen of the delivery sheath 426 and/or the tether 436 coupled to the valve 400 can be pulled.



FIGS. 30 and 31 illustrate an optional wire assist structure that can be used during a procedure to deliver a prosthetic heart valve transatrially as described above for previous embodiments. A wire assist structure 649 can be releasably coupled to a valve 600 as shown in FIG. 30. The valve 600 can be constructed the same as or similar to, and function the same as or similar to, the valves described above for previous embodiments. For example, the valve 600 can include an outer frame 620 and an inner frame 650. The wire assist structure 649 can be releasably coupled to the inner frame 650 as best shown in FIG. 31. For example, releasable connectors (not shown) can be used to couple the wire assist structure 649 to the inner frame 650.


In use, the wire assist structure 649 can be movably disposed within a delivery sheath 626 used to deliver the valve 600 to the heart. The wire assist structure 649 can hold the inner frame 650 and allow for positioning control of the valve 600 (i.e., clocking and advancement) while the outer frame 650 of the valve 600 is fully expanded, which allows the valve 600 to be functioning during the positioning phase. When the valve 600 is in the desired final position, the wire assist structure 649 can be released from the inner frame 650 and removed with the delivery sheath 626.



FIG. 32 illustrates another optional assist member that can be used during a procedure to deliver a prosthetic heart valve transatrially. An assist member 748 can be in the form of a tubular member defining a lumen with a diameter sized to receive at least a portion of the inner frame 750 of a valve 700. The valve 700 can be constructed the same as or similar to, and function the same as or similar to, the valves described above for previous embodiments. For example, the valve 700 can include an outer frame (not shown) and the inner frame 750 as described above for previous embodiments.


In use, the assist member 748 can be movably disposed within a delivery sheath (not shown) used to deliver the valve 700 and be disposed over at least a portion of the inner valve assembly 740. As with the wire assist structure 649, the assist member 748 can hold the inner frame 750 in a small compact configuration and allow for positioning control of the valve 700 (i.e., clocking and advancement) while the outer frame of the valve 700 is being expanded. This can in some cases allow the valve 700 to be functioning (or at least partially functioning) during the positioning phase of the valve 700. With the inner frame 750 held in a compact or small diameter form factor, the valve 700 can be more easily positioned to help seal the annulus with the outer frame (not shown) of the valve 700. When the valve 700 is in the desired final position, the assist member 748 can be removed.



FIG. 33 is a flowchart illustrating a method of deploying a prosthetic mitral valve to a heart using a transatrial delivery approach. The method includes at 880, disposing an outer frame of a prosthetic mitral valve in its inverted configuration. For example, the prosthetic mitral valve can be formed with a shape-memory material and have a biased expanded configuration. At 882, inserting the prosthetic mitral valve and tether into a lumen of a delivery sheath such that the prosthetic mitral valve is moved to a collapsed configuration. At 884, inserting a catheter through an apex of a heart of a patient and positioning a distal end of the catheter within a left ventricle of the heart. At 886, inserting the delivery sheath with the valve and tether into a left atrium, through a native mitral valve gap of the heart, and positioning a distal end of the delivery sheath within the left ventricle of the heart. At 888, capturing a distal end portion of the tether with a snare and pulling the tether through a lumen of the catheter and out a ventricle wall at the apex of the heart. At 890, deploying the prosthetic mitral valve into the left atrium of the heart such that the mitral valve reverts and assumes its biased expanded configuration. At 892, the prosthetic mitral valve is positioned within a mitral annulus of the heart and optionally an epicardial pad device can be secured to the apex of the heart to maintain the prosthetic mitral valve in the desired position (e.g., orientation) within the mitral annulus. In some embodiments, rather than securing the prosthetic mitral valve with a tether and epicardial pad, the prosthetic mitral valve can be secured with clips or other coupling methods to a portion(s) of the ventricular wall of the heart.



FIGS. 34-38 illustrate an embodiment of an expandable epicardial pad device that can be used to secure a tether attached to a prosthetic mitral valve to the heart, for example, at the apex of the heart. An epicardial pad device 939 (also referred to herein as “epicardial pad” or “pad”) can be used, for example, during a procedure to deliver a prosthetic heart valve transatrially as described herein. The epicardial pad 939 can be formed with a small profile such that the epicardial pad 939 can be delivered to the exterior of the heart via a small incision and a small diameter delivery catheter or sheath 963 (see FIGS. 34 and 35). In some embodiments, the delivery sheath 963 can have a diameter, for example, in the range of 3-5 mm. An inner delivery sheath 964 can be movably disposed within a lumen of the delivery sheath 963 and used to hold the tether 936 while the epicardial pad 939 is being deployed as described in more detail below.


As shown in FIGS. 34 and 35 the epicardial pad 939 includes a frame member 961 and a fabric cover 962. The frame member 961 can be formed with, for example a shape-memory material such as Nitinol® such that the epicardial pad 939 can have a biased expanded configuration as shown in FIGS. 35 and 37, and can be moved to a collapsed configuration as shown in FIG. 34. For example, as shown in FIG. 34 the epicardial pad 939 can be placed within a lumen of the delivery sheath 963 to move the epicardial pad 939 to the collapsed configuration. The fabric cover 962 can be formed with various suitable material(s) such as, for example, polyester, polyethylene or ePTFE.


In use, after a prosthetic mitral valve has been deployed within the heart H via a transatrial delivery approach as described herein, the tether 936 attached the prosthetic valve (not shown) can extend outside the apex of the heart. The epicardial pad 939 can be used to secure the tether 936 and prosthetic valve in a desired position. With the tether 936 extending outside of the heart, the tether 936 can be threaded through a center opening of the epicardial pad 939 and through a lumen of the inner delivery sheath 964, as shown in FIGS. 34 and 35. The outer delivery sheath 963 can be laced over the inner delivery sheath 964 and the epicardial pad 939 to collapse the epicardial pad 939 as shown in FIG. 34. As described above, the outer delivery sheath 964 can have a relatively small outer diameter such that it can be inserted through a small incision in the skin of the patient. When the distal end of the delivery sheath 963 is at a desired location near the apex of the heart, the epicardial pad 939 can be moved outside of the delivery sheath 963 such that the epicardial pad 939 can assume its biased expanded configuration as shown in FIGS. 35 and 37. For example, to move the epicardial pad 939 outside of the lumen of the delivery sheath 963, the delivery sheath 963 can be moved proximally, such that the delivery sheath 963 is removed from epicardial pad 939. Alternatively, the epicardial pad 939 can be moved distally outside of the lumen of the delivery sheath 963. For example, a push rod (not shown) can be used, or the inner delivery sheath 964 in which the tether 936 is disposed can be used to move or push the epicardial pad 939 out of the delivery sheath 963.


