Some embodiments described herein relate to apparatus and methods for monitoring an implant, and in particular to apparatus and methods for detecting optical signals emitted from an implant with restriction of off-axis light.
Some embodiments described herein relate to apparatus and methods for monitoring an implant, and in particular to apparatus and methods for detecting optical signals through a relatively large surface area of tissue relative to a surface area of tissue through which an excitation optical signal is supplied.
The monitoring of the level or concentration of an analyte, such as glucose, lactate, oxygen, etc., in certain individuals is important to their health. High or low levels of glucose, or other analytes, may have detrimental effects or be indicative of specific health states. The monitoring of glucose is particularly important to persons with diabetes, a subset of whom must determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
A conventional technique used by many persons with diabetes for monitoring their blood glucose level includes the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose level using calorimetric, electrochemical, or photometric detection. This technique does not permit continuous or automatic monitoring of glucose levels in the body, but typically must be performed manually on a periodic basis. Unfortunately, the consistency with which the level of glucose is checked varies widely among individuals. Many persons with diabetes find the periodic testing inconvenient, and they sometimes forget to test their glucose level or do not have time for a proper test. In addition, some individuals wish to avoid the pain associated with the test. Unmonitored glucose may result in hyperglycemic or hypoglycemic episodes. An implanted sensor that monitors the individual's analyte levels would enable individuals to monitor their glucose, or other analyte levels, more easily.
Some known devices perform in situ monitoring of analytes (e.g., glucose) in the blood stream or interstitial fluid of various tissues. A number of these devices use sensors that are inserted into a blood vessel or under the skin of a patient. Communicating and/or retrieving data from such known and/or proposed devices, however, can be challenging. For example, an implanted sensor may be able to communicate with a detector or receiver using radio frequency (RF) transmissions. Such a sensor, however, may require electronics, batteries, antennae, and/or other communication hardware which may increase the bulk of the implanted sensor, may require frequent inconvenient recharging, and/or may decrease the longevity or reliability of the implant.
A need therefore exists for apparatus and methods for detecting optical signals from an implanted sensor, such that a fluorescent sensor can be used. A fluorescent sensor may not require electric charging and/or transmission electronics. Such implanted sensors, however, may be difficult to read or to monitor optically because of low levels of florescence in the presence of high scatter due to dynamic changes in skin conditions (e.g., blood level and hydration). The skin is highly scattering, and the scattering may dominate the optical propagation. Scatter is caused by index of refraction changes in the tissue, and the main components of scatter in the skin are due to lipids, collagen, and other biological components. The main absorption is caused by blood, melanin, water, and other components.
Devices and apparatus described herein are suitable for providing accurate and consistent measurement of an analyte by monitoring an implantable sensor in such low-signal, high-scattering environments.
Some embodiments described herein relate to an apparatus including a light source configured to transmit an excitation optical signal to an implanted sensor and a detector configured to detect an analyte-dependent optical signal emitted from an implanted sensor. The apparatus can include a lens configured to focus at least a portion of the analyte-dependent optical signal onto the detector.
Some embodiments described herein relate to an array of lenses. Each lens from the array of lenses can be configured to transmit an analyte-dependent optical signal from an implanted sensor to a detector. A plurality of light-blocking elements can be disposed within a substrate of the array of lenses. Each light blocking element from the array of light-blocking elements can be configured to prevent or inhibit a photon having an angle of incidence greater than a predetermined angle of incidence from passing through the substrate.
Some embodiments described herein relate to an apparatus including a detector configured to detect an analyte-dependent optical signal from an implanted sensor. A lens can be configured to focus at least a portion of the analyte-dependent optical signal onto the detector. A filter can be configured to attenuate light having wavelengths shorter than the analyte-dependent optical signal.