Prior to moving the expanded epicardial pad 939 into position on the apex of the heart, conventional purse string sutures 965 at the incision through which the tether 936 extends out of the heart at the apex of the heart can be closed. The epicardial pad 939, in the expanded configuration, can then be positioned on the apex of the heart. In this embodiment, the epicardial pad 939 includes an integral locking mechanism 966 as shown in FIGS. 38-40. The locking mechanism can be formed integrally with the frame member 961 and can include barbs 967. As shown in FIGS. 34 and 35, the tether 936 can be inserted through a lumen of the inner delivery sheath 964 such that the delivery sheath 964 can prevent the barbs 967 from contacting the tether 936. For example, the tether 936 can be threaded into the inner delivery sheath 964 prior to the inner delivery sheath 964 and tether 936 being inserted through the center opening of the epicardial pad 939. Thus, the inner delivery sheath 964 can protect the tether 936 from the barbs 967 of the locking mechanism 966 during deployment of the epicardial pad 939. When the epicardial pad 939 is deployed at the desired position on the heart, the inner delivery sheath 964 can be removed uncovering the tether 936 and allowing the barbs 967 to engage or pierce the tether 936 as shown in FIGS. 39 and 40. The barbs 968 can hold or lock the tether 936 and epicardial pad 939 in the desired position. The barbs 9678 can be oriented at various different angles relative to a longitudinal axis of the epicardial pad 939, such as, for example, between 45-120 degrees.


In alternative embodiments, other methods of securing the epicardial pad 939 to the heart can be used. For example, in an embodiment in which the epicardial pad 939 does not include an integrated locking mechanism as described above, the distal end portion of the tether 936 can be tied or another securing device such as a clip or locking pin can be used.



FIGS. 41-43 illustrate another embodiment of an expandable epicardial pad device that can be used to secure a tether attached to a prosthetic mitral valve to the heart, for example, at the apex of the heart. An epicardial pad device 1039 (also referred to herein as “epicardial pad” or “pad”) can be used, for example, during a procedure to deliver a prosthetic heart valve transatrially as described herein. The epicardial pad 1039 can be formed with a small profile such that the epicardial pad 1039 can be delivered to the exterior of the heart via a small incision and a small diameter delivery catheter or sheath (not shown) as described above for epicardial pad 939.


As shown in FIGS. 41-43, the epicardial pad 1039 includes a frame member 1061 and a fabric cover 1062. In this embodiment, the frame member 1061 includes a first frame portion 1068 and a second frame portion 1069. As with the previous embodiment, the frame member 1061 can be formed with, for example a shape-memory material such as Nitinol®, such that the epicardial pad 1039 can have a biased expanded configuration as shown in FIGS. 42 and 43, and can be moved to a collapsed configuration as shown in FIG. 41. For example, although not shown for this embodiment, the epicardial pad 1039 can be placed within a lumen of a delivery sheath to collapse or move the epicardial pad 1039 to the collapsed configuration. In the expanded configuration, the second frame portion 1069 expands within an interior region defined by the first frame portion 1068 as best shown in FIG. 42. In other words, the second frame portion 1069 and the first frame portion 1068 form a double-layer flower-like shape. The fabric cover 1062 can be formed with, for example, various suitable material(s) such as, for example, polyester, polyethylene or ePTFE, as described above for fabric cover 962.


In use, after a prosthetic mitral valve has been deployed within the heart H (FIG. 43), for example, via a transatrial delivery approach as described herein, the tether 1036 attached the prosthetic valve (not shown) can extend outside the apex of the heart. The epicardial pad 1039 can be used to secure the tether 1036 and prosthetic valve in a desired position. With the tether 1036 extending outside of the heart, the tether 1036 can be threaded through a lumen of an inner delivery sheath, such as inner delivery sheath 964 described above, and through a center opening of the epicardial pad 1039. An outer delivery sheath (not shown) can be placed over the inner delivery sheath to collapse the epicardial pad 1039. As described above, the outer delivery sheath can have a relatively small outer diameter such that it can be inserted through a small incision in the skin of the patient. When the distal end of the delivery sheath is at a desired location near the apex of the heart, the epicardial pad 1039 can be moved outside of the delivery sheath 963 such that the epicardial pad 1039 can assume its biased expanded configuration as shown in FIGS. 42 and 43 as described above for epicardial pad 939.


Prior to moving the expanded epicardial pad 1039 into position on the apex of the heart, conventional purse string sutures 1065 at the incision through which the tether 1036 extends out of the heart at the apex of the heart can be closed. The epicardial pad 1039, in the expanded configuration, can then be positioned on the apex of the heart. The epicardial pad 1039 can include an integral locking mechanism, similar to or the same as locking mechanism 966 described above to secure or lock the tether 1036 and epicardial pad 1039 in position on the heart. In alternative embodiments, other methods of securing the epicardial pad 1039 to the heart can be used. For example, as described above, the distal end portion of the tether 1036 can be tied or another securing device such as a clip or locking pin can be used.



FIGS. 44 and 45 illustrate an expandable epicardial pad device 1139 according to another embodiment. The epicardial pad device 1139 can be used in the same or similar manner as described for previous embodiments to secure a tether attached to a prosthetic mitral valve to the heart, for example, at the apex of the heart. The epicardial pad device 1139 (also referred to herein as “epicardial pad” or “pad”) can be used, for example, during a procedure to deliver a prosthetic heart valve transatrially as described herein. In this embodiment, the epicardial pad device 1139 includes a balloon member 1155. The balloon member 1155 can be small in size such that the balloon member 1155 can be delivered to the exterior of the heart via a small incision and a small diameter delivery catheter or sheath (not shown) as described above for previous embodiments.