Some embodiments described herein relate to an implant capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. A device including at least one light source can be arranged to transmit the excitation light through tissue surrounding the implant. The device can include at least one detector arranged to detect light emitted from implanted sensor and transmitted through the tissue in the emission wavelength range. The device can also include an array of lenses arranged with an array of apertures to restrict transmission of off-axis light to the detector. The arrays of lenses and the array of apertures can be positioned with respect to the detector to restrict the light emitted from the tissue that travels to the detector based on the incidence angle of the emitted light. At least one layer of light control film can be arranged with the lens and aperture arrays to restrict the light emitted from the tissue that travels to the detector based on the incidence angle of the emitted light relative to the film. The device can further include at least one filter positioned to restrict transmission of light to the detector to wavelengths substantially within the emission wavelength range.
Some embodiments described herein relate to an optical detection device is for monitoring an implant embedded in tissue of a mammalian body. The implant is capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The device can include at least one light source arranged to transmit the excitation light through the tissue to the implant. At least one detector is arranged to detect light emitted from the tissue in the emission wavelength range. The device can also include an array of lenses arranged with an array of apertures to restrict transmission of off-axis light to the detector. The arrays of lenses and the array of apertures are positioned with respect to the detector to restrict the light emitted from the tissue that travels to the detector according to an input angle of the emitted light. Light-blocking elements are arranged between the apertures to block propagation of incident light rays through the apertures. The light-blocking elements are positioned to block the incident light rays in accordance with an increase in incident angle of the light rays with respect to optical axes of the apertures. The device further comprises at least one filter arranged to restrict the transmission of the emitted light to the detector to wavelengths substantially within the emission wavelength range.
Some embodiments described herein relate to a method for monitoring an implant embedded in tissue of a mammalian body. The implant is capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The method can include transmitting the excitation light through the tissue to the implant and detecting light emitted from the tissue in the emission wavelength range. The light in the emission wavelength range is transmitted through an array of lenses and an array of apertures arranged to restrict the light emitted from the tissue that travels to at least one detector according to an input angle of the emitted light. The light in the emission wavelength range is also transmitted through at least one layer of light control film arranged with the lens and aperture arrays to restrict the light emitted from the tissue that travels to the detector according to an incident angle of the emitted light relative to the film. The light in the emission wavelength range is also transmitted through at least one filter positioned to restrict transmission of light to the detector to wavelengths substantially within the emission wavelength range.
Some embodiments described herein relate to a method for monitoring an implant embedded in tissue of a mammalian body. The implant is capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The method can include transmitting the excitation light through the tissue to the implant and detecting light emitted from the tissue in the emission wavelength range. An array of apertures arranged with an array of lenses restricts the light emitted from the tissue that travels to at least one detector according to an input angle of the emitted light. The method can also include blocking propagation of incident light rays through the apertures using light-blocking elements positioned between the apertures to block the incident light rays having an angle of incidence greater than a threshold angle of incidence based on, for example, the optical axes of the apertures. The method can further include filtering the emitted light to wavelengths substantially within the emission wavelength range.
Some embodiments described herein relate to an optical detection device for monitoring an implant embedded in tissue under skin. The implant is capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The device can include at least one light source arranged to transmit the excitation light through a first surface area of the skin to the implant embedded in the tissue. One or more detectors can be arranged to detect light that is emitted from at least a second surface area of the skin, wherein the light source and one or more detectors are arranged such that the ratio of the surface area of the skin through which the detected light passes as it travels to the one or more detectors to the surface area of the skin through which the excitation light is transmitted is at least 4:1.
Some embodiments described herein relate to a method for monitoring an implant embedded in tissue under skin. The implant can be capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The method can include transmitting the excitation light through a first surface area of the skin to the implant embedded in the tissue and detecting light that is emitted from at least a second surface area of the skin. The ratio of the surface area of the skin through which the detected light passes as it travels to one or more detectors to the surface area of the skin through which the excitation light is transmitted is at least 4:1.
According to some embodiments described herein, an optical detection device is provided for monitoring an implant embedded in tissue of a mammalian body. The implant can include a fluorophore-labeled target capable of emitting, in response to excitation light in at least one excitation wavelength range, at least one analyte-dependent optical signal in at least one emission wavelength range. The optical detection device can be operable to illuminate the implant with light whose wavelength content falls within an absorption band and/or collect light whose wavelength content is in an emission band.
The optical detection device can include excitation optics including a light source and/or optics operable to generate illumination in the absorption band. The optical detection device can also include emission optics operable to collect fluorescent emissions from the implant. Because in some instances, it may be difficult to obtain, design, and/or implement a light source that has a spectral content (i.e., wavelength range) that exactly matches every fluorophore absorption band, an optical filter or filters (usually band-pass filters) can be used along with the light source to limit the range of illuminating wavelengths to that of the absorption band and/or to reduce illuminating wavelengths of the emission band. Similarly, the emission optics can include another filter or filters operable to allow substantially only light with wavelengths in the emission band to reach the detector and/or to attenuate light with other wavelengths (e.g., light in the absorption band). Similarly stated, the optical detection device can include an optical system design operable to allow substantially only photons with wavelengths in the absorption band reach the target, and substantially only photons with wavelengths in the emission band reach the detector. Without proper optics, photons from the light source may be reach the detector and induce a measurement error.
Properly designing an optical system for an optical detection device can be complicated in instances in which the amount of emitted fluorescence to be detected is much less than the amount of excitation light scattered (e.g., not absorbed) by an intermediate surface (e.g., skin or tissue disposed between the optical detection device and the implant). One challenge is that the amount of excitation light that reaches the implant may be low because of the absorption and scattering caused by the various body parts (skin, tissue, etc.). The low amount of emitted fluorescence is further reduced by absorption and scattering as it makes its way out of the body towards the detector. Existing optical filter technology, which may provide rejection of unwanted photons on the order of (10′) may be insufficient in these situations. Another challenge is that the difference between excitation and detection wavelengths (e.g., Stokes shift) may be quite small. A further challenge is that dichroic filters cause shifting (e.g., the “blue shift”) of filter wavelengths as a function of the angle of light rays transmitted through the filter. Because of these challenges, standard fluorescence methods would allow through high background levels and, in turn, result in low Signal-to-Background (SBR) and Signal-to-Noise (SNR) ratios.
Some embodiments described herein relate to a compact device that can accurately and consistently monitor an implanted sensor. Such a device can be worn by a user substantially continuously and/or may not substantially restrict movements or activities of the user. The device and the sensor can collectively allow for continuous and/or automatic monitoring of an analyte and can provide a warning to the person when the level of the analyte is at or near a threshold level. For example, if glucose is the analyte, then the monitoring device might be configured to warn the person of current or impending hyperglycemia or hypoglycemia. The person can then take appropriate actions.
In the description contained herein, it is understood that all recited connections between structures can be direct operative connections or indirect operative connections through intermediary structures. A set of elements includes one or more elements. Any recitation of an element is understood to refer to at least one element. A plurality of elements includes at least two elements. Unless clearly indicated otherwise, any described method steps need not be necessarily performed in a particular or illustrated order. A first element (e.g. data) derived from a second element encompasses a first element equal to the second element, as well as a first element generated by processing the second element and optionally other data. Making a determination or decision according to a parameter encompasses making the determination or decision according to the parameter and optionally according to other data. Unless otherwise specified, an indicator of some quantity/data may be the quantity/data itself, or an indicator different from the quantity/data itself. Some embodiments described herein reference a wavelength, such as an excitation wavelength or an emission wavelength. Unless clearly indicated otherwise, a wavelength should be understood as describing a band of wavelengths including the wavelength. Computer programs described in some embodiments of the present invention may be stand-alone software entities or sub-entities (e.g., subroutines, code objects) of other computer programs. Computer readable media encompass non-transitory media such as magnetic, optic, and semiconductor storage media (e.g. hard drives, optical disks, flash memory, DRAM), as well as communications links such as conductive cables and fiber optic links. According to some embodiments, the present invention provides, inter alia, computer systems comprising hardware (e.g. one or more processors and associated memory) programmed to perform the methods described herein, as well as computer-readable media encoding instructions to perform the methods described herein.