The balloon member 1155 can define an inner lumen through which the tether 1136 can be inserted. The epicardial pad 1139 can also include an inflation lumen through which an inflation medium can be communicated to and from the balloon member 1155. For example, the inflation lumen (not shown) can be defined by the balloon member 1155 or by a separate inflation line (not shown) in fluid communication with an interior of the balloon member 1155.


In use, after a prosthetic mitral valve has been deployed within the heart H (FIG. 41), for example, via a transatrial delivery approach as described herein, the tether 1136 attached to the prosthetic valve (not shown) can extend outside the apex of the heart. With the tether 1136 extending outside of the heart, the tether 1136 can be threaded or inserted through the lumen of the balloon member 1155 as described above. The balloon member 1155 can be inflated or deflated when the tether 1136 is inserted into the balloon lumen. The balloon member 1155 can be collapsed or deflated (not shown) and then placed within a lumen of a delivery sheath (not shown). The delivery sheath can be inserted through a small incision in the skin of the patient and a distal end of the delivery sheath disposed at a desired location near the apex of the heart. The epicardial pad 1139 (i.e., balloon member 1155) can be moved outside of the delivery sheath and then can be inflated as shown in FIG. 44.


Purse string sutures 1165 at the incision through which the tether 1136 extends out of the heart at the apex of the heart can be closed prior to positioning the epicardial pad 1139 on the apex. Prior to positioning the balloon member 1155 on the apex of the heart, the balloon member 1155 can be partially deflated or fully deflated. The balloon member 1155 is then moved distally into contact with the heart where it can collapse inwardly upon itself to form a cup shape as the balloon member 1155 is pushed against the heart, as shown in FIG. 45. The epicardial pad 1139 and tether 1136 can be secured in the desired position with, for example, clip(s) or a locking pin(s) or by tying the tether 1136. In some embodiments, the balloon member 1155 is secured by adhesively coupling the balloon member 1155 to the tether 1136 such that the balloon member 1155 is prevented from moving relative to the tether 1136. In some embodiments, the balloon member 1155 can be adhesively coupled to the tether 1136 and also adhesively coupled to the heart. In some embodiments, the balloon member 1155 is fully deflated and can be filled with an adhesive or a cement material to add strength and rigidity to the balloon member 1155.



FIGS. 46-48 illustrate yet another embodiment of an epicardial pad device that can be used to secure a tether attached to a prosthetic mitral valve to the heart, for example, at the apex of the heart. The epicardial pad device 1239 (also referred to herein as “epicardial pad” or “pad”) can be used, for example, during a procedure to deliver a prosthetic heart valve transatrially as described herein. In this embodiment, the epicardial pad device 1239 includes multiple stackable pad members 1273 that can be sized such that each stackable pad member 1273 can be delivered separately to the exterior of the heart via a small incision and a small diameter delivery catheter or sheath (not shown). When all of the stackable pad members 1273 are implanted and attached to the heart, the stackable pad members 1273 can define a total surface area of, for example, 2 cm. The stackable pad members 1273 can be formed with, for example, suitable polymer or metal materials such as, for example, PEEK plastic, or stainless steel such as, for example, MP35N stainless steel.


In use, after a prosthetic mitral valve has been deployed within the heart H, for example, via a transatrial delivery approach as described herein, the tether 1236 attached the prosthetic valve (not shown) can extend outside the apex of the heart. With the tether 1236 extending outside of the heart, a first stackable pad member 1273 can be slid onto the tether 1236. For example, the stacking members 1273 can define a through-hole in which the tether 1236 can be received. The first stackable pad member 1273 can be slid or moved distally along the tether 1236 until it contacts the surface of the heart H as shown in FIG. 46. A second stackable pad member 1273 can then be slid distally along the tether 1236 until it contacts the first stackable pad member 1273 and then a third stackable pad member 1273 can be slid distally along the tether 1236 until it contacts the second stackable pad member 1273 as shown in FIG. 46. Each stackable pad member 1273 can be oriented at a different angle relative to the tether 1236 as shown in FIG. 48. Using three separate stackable pad members 1273 in this manner can distribute the forces against the surface of the heart more evenly than a single stackable pad member 1273. After the three stackable pad members 1273 have been positioned against the heart, a locking pin 1274 can be inserted laterally through the tether 1236 to secure the stackable pad members 1273 against the surface of the heart. In some embodiments, it may be desirable to insert a locking pin after each stackable pad member 1273 has been positioned.



FIGS. 50-55 illustrate a method of delivering a prosthetic mitral valve 1300 (shown in FIGS. 52-55) to a left atrium LA of a heart H, e.g., via introduction through a right internal jugular vein puncture site (see FIG. 59). As shown in FIG. 50, a distal end portion of an introducer sheath 1326 is inserted through a right internal jugular vein (shown in FIG. 59), a superior vena cava (SVC), extended through a right atrium RA, through an atrial septum AS, through the left atrium LA, through a mitral valve gap and into a left ventricle LV, and then through a trans-apical puncture through a ventricular wall at an apex Ap of the heart H. A dilator 1335 and a guidewire 1334 are moveably disposed within a lumen of the introducer sheath 1326 and are used to aid in the insertion and maneuvering of the introducer sheath 1326 described above. For example, during delivery of the introducer sheath 1326 from the right internal jugular vein access site through the apex Ap of the heart H, the dilator 1335 can extend distally from the distal end portion of the introducer sheath 1326 and aid in creating space (e.g., by dilating nearby tissue) through which the introducer sheath 1326 can maneuver. For example, the dilator 1335 can dilate the atrial septum AS to create space for the introducer sheath 1326. The guidewire 1334 can be used to guide the introducer sheath 1326 along a desired path (i.e., from the superior vena cava SVC to the left ventricle LV and through the apex AP). The prosthetic mitral valve 1300 (also referred to herein as “valve”) is coupled to or disposed about a tether 1336 (see e.g., FIG. 53), and an end portion of the tether 1336 is coupled to an epicardial pad device 1339, each of which is movably disposed within an inner delivery sheath 1364 (see e.g., FIG. 52) which can be movably disposed within the introducer sheath 1326 during delivery of the introducer sheath 1326.