The following description illustrates embodiments of the invention by way of example and not necessarily by way of limitation.
A light source 18 is arranged to transmit excitation light within the excitation wavelength range from the surface of the skin 14, through the tissue 15, and to the implant 12. Suitable light sources include, without limitation, lasers, semi-conductor lasers, light emitting diodes (LEDs), and organic LEDs. Detectors 16, 20 are arranged with the light source 18 to detect light emitted from the tissue in the emission wavelength range. Suitable detectors include, without limitation, photodiodes, complementary metal-oxide-semiconductor (CMOS) detectors or charge-coupled device (CCD) detectors. Although multiple detectors are shown, a single and/or universal detector can be used.
The detectors can be 16, 20 filtered (e.g., with dichroic filters or other suitable filters) to measure the optical signals emitted within the wavelength ranges. For example, a suitable luminescent dye sensitive to glucose concentration is Alexa Flour® 647 responsive to excitation light (absorption) in the range of about 600 to 650 nm (absorption peak 647 nm) and within an emission wavelength range of about 670 to 750 nm with an emission peak of about 680 nm. Thus, in an embodiment in which the sensor includes Alexa Flour® 647, the detectors 16, 20 can be filtered from light having a wavelength shorter than about 650 nm or shorter than about 670 nm.
In some embodiments, the implant 12 is further capable of emitting, in response to excitation light within a second excitation wavelength range, at least one analyte-independent optical signal within a second emission wavelength range. For example, the implant 12 can contain an analyte-independent luminescence dye that functions to control for non-analyte physical or chemical effects on a reporter dye (e.g., photo bleaching or pH). Multiple dyes may be used. The analyte-independent optical signal is not modulated by analyte present in the tissue 15 and provides data for normalization, offset corrections, or internal calibration. The analyte-independent signal may compensate for non-analyte affects that are chemical or physiological (e.g., oxygen, pH, redox conditions) or optical (e.g., water, light absorbing/scattering compounds, hemoglobin). Alternatively, the analyte-independent signal may be provided by a stable reference dye in the implant 12. Suitable stable reference materials include, but are not limited to, lanthanide-doped crystals, lanthanide-doped nanoparticles, quantum dots, chelated lanthanide dyes, and metal (e.g., gold or silver) nanoparticles. The stable reference dye may provide a reference signal for other signals (e.g., to determine photo bleaching).
In the operation of device 10, the light source 18 is activated to transmit excitation light within the excitation wavelength range from the surface of the skin 14, through the tissue 15, and to the implant 12. The dye in the implant 12 absorbs some of the excitation light and emits fluorescence that depends on glucose or other analyte properties. The light may be emitted from the implant 12 in all directions, and scattered by the tissue 15. Some of the light that is emitted from the implant 12 is transmitted through the tissue 15 and detected by at least one of the detectors 16, 20. This can provide the primary analyte-dependent optical signal. In embodiments in which a reference optical signal is used for normalization, the light source 18 (or a second light source) is activated to transmit second excitation light from the surface of the skin 14 to the implant 12. At least one of the detectors 16, 20 measures, in response to the second excitation light, a second optical signal emitted from the tissue 15 through the surface of the skin 14.
The second optical signal may be used to normalize the primary analyte-dependent optical signal for scattering of light emitted from the implant 12. At least one corrected signal value may be calculated in dependence upon the measured optical signals. In one example, the primary analyte-dependent signal from the implant may be normalized by the analyte-independent optical signal emitted from the implant 12. Prior to executing optical reads for the analyte-dependent signal and/or the analyte-independent signal, a dark reading may be taken to account for background or ambient light, and this reading may be used to further correct the signals, e.g., by background subtraction.
In some embodiments, an analyte value (e.g., glucose concentration) is determined from the analyte-dependent signal and/or a ratio of multiple optical signals including one or more reference signals. In one example, the signal from the glucose sensitive fluorophore (e.g., Alexa Flour® 647) is normalized by the signal from a glucose insensitive fluorophore (e.g., Alexa Flour® 700). One suitable dye for the analyte-independent signal is Alexa Flour® 750 which is responsive to excitation light within an excitation wavelength range of about 700 to 760 nm (excitation peak 750 nm) and has an emission wavelength range of about 770 to 850 nm with an emission peak of about 780 nm.