After the introducer sheath 1326 has been extended through the superior vena cava SVC and the apex Ap of the heart H, the dilator 1335 and the guidewire 1334 can be pulled or otherwise withdrawn proximally through a proximal end portion of the lumen of the introducer sheath 1326, and a pusher device (not shown) can be used to deliver and/or deploy the epicardial pad device 1339. The epicardial pad device 1339 can be used to secure the tether 1336 and the valve 1300 in position within the mitral annulus, as described further herein with respect to FIG. 55.


The epicardial pad device 1339 can be delivered and/or deployed by pushing with the pusher device (not shown) such that the epicardial pad device 1339 and a portion of the tether 1336 exit both the distal end portion of the inner delivery sheath 1364 (shown in FIG. 52) and the distal end of the introducer sheath 1326 and such that the epicardial pad device 1339 is disposed outside the heart H, as shown in FIG. 51. For example, an epicardial pad device as described in International Patent Application No. PCT/US14/49218 (“the '218 PCT application”), the disclosure of which is incorporated herein by reference in its entirety, can be used. In some embodiments, an expandable epicardial pad can be used to secure the tether and valve in position. Example embodiments of expandable pads that can be used are described herein with reference to FIGS. 34-48. Such an epicardial pad can be smaller in size such that the pad can be delivered to the heart via a small incision and small catheter or delivery sheath (e.g., the same as or similar to the inner delivery sheath 1364, or the same as or similar to the introducer sheath 1326) via the right internal jugular vein. In some embodiments, a positioning device can be used to help position the valve and deploy the epicardial pad device. For example, a positioning device as described in the '218 PCT application incorporated by reference above, or devices described in International Patent Application No. PCT/US14/61046, the disclosure of which is incorporated herein by reference in its entirety, can be used. In some embodiments, rather than securing the prosthetic mitral valve with a tether and epicardial pad, the prosthetic mitral valve can be secured with clips or other coupling methods to a portion(s) of the mitral valve apparatus and/or to the ventricular wall of the heart. For example, such coupling methods are described in International Patent Application No. PCT/US14/58826 (“the '826 PCT application”), the disclosure of which is incorporated herein by reference in its entirety.


After the epicardial pad device 1339 is disposed outside the heart, as shown in FIG. 51, the introducer sheath 1326 can be withdrawn proximally relative to the inner delivery sheath 1364 through the superior vena cava SVC, through the right internal jugular vein, through the right internal jugular vein puncture site and outside the heart H. During removal of the introducer sheath 1326 from the heart H, the inner delivery sheath 1364 (with the valve 1300 disposed therein) remains in the heart to aid in delivery and deployment of the valve 1300.


The valve 1300 can be formed with a shape-memory material (as described above for previous embodiments) and can have a biased undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original undeformed shape. For example, the valve 1300 can be in a collapsed or deformed configuration when disposed within the lumen of the inner delivery sheath 1364, and can be moved to its biased, expanded or undeformed configuration when delivered from the inner delivery sheath 1364 and deployed within the heart H. The valve 1300 can be, for example, constructed the same as or similar to, and function the same as or similar to any of the valves described herein (e.g., the valve 500) or in the '572 PCT Application, the '384 Application, and/or the '896 Application, incorporated herein by reference above. In some embodiments, actuator wires (not shown) can be used to selectively (e.g., by an operator) assist and/or control expansion, deployment and/or articulation of the valve 1300 as the valve 1300 is delivered to the heart. For example, actuator wires as described in the '384 Application and/or the '896 Application, both incorporated by reference above, can be used.


To deliver and deploy the valve 1300, a pusher device (not shown) movably disposed within the inner delivery sheath 1364 can be used to push the valve 1300 out of the distal end of the inner delivery sheath 1364 and within the left atrium of the heart H, as shown partially exiting the sheath 1364 in FIG. 52. Optionally, the inner delivery sheath 1364 can also be pulled proximally as the pusher moves the valve 1300 distally. As the valve 1300 exits the inner delivery sheath 1364, the valve 1300 can assume its biased expanded or deployed configuration within the left atrium LA as shown in FIG. 53. With the valve 1300 movably coupled to the tether 1336, the pusher can be used to push or move the valve 1300 relative to the tether 1336 to position the valve 1300 within the mitral annulus. Simultaneously, the tether 1336 is pulled proximally such that the epicardial pad device 1339 is pulled proximally (toward the outer surface of the apex Ap of the heart) and into contact with the apex Ap of the heart H, and the portion of the tether 1336 disposed between the epicardial pad device 1339 and the valve 1300 is pulled taut. The tether 1336 in a taut configuration can aid in movement of the valve 1300 as the valve 1300 is moved relative to the tether 1336 and positioned within the mitral annulus. In some embodiments, the pusher device can also be used to aid in positioning the valve 1300 in a desired radial orientation within the left atrium LA. For example, the pusher device can define an internal lumen (not shown) that can be placed over an inner frame portion of the valve 1300 to hold the inner frame portion in a small diameter, which can help enable the valve 1300 to be positioned in a desired radial orientation and be seated within the annulus of the mitral valve. Further examples of such a valve assist device are described above with reference to FIGS. 30-32.


As shown by progression in FIGS. 54 and 55, and as described above, as the valve 1300 is deployed within the left atrium LA of the heart H, the valve 1300 is allowed to assume its biased expanded or deployed configuration. The inner delivery sheath 1364 can be removed from the patient and the valve 1300 can be positioned, secured or locked, and tensioned in a desired position within the mitral annulus. For example, as described above, the valve 1300 can be moved relative to the tether 1336 to obtain the desired or optimal location in the native mitral annulus and minimize perivalvular leaks, and the tether 1336 can be pulled taut. Once the valve 1300 is disposed in a desirable position and the tether 1336 is desirably tensioned, the valve 1300 can be secured or locked relative to the tether 1336. The valve 1300 can be secured or locked to the tether 1336 in any suitable manner such that the valve 1300 is prevented from moving or translating about or along the tether 1336 during normal heart functioning conditions (e.g., during systole and/or diastole).


For example, a locking mechanism (not shown) can be used to secure the tether 1336 to the valve 1300. In some embodiments, for example, a locking mechanism can be coupled to or included with the valve 1300 and can include a tether attachment member (not shown) that defines at least a portion of a tether passageway (not shown) through which a portion of the tether 1336 can be received therethrough. The tether attachment member can further define a locking pin channel that intersects the tether passageway. A locking pin (not shown) is disposable within the locking pin channel and movable between a first position in which the locking pin is at a spaced distance from the tether passageway, and a second position in which the locking pin intersects the tether passageway and can engage the portion of the tether 1336 disposed therein to secure the tether to the tether attachment member. In some embodiments, the tether attachment member and the valve 1300 can be monolithically constructed, while in other embodiments the tether attachment member and the valve 1300 can be formed separately and coupled together. In such embodiments, in some instances, the tether attachment member can be coupled to the valve and then delivered to and deployed within the heart H, while in other instances, the tether attachment member and the valve 1300 can be delivered to the heart H together, and can then engage one another to secure or lock the valve to the tether 1336. In such instances, the tether attachment member can be configured to be disposed about the tether 1336 such that it can translate or move along the tether 1336 and be moved into engagement with the valve 1300 when the valve is in a desired position and configuration. In some embodiments, a tool (not shown) separate from the locking mechanism can be used to deploy or otherwise cause the locking mechanism to engage the valve 1300 and/or the tether 1336 for securement. In some instances, the tool can be disposed about the tether 1336 and translate or move along the tether 1336.


After the valve 1300 is deployed, proper tension is achieved between the valve 1300 and the epicardial pad device 1339, and the valve 1300 is secured or locked in position relative to the tether 1336, an excess portion (i.e., a proximal portion) of the tether 1336 can be cut or otherwise removed from the heart H. As shown in FIG. 54, a tether cutting tool 1331 can be used to cut the proximal portion of the tether 1336 for removal of the proximal portion from the left atrium LA, the right atrium RA, the superior vena cava SVC, and the right internal jugular vein. In some embodiments, the tether cutting tool 1331 can define an inner lumen therebetween configured to receive at least a portion of the tether 1336 (e.g., the proximal portion of the tether 1336). In this manner, the tether cutting tool 1331 can be disposed about and translate along the tether 1336 until it reaches a desirable position to cut the tether 1336. The tether cutting tool 1331 can be configured to remove from the heart H the portion of the tether 1336 cut by the tether cutting tool 1331. Upon cutting and removal of a portion of the tether 1336, the valve 1300, secured to the remaining tether 1336 and the epicardial pad device 1339 (disposed outside the heart) as shown in FIG. 55, can remain within and function within the heart H (e.g. to limit or prevent mitral valve regurgitation, as discussed further herein). In some embodiments, the tether cutting tool 1331 can, in addition to being configured to cut a portion of the tether 1336, be configured to deliver and/or deploy the locking mechanism used to secure the valve 1300 to the tether 1336.


In other embodiments, instead of delivering and deploying an epicardial pad via the introducer sheath through the right internal jugular vein, the superior vena cava, the right atrium, the atrial septum, the left atrium, the mitral valve gap and the ventricle wall, an epicardial pad can be delivered from outside the heart and to the apex of the heart. For example, similar to the procedure described above with respect to the valve 1300, a guide wire and introducer sheath can be routed from the right internal jugular vein, through the superior vena cava, through the right atrium, through the atrial septum, and through the left atrium to the left ventricle of the heart and through the ventricle wall to deliver a distal portion of a tether outside the heart near the apex of the heart. The tether can be coupled to a valve (e.g., valve 1300) and inserted through an inner delivery sheath movably disposed within the introducer sheath as described above with respect to valve 1300 and FIGS. 50-55. An epicardial pad can be delivered via a separate device different than the introducer sheath to near the apex of the heart. The distal free end of the tether can be threaded through and coupled to the epicardial pad. The introducer sheath can be withdrawn, and the valve can be delivered, deployed, tensioned and secured or locked, as discussed above with respect to the valve 1300.


In other embodiments, a snare device can be used to grab or snare the tether to move it from a location within the heart (e.g., from an atrium or a ventricle) through a ventricle wall at or near the apex Ap and outside of the heart H. FIGS. 56-58 illustrate another method of transjugularly delivering a prosthetic mitral valve 1400 to a left atrium LA of a heart H, e.g., via a right internal jugular vein and a superior vena cava. As with the previous embodiment, a distal end portion of an introducer sheath 1426 is inserted through a right internal jugular vein (see FIG. 59), a superior vena cava SVC, a right atrium RA, an atrial septum AS, and extended into the left atrium LA of the heart H. The prosthetic mitral valve 1400 (also referred to herein as “valve”) is coupled to or disposed about a tether 1436, each of which is movably disposed within an inner delivery sheath 1464 (see e.g., FIG. 57), which is movably disposed within the introducer sheath 1426. As shown in FIG. 56, a distal portion of the tether 1436 extends distally from a distal end portion of the lumen of the introducer sheath 1426.


A snare device 1456, as shown in FIG. 56, can be used to snare or capture the tether 1436 within the left ventricle LV of the heart H and pull it out through the ventricular wall at or near the apex Ap of the heart H. A procedure catheter 1457 can be used to introduce the snare device 1456 into the heart. In use, a distal end of the procedure catheter 1457 is inserted through an incision or opening in a ventricular wall of the heart H (e.g., at or near the apex Ap of the heart H) such that the distal end of the procedure catheter 1457 is disposed within the left ventricle LV of the heart H. The snare device 1456 is moved distally within a lumen of the procedure catheter 1457 until a distal end of the snare device 1456 is disposed within the left ventricle LV (or within the left atrium if necessary to capture the tether 1436). The distal portion of the tether 1436 extending from the distal end portion of the lumen of the introducer sheath 1426 and the distal portion of the valve 1400, disposed within the heart H (e.g., the left atrium, the left ventricle, or a portion therebetween) is snared with the snare device 1456, as shown in FIG. 56. The tether 1436 is pulled with the snare device 1456 through the lumen of the procedure catheter 1457 such that the distal end of the tether 1436 is pulled out the proximal end of the procedure catheter 1457 outside of the heart H. Said another way, a distal end of the tether 1436 is threaded through a distal opening defined by the procedure catheter 1457, through the lumen defined by the procedure catheter 1457 and out a proximal opening defined by the procedure catheter 1457. The procedure catheter 1457 is removed, leaving the distal portion of the tether 1436 extending through the incision in the ventricular wall and outside the heart H, as shown in FIG. 57.