An analyte value can be determined based on the optical signal(s) using, for example, a look-up table or calibration curve. Determining the analyte value can be implemented in software (executing on a processor) and/or hardware. For example, the optical device 10 can include a microprocessor. In some embodiments, the microprocessor is programmed to store measured optical signal values in a memory and/or to calculate normalized signal values and analyte concentrations. Alternatively, these functions may be performed in a separate processor or external computer in communication with the optical device 10. The external processor or computer can receive data representative of the measured optical signals and calculates the corrected signal value and analyte concentration. Alternatively, multiple processors may be provided, e.g., providing one or more processors in the optical device that communicate (wirelessly or with wires) with one or more external processors or computers.
In some embodiments in which two implant dyes (e.g., luminescent dyes) are utilized, it is possible that the implant dyes may share or overlap excitation (absorption) or emission wavelength ranges. In one example, the emission wavelength range of the first dye, which provides the analyte-dependent luminescence signal, shares or overlaps the excitation wavelength range of the second dye, which provides the analyte-independent luminescence signal. In another embodiment, the first and second dyes may share or overlap excitation wavelength ranges (so that a common light source may be used) and emit optical signals within different emission wavelength ranges. In another embodiment, the first and second dyes may be excited by light within different excitation wavelength ranges and emit optical signals within the same or overlapping emission wavelength range(s).
The implant 12 can be embedded in subcutaneous tissue (e.g., 1 to 4 mm under the surface of the skin 14). In some embodiments, the implant 12 comprises hydrogel scaffolds embedded with glucose-sensing nanospheres. The design of the implant 12 can use injectable, tissue-integrating, vascularizing scaffolds as the sensor. Embedded nanospheres emit luminescence that changes intensity and lifetime in response to the presence or concentration of the analyte (e.g., interstitial glucose). The spacing distances between each of the detectors 16, 20 and the light source 18 determine the depths of the respective light paths for detecting optical signals from the implant 12. The combination of an excitation light source and a detection band is an optical channel. The light source 18 and detectors 16, 20 can be arranged such that a surface area of skin 14 through which the excitation light is transmitted is located between substantially surrounding surface areas of skin 14 through which the detected light passes as it travels from the tissue 15 to one or more detectors 16, 20.
Although only one light source 18 and two detectors 16, 20 are shown in
The optical device 10 can be configured to ensure that substantially only photons with wavelengths in the excitation wavelength range(s) reach the implant 12, and substantially only photons with wavelengths in the emission wavelength ranges(s) reach at least one of the detectors 16, 20. Such an arraignment can minimize photons from the light source 18 reaching the detectors 16, 20, which can result in measurement error.
At least one layer of light control film 26 is arranged with the lens array 22 and the aperture array 24. The light control film 26 can restrict the light emitted from the tissue from entering the lens array 22 and/or the aperture array 24 based on the incident angle of the emitted light relative to the film 26. In one example, the light control film 26 is Vikuti™ optical grade micro-louver privacy film commercially available from 3M™, which can block light having an incident angle greater than desired (e.g., greater than 24 degrees) relative to a perpendicular line through the film 26. This privacy film comprises a set of microlouvers that prevent light from large incident angles from reaching the lens array 22. In other embodiments, the film 26 comprises alternating transparent and opaque layers in an arrangement which is similar to a Venetian blind. Light propagating from angles greater than a desired incident angle can be absorbed and/or reflected.