The valve 1400 can be formed with a shape-memory material (as described above for previous embodiments) and can have a biased undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original undeformed shape. For example, the valve 1400 can be in a collapsed or deformed configuration when disposed within the lumen of the delivery sheath 1464, and can be moved to its biased, expanded or undeformed configuration when delivered from the delivery sheath 1464 and deployed within the heart H. The valve 1400 can be, for example, constructed the same as or similar to, and function the same as or similar to any of the valves described herein (e.g., the valve 200, the valve 500, the valve 1300) or in the '572 PCT Application, the '384 Application, and/or the '896 Application incorporated by reference above. As described for previous embodiments, in some embodiments, actuator wires (not shown) can be used to selectively (e.g., by an operator) assist and/or control expansion, deployment and/or articulation of the valve 1400 as the valve 1400 is delivered to the heart H. For example, actuator wires as described in the '384 Application and/or the '896 Application, both incorporated by reference above, can be used.


To deliver and deploy the valve 1400, the delivery sheath 1464 can be pulled proximally towards and through the atrial septum AS and into the right atrium RA such that the valve 1400, which remains coupled or disposed about the tether 1436, exits the distal end portion of the delivery sheath 1464 (as shown by progression in FIGS. 57 and 58) and remains in the left atrium LA of the heart H, as shown in FIG. 58. As the valve 1400 is deployed within the left atrium LA of the heart H, the valve 1400 is allowed to assume its biased expanded or deployed configuration. Alternatively, or additionally, a pusher device (not shown) can be used to push the valve 1400 outside of the distal end portion of the delivery sheath 1464. In some instances, for example, the pusher device can be used to push the valve 1400 while the delivery sheath 1464 is pulled and removed from the valve 1400. In other words, the valve 1400 can be delivered and deployed by pushing the valve 1400 with the pusher device, by pulling the inner delivery sheath 1464, or both. The tether 1436, coupled to the valve 1400, can also be used during the deployment of the valve 1400. For example, to position the valve 1400 within the native mitral annulus, the tether 1436 can be pulled proximally after or simultaneously with the pusher device pushing the valve 1400 outside the lumen of the delivery sheath 1464. The pusher device can also be used to aid in positioning the valve 1400 in a desired radial orientation within the left atrium LA. For example, the pusher device can define an internal lumen (not shown) that can be placed over an inner frame portion of the valve 1400 to hold the inner frame portion in a small diameter, which can help enable the valve 1400 to be positioned in a desired radial orientation and be seated within the annulus of the mitral valve. Further examples of such a valve assist device are described below with reference to FIGS. 30-32.


After the valve 1400 is deployed within the left atrium LA, the delivery sheath 1464 can be removed from the patient (e.g., through the superior vena cava SVC, the right internal jugular vein, and the right internal jugular vein puncture site), and the valve 1400 can be positioned within the mitral annulus as described above using the tether 1436 and/or pusher device. With the valve 1400 in a desired position within the mitral annulus, the tension on the tether 1436 between the prosthetic mitral valve 1400 and the incision at the apex Ap of the heart H can be adjusted and the tether 1436 can be secured at the apex Ap on the ventricular wall of the heart H with epicardial pad device 1439. For example, with the tether 1436 extending outside of the heart, the tether 1436 can be threaded through a center opening of the epicardial pad device 1439 and through a lumen of an epicardial pad delivery catheter (not shown) (also referred to herein as “pad catheter”) such that the epicardial pad 1439 is disposed at a distal end of the pad catheter. An outer delivery device 1496 (also referred to herein as an “outer delivery catheter”) can be laced over the pad delivery catheter to collapse the epicardial pad device 1439. The outer delivery catheter 1496 (with the epicardial pad 1439 and pad catheter disposed therein) can have a relatively small outer diameter such that it can be inserted through a small incision in the skin of a patient. When the distal end of the outer delivery catheter 1496 is at a desired location near the apex Ap of the heart H, the epicardial pad device 1439 can be moved outside of the outer delivery catheter 1496 such that the epicardial pad 1439 can assume a biased expanded configuration, as shown in FIG. 58.


To move the epicardial pad device 1439 outside of the lumen of the outer delivery catheter 1496, the pad catheter can be moved distally within the outer delivery catheter 1496 to push the epicardial pad device 1439 out of the lumen of the outer delivery catheter 1496. In an alternative embodiment, the epicardial pad device 1439, rather than using a pad catheter as described above, the tether 1436 can be threaded through the outer delivery catheter 1496 and the outer delivery catheter 1496 can collapse the epicardial pad device 1439 within the lumen of the outer delivery catheter 1496. The outer delivery catheter 1496 be positioned near the apex Ap as described above, and a push rod (not shown) or an inner sheath (not shown) can be used to move the epicardial pad device 1439 distally outside of the lumen of the outer delivery catheter 1496.


Prior to moving the epicardial pad device 1439 into position on the apex Ap of the heart H, optional conventional purse string sutures (not shown) at the incision through which the tether 1436 extends out of the heart H at the apex Ap of the heart H can be closed. The epicardial pad device 1439 can then be positioned on the apex Ap of the heart, as shown in FIG. 58.


Although as described above the snare device 1456 is introduced into the heart H via the procedure catheter 1457, and the epicardial pad device 1439 is delivered to the apex Ap of the heart H via the outer delivery catheter 1496, in other embodiments, both a snare device and an epicardial pad device can be introduced or delivered via the same catheter, e.g., the procedure catheter 1457. In such embodiments, after use of the snare device 1456 to snare the tether 1436 and removal from the heart of the snare device 1456 via the procedure catheter 1457, the epicardial pad device 1439 and pad catheter described above can be inserted or loaded into the procedure catheter 1457. Similarly, in some embodiments, the distal end of the tether 1436 can be threaded through the center opening of the epicardial pad device 1439 and through the lumen defined by the procedure catheter 1457 (rather than the pad catheter). The epicardial pad device can then be delivered and deployed as discussed above with respect to FIGS. 57 and 58.