At least one filter 28 (e.g., a dichroic or dielectric filter) is positioned to restrict transmission of light to the detector 16 to wavelengths substantially within the desired emission wavelength range. Because the detection of optical signals is dominated by low levels of return signals relative to the excitation light, the filter 28 can prevent scattered excitation light from blinding the detector 16. Suitable filters include band-pass, low-pass, and high pass filters depending upon the desired emission wavelength range for an application. Some modern optical filters have demonstrated 10−9 light rejection due to improvements in coating technologies. Additionally, intermediate layers of the optical detection system (e.g., the lens array 22, the aperture array 24, etc.) can include anti-reflective coatings to reduce or prevent light leaking through to the detector 16.
Due to fundamental properties of dichroic filters, maintaining a high level of light rejection requires careful design. One property of dichroic filters that detracts from light rejection is the “blue shift” as a function of input angle, where the transmittance wavelengths of dichroic filters change as a function of input angle. For the detection light emitted from the implant, there is a trade off between the input angle and the absolute optical signal. The light leaving the tissue is highly scattered and may form a lambertian distribution by the time it reaches the surface of the skin. The collection efficiency of the emitted light is proportional to ˜NA2, where NA=Numerical Aperture=n sin θ, and θ is the input angle. To improve the collection efficiency, the allowable input angle θ can be increased without increasing the angle so much to allow excitation light though the filter 28.
The lens array 22 and the aperture array 24 control the input angle θ of light traveling to the detector 16. The lens array 22 and an aperture array 24 restrict the light to an input angle less than θ, which in some embodiments is selected to be +/−20 degrees. The input angle θ can be controlled by varying the size of the apertures and the focal length of the micro lenses in the lens array 22. The smaller the aperture, then the smaller is input angle θ. The longer the focal length, then the smaller is input angle θ. Although not shown, a spacer can be used to maintain separation between the surface of the aperture array 24 and the lens array 22.
As one possible example, one or more light sources may be arranged to transmit excitation light to the skin through the central via 34 having a circular cross-section to transmit the excitation light through a substantially circular surface area of the skin having a diameter of about 1 mm and a corresponding excitation surface area of about 0.8 mm2. The detector 38 has a square cross-section and is positioned to detect light emitted from a substantially square surface area of the skin through which the detected light passes as it travels to the detector 38. The detection surface area is substantially square with sides of 10 mm length, so that the total detection surface area is (10 mm×10 mm)−1 mm2=99 mm2. Accordingly, in this example, the ratio of detection surface area to excitation surface area is greater than 120:1.
In some embodiments, the light control film 62 and/or 64 may be operable to restrict light emitted from the tissue from entering the lens array 22 and the aperture array 24 based on a combination of incident angle and azimuth. For example, in an embodiment where the light control film 62 and/or 64 includes multiple micro-louvers, the light control film 62 and/or 64 may be effective at blocking high angle-of-incidence light having an azimuth substantially perpendicular to the micro-louvers, but may be relatively ineffective at blocking high angle-of-incidence light having an azimuth substantially parallel to the micro-louvers. In some such embodiments, two layers of light control film 62, 64 can be cross-hatched or otherwise disposed such that louvers or other light control elements are non-parallel such that the light control film 62, 64 are collectively effective at blocking high angle-of-incidence light having different azimuths.
In some embodiments, the films 62, 64 may be substantially the same as each other, or comprises different types of privacy film. Additionally, the filter 28 (e.g., a dichroic or dielectric filter) may be positioned between the aperture array 24 and the detector 16 to restrict the transmission of the emitted light to the detector 16 to wavelengths substantially within the emission wavelength range(s). The operation of the embodiment of
The lens array 122 includes light-blocking elements 72. The light-blocking elements 72 can be disposed between the apertures 25 to block propagation of off-axis light rays 74, 76 through the apertures 25. The light-blocking elements 72 can include black resin, metal, and/or metal film deposited in cavities of a substrate 123 of the lens array 122 positioned. At least one filter 28 is positioned to restrict the transmission of the emitted light to the detector 16 to wavelengths substantially within the emission wavelength range. Optionally, one or more layers of light control film may be included in this embodiment. The operation of the embodiment of
In some embodiments, the optical detection device 210 can be configured to detect implant signals at a lateral distance at least twice the depth of the implant. For example, at least a portion of at least one of the detectors 216, 220, 222, 224 can be at least twice as far away from the implant laterally as that portion is from the implant distally. For example, in an instance where the light source 218 is centered over an implant that is embedded under 4 mm of tissue, at least a portion of at least one of the detectors 216, 220, 222, 224 can be 8 mm away from the center of the light source 218. Similarly stated, the furthermost edge or corner of at least one of the detectors 216, 220, 222, 224 can be at least twice as far away from the center of the light source 218 as the implant is deep. In an alternate embodiment, such as an embodiment having a single or universal detector, the detector can have a radius at least twice the depth of the implant. In other embodiments, the optical detection device 210 can be configured to detect implant signals at a lateral distance at least three times, at least five times, or any other suitable multiple of the depth of the implant. An optical detector device 210 operable to detect implant signals a relatively large lateral distance from the implant may be able to detect a larger portion of an emitted signal, particularly in a high-scattering environment. Capturing a larger portion of the emitted signal can improve detection accuracy.
It will be clear to one skilled in the art that the above embodiments may be altered in many ways without departing from the scope of the invention. For example, many different permutations or arrangements of one or more light sources, one or more detectors, filters, and/or light guiding elements connecting the optical components may be used to realize the device and method of the invention. For example, alternative embodiments may have different dimensions and/or wavelengths. Embodiments may include cabled or wireless hand-held readers, wireless skin patch readers, bench-top instruments, imaging systems, smartphone attachments and applications, or any other configuration that utilizes the disclosed optics and algorithms.
In some embodiments described herein, a monitoring device can be operable to simultaneously emit an excitation optical signal and detect an emission signal. For example, the detector of such a monitoring device can be shielded from reflected or back-scattering excitation light using apertures, light-blocking elements, filters, light control film, etc. In other embodiments, a monitoring device can be operable to emit an excitation optical signal during one period of time, and detect an emission signal during another period of time in which the excitation optical signal is deactivated.
Tissue optical heterogeneity in some cases may be significant. Thus, it may be advantageous to utilize a single light source and a single detector to assure that every color passes through the same optical pathway through the tissue. In one embodiment, a light source can be positioned with a set of moveable filters between the light source and the surface of the skin. Similarly a single photodetector can be utilized in place of separate discrete detector elements. The detector may be used to detect different wavelength ranges by using moveable or changeable filters to enable multiple wavelengths to be measured. Changing or moving filters may be accomplished by a mechanical actuator controlling a rotating disc, filter strip or other means. Alternatively, optical filters may be coated with a material that, when subjected to current, potential, temperature or another controllable influence, changes optical filtering properties, so that a single photodetector can serve to detect multiple wavelength ranges.
In some embodiments, the devices and methods of the present invention make use of wafer-based micro-optics. These systems are created lithographically, but can be replicated at low cost. The technology allows for layers of optics and detectors to be bonded at the wafer level and then diced into individual detector systems. Suitable components include etched refractive lenses, polymer replicated refractive lenses, etched binary lenses, replicated binary lenses, replicated holograms, and replicated volume holograms.
In some embodiments, a complementary metal-oxide-semiconductor (CMOS) detector may be used as an integral part of the optical system. The advantage of a CMOS sensor is the ability to integrate the detection, excitation, and digital filtering circuitry into a single piece of silicon. A new technology was recently announced, sCMOS, where researchers have been able to greatly reduce the noise in CMOS detectors to be comparable to charge charge-coupled device (CCD) detectors. Another benefit to a CMOS integrated solution is the ability to perform lock-in detection and digital filtering on the signals to reduce or eliminate the impact of ambient light.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different embodiments described.
This application is a continuation of U.S. patent application Ser. No. 14/297,787, entitled “Apparatus and Methods for Detecting Optical Signals From Implanted Sensors,” filed Jun. 6, 2014, which claims priority under 35 U.S.C. § 119(e) to provisional U.S. patent application No. 61/832,065, entitled “Detection of Implant Optical Signals with Off-Axis Light Restriction,” and to provisional U.S. patent application No. 61/832,078, entitled “Detection of Implant Optical Signals with Large Ratio of Surface Area,” each filed Jun. 6, 2013, the disclosure of each of which is incorporated herein by reference in their entirety.