Various different types and/or configurations of an epicardial pad device can be used to anchor the prosthetic mitral valve 1400 as described above. For example, any of the epicardial anchor devices described herein, in the '218 PCT application incorporated by reference above, and/or in U.S. Provisional Application No. 62/212,803, can be used. For example, an epicardial pad device can include a frame member (not shown) and a fabric cover (not shown). The frame member can be formed with, for example, a shape-memory material such as Nitinol® such that the epicardial pad can have a biased expanded configuration, and can be moved to a collapsed configuration. For example, the epicardial pad can be placed within a lumen of a delivery sheath (e.g., pad catheter) to move the epicardial pad device to the collapsed configuration. During delivery, the epicardial pad can be moved outside of the delivery sheath, as discussed above with respect to FIGS. 57 and 58, such that the epicardial pad can assume its biased expanded configuration. The fabric cover can be formed with various suitable material(s) such as, for example, polyester, polyethylene or ePTFE.


In an alternative, the valve 1400 can be coupled to the tether 1436 such that the valve 1400 is movable or can translate relative to the tether 1436 as described above for valve 1300. In such an embodiment, a locking mechanism (not shown) can be used to secure the tether 1436 to the valve 1400 as described above for valve 1300. In such an embodiment, a snare device can be used to pull the tether 1436 through the wall of the left ventricle and out of the heart and an epicardial pad can be attached to the tether 1436 as described above, however adjustment and securement of the valve would be performed in a similar or same manner as described for valve 1300. For example, the valve 1400 can be translated relative to the tether 1436 to position the valve in the mitral annulus and the locking mechanism can be used to secure the valve 1400 to the tether 1436 as previously described for valve 1300. For example, the locking mechanism can include a tether attachment member (not shown) that defines at least a portion of a tether passageway (not shown) through which a portion of the tether 1436 can be received therethrough. The tether attachment member further defines a locking pin channel that intersects the tether passageway. A locking pin (not shown) is disposable within the locking pin channel and movable between a first position in which the locking pin is at a spaced distance from the tether passageway, and a second position in which the locking pin intersects the tether passageway and can engage the portion of the tether 1436 disposed therein to secure the tether to the tether attachment member. In some embodiments, the tether attachment member and the valve 1400 can be monolithically constructed, while in other embodiments the tether attachment member and the valve 1400 can be formed separately and coupled together. In such embodiments, in some instances, the tether attachment member can be coupled to the valve and then delivered to and deployed within the heart H, while in other instances, the tether attachment member and the valve 1400 can be delivered to the heart H, and can then engage one another to secure or lock the valve to the tether 1436. In such instances, the tether attachment member can be configured to be disposed about the tether 1436 such that it can translate or move along the tether 1436 and engage with the valve 1400 when the valve is in its desirable position and configuration. In some embodiments, a tool (not shown) separate from the locking mechanism can be used to deploy or otherwise cause the locking mechanism to engage the valve 1400 and/or the tether 1436 for securement. In some instances, the tool can be disposed about the tether 1436 and translate or move along the tether 1436.


After the valve 1400 is deployed, proper tension is achieved between the valve 400 and the epicardial pad device 1439, and the valve 1400 is secured or locked in position relative to the tether 1436, an excess portion (i.e., a proximal portion) of the tether 1436 can be cut or otherwise removed from the heart H, similar to as described above with respect to FIG. 54. For example, a tether cutting tool (not shown) can be used to cut the proximal portion of the tether 1436 for removal of the proximal portion from the left atrium LA, the right atrium RA, the superior vena cava SVC, and the right internal jugular vein. In some embodiments, the tether cutting tool can define an inner lumen therebetween configured to receive at least a portion of the tether 1436 (e.g., the proximal portion of the tether 1436). In this manner, the tether cutting tool can be disposed about and translate along the tether 1436 until it reaches a desirable position to cut the tether 1436. The tether cutting tool can be configured to remove from the heart H the portion of the tether 1436 that the tether cutting tool cut. Upon cutting and removal of a portion of the tether 1436, the valve 1400, secured to the remaining tether 1436 and the epicardial pad device 1439 (disposed outside the heart) as shown in FIG. 58, can remain within and function in a desirable fashion within the heart H (e.g. to limit or prevent mitral valve regurgitation, as discussed further herein). In some embodiments, the tether cutting tool can, in addition to be configured to cut a portion of the tether 1436, be configured to deliver and/or deploy the locking mechanism.


Although the embodiments described above with reference to FIGS. 50-59 describe the transjugular path from a puncture site to the right atrium as including the right internal jugular vein, in other embodiments the delivery of a prosthetic mitral valve can be via a puncture site to the left internal jugular vein, the right external jugular vein, or the left external jugular vein.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.

Claims
  • 1. A method of implanting a prosthetic mitral valve in a mitral valve annulus of a heart of a patient, the method comprising: maneuvering an introducer sheath into a left atrium of the heart;after maneuvering the introducer sheath into the left atrium of the heart, passing the introducer sheath to a left ventricle of the heart;after passing the introducer sheath into the left ventricle of the heart, passing a distal end of the introducer sheath through a puncture in an apex of the left ventricle until the distal end of the introducer sheath is disposed outside the heart;advancing an anchor member through the introducer sheath, while the distal end of the introducer sheath is disposed outside the heart, until the anchor member exits the introducer sheath and is disposed outside the heart;while the anchor member is disposed outside the heart and in contact with the apex of the left ventricle, deploying the prosthetic mitral valve in the mitral valve annulus of the heart by moving the prosthetic mitral valve along a tether so the prosthetic mitral valve is disposed in a desired position; andsecuring the prosthetic mitral valve to a first portion of the tether while a second portion of the tether is coupled to the anchor member.
  • 2. The method of claim 1, wherein maneuvering the introducer sheath into the left atrium of the heart includes passing the distal end of the introducer sheath through a puncture site in the left atrium.
  • 3. The method of claim 1, wherein maneuvering the introducer sheath into the left atrium of the heart includes passing the distal end of the introducer sheath from a right atrium of the heart through a puncture in a septum of the heart to the left atrium of the heart.
  • 4. The method of claim 3, further maneuvering the introducer sheath from a jugular vein into the right atrium of the heart prior to passing the distal end of the introducer sheath through the puncture in the septum of the heart.
  • 5. The method of claim 1, wherein the anchor member is an expandable epicardial pad.
  • 6. The method of claim 1, further comprising pulling the tether proximally to draw the anchor member toward an outer surface of the heart prior to securing the prosthetic mitral valve to the first portion of the tether.
  • 7. The method of claim 6, wherein securing the prosthetic mitral valve to the first portion of the tether includes locking the prosthetic mitral valve to the first portion of the tether so that the prosthetic mitral valve is prevented from moving or translating about or along the tether during normal heart functioning conditions.
  • 8. The method of claim 7, wherein locking the prosthetic mitral valve to the first portion of the tether is performed while the tether is drawn taut.
  • 9. The method of claim 6, further comprising cutting a third portion of the tether after the prosthetic mitral valve is secured to the first portion of a tether, the first portion of the tether being positioned between the second portion of the tether and the third portion of the tether.
  • 10. The method of claim 6, wherein the prosthetic mitral valve includes a tether attachment member that defines at least a portion of a tether passageway through which the tether is received.
  • 11. The method of claim 10, wherein the prosthetic mitral valve and the tether attachment member are monolithically constructed.
  • 12. The method of claim 10, wherein the prosthetic mitral valve and the tether attachment member are formed separately.
  • 13. The method of claim 12, further comprising coupling the tether attachment member to the prosthetic mitral valve prior to deploying the prosthetic heart valve.
  • 14. The method of claim 12, further comprising advancing the tether attachment member along the tether after the prosthetic mitral valve is deployed, and then engaging the tether attachment member to the deployed prosthetic mitral valve.
  • 15. The method of claim 1, wherein deploying the prosthetic mitral valve includes moving the prosthetic mitral valve distally with respect to a delivery sheath, and allowing the prosthetic mitral valve to transition from a collapsed condition to an expanded condition.
  • 16. The method of claim 15, wherein advancing the anchor member through the introducer sheath includes advancing the anchor member through the delivery sheath while the delivery sheath is at least partially received within the introducer sheath.
  • 17. The method of claim 15, wherein the prosthetic mitral valve includes an inner frame having prosthetic leaflets coupled thereto, and an outer frame adapted to engage the native mitral valve annulus.
  • 18. The method of claim 17, wherein prior to deploying the prosthetic mitral valve, the prosthetic mitral valve is received within the delivery sheath in an inverted condition in which the outer frame does not radially overlap an inflow end of the inner frame.
  • 19. The method of claim 18, wherein deploying the prosthetic heart valve includes allowing the outer frame to exit the delivery sheath before the inner frame exits the delivery sheath.
  • 20. The method of claim 19, further comprising reverting the prosthetic heart valve during deploying the prosthetic heart valve so that the outer frame does radially overlap an inflow end of the inner frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/265,221, filed Sep. 14, 2016, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/220,704, entitled “Apparatus and Methods for Transatrial Delivery of Prosthetic Mitral Valve,” filed Sep. 18, 2015, and U.S. Provisional Patent Application Ser. No. 62/305,678, entitled “Apparatus and Methods for Delivery of Prosthetic Mitral Valve,” filed Mar. 9, 2016, the disclosures of which are all hereby incorporated by reference herein. This application is also related to International Application No. PCT/US2015/014572, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2015, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/935,899, entitled “Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2014, and U.S. Provisional Patent Application No. 62/100,548, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Jan. 7, 2015, each of the disclosures of which is incorporated herein by reference in its entirety.

US Referenced Citations (771)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Altieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078645 Conklin et al. Jul 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232995 Kovalsky et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9867700 Bakis et al. Jan 2018 B2
9883941 Hastings et al. Feb 2018 B2
9895221 Vidlund Feb 2018 B2
9986993 Vidlund et al. Jun 2018 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Altieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292262 Adams et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029071 Zlotnick Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110218619 Benichou Sep 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226348 Lane et al. Sep 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120289945 Segermark Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza Mar 2013 A1
20130090728 Solem Apr 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364942 Straubinger et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278955 Liu et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281343 Christianson et al. Oct 2017 A1
20170312076 Lutter et al. Nov 2017 A1
20170312077 Vidlund et al. Nov 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180078368 Vidlund et al. Mar 2018 A1
20180078370 Kovalsky et al. Mar 2018 A1
20180147055 Vidlund et al. May 2018 A1
Foreign Referenced Citations (131)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102639179 Aug 2012 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043830 Apr 2009 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Oct 2004 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2005515836 Jun 2005 JP
2009514628 Apr 2009 JP
2009519783 May 2009 JP
2013512765 Apr 2013 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
2000041652 Jul 2000 WO
200047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
0154625 Aug 2001 WO
2001054624 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
200176510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
0236048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006064490 Jun 2006 WO
2006070372 Jul 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2007100408 Sep 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2014210124 Dec 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2015173609 Nov 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
2017096157 Jun 2017 WO
2017132008 Aug 2017 WO
2017218375 Dec 2017 WO
2018005779 Jan 2018 WO
2018013515 Jan 2018 WO
Non-Patent Literature Citations (49)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
Al Zaibag, M. et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, 57(1):51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R. et al., “Transluminal implantation of arlificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983.
Benchimol, A et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273( 1):55-62.
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1993, 16(5):253-262.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www. nytimes.com/1991 /01 /03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , >, published Jan. 3, 1991, retrieved from the Internet on Feb. 5, 2016, 3 pages.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, G. et al., “Mitral Valved Stent Implantation,” European Journal of Cardio-Thoracic Surgery, 2010, 38:350-355, 2 pages.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Retrieved from the Internet: <http:/www.acvs.org/symposium/proceedings2011/data/papers/102.pdf>, pp. 311-312.
Pavcnik, D. et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vase Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A mechanical analysis of the closed Hancock heart valve prosthesis,” Journal of Biomechanics, 1988, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, J. B., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology, 1990, 176:535-538.
Serruys, P. W. et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal, Sep. 1989, 10(9):774-782.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/-database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, B. T. et al., “Modifications of Gianturco Expandable Wire Stents,” Am. J. Roentgenol., May 1988, 150(5):1185-1187.
Watt, A. H. et al., “Intravenous Adenosine in the Treatment of the Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology, 1986, 21:227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, D. J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, 1986, pp. 415-424, Butterworths.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, American Chemical Society, 1984, pp. 111-150.
Related Publications (1)
Number Date Country
20190247186 A1 Aug 2019 US
Provisional Applications (2)
Number Date Country
62305678 Mar 2016 US
62220704 Sep 2015 US
Continuations (1)
Number Date Country
Parent 15265221 Sep 2016 US
Child 16394053 US