This invention was made with government support under grant numbers NIH R01 EB016414 and NIH R43 DK093139, awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4703756 | Gough et al. | Nov 1987 | A |
5094958 | Klainer et al. | Mar 1992 | A |
5284140 | Allen et al. | Feb 1994 | A |
5462880 | Kane et al. | Oct 1995 | A |
5551422 | Simonsen | Sep 1996 | A |
5777060 | Van Antwerp | Jul 1998 | A |
5895658 | Fossel | Apr 1999 | A |
5962852 | Knuettel et al. | Oct 1999 | A |
6002954 | Van Antwerp et al. | Dec 1999 | A |
6011984 | Van Antwerp | Jan 2000 | A |
6013122 | Klitzman et al. | Jan 2000 | A |
6040194 | Chick et al. | Mar 2000 | A |
6104945 | Modell et al. | Aug 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6319540 | Van Antwerp et al. | Nov 2001 | B1 |
6475750 | Han et al. | Nov 2002 | B1 |
6497729 | Moussy et al. | Dec 2002 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6565960 | Koob et al. | May 2003 | B2 |
6602678 | Kwon et al. | Aug 2003 | B2 |
6602716 | Klimant | Aug 2003 | B1 |
6642015 | Vachon et al. | Nov 2003 | B2 |
6671527 | Petersson et al. | Dec 2003 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6750311 | Van Antwerp et al. | Jun 2004 | B1 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6794195 | Colvin, Jr. | Sep 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
6818226 | Reed et al. | Nov 2004 | B2 |
6821530 | Koob et al. | Nov 2004 | B2 |
6844023 | Schulman et al. | Jan 2005 | B2 |
6965791 | Hitchcock et al. | Nov 2005 | B1 |
6994691 | Ejlersen | Feb 2006 | B2 |
7060503 | Colvin, Jr. | Jun 2006 | B2 |
7067194 | Mao et al. | Jun 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7132049 | Hou et al. | Nov 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7162289 | Shah et al. | Jan 2007 | B2 |
7186789 | Hossainy et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7202947 | Liu et al. | Apr 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228159 | Petersson et al. | Jun 2007 | B2 |
7406345 | Muller et al. | Jul 2008 | B2 |
7424317 | Parker et al. | Sep 2008 | B2 |
7433042 | Cavanaugh et al. | Oct 2008 | B1 |
7450980 | Kawanishi | Nov 2008 | B2 |
7496392 | Alarcon et al. | Feb 2009 | B2 |
7541598 | Aasmul | Jun 2009 | B2 |
7567347 | Aasmul | Jul 2009 | B2 |
7653424 | March | Jan 2010 | B2 |
7772286 | Muller et al. | Aug 2010 | B2 |
7869853 | Say et al. | Jan 2011 | B1 |
7927519 | Domschke et al. | Apr 2011 | B2 |
7939332 | Colvin, Jr. | May 2011 | B2 |
7972628 | Ratner et al. | Jul 2011 | B2 |
7972875 | Rogers et al. | Jul 2011 | B2 |
8057041 | Muller et al. | Nov 2011 | B2 |
8131333 | Chapoy et al. | Mar 2012 | B2 |
8229535 | Mensinger et al. | Jul 2012 | B2 |
8235897 | Gal et al. | Aug 2012 | B2 |
8249684 | Kamath et al. | Aug 2012 | B2 |
8260393 | Kamath et al. | Sep 2012 | B2 |
8280476 | Jina | Oct 2012 | B2 |
8282550 | Rasdal et al. | Oct 2012 | B2 |
8318193 | Ratner et al. | Nov 2012 | B2 |
8343092 | Rush et al. | Jan 2013 | B2 |
8346337 | Heller et al. | Jan 2013 | B2 |
8346363 | Darvish et al. | Jan 2013 | B2 |
8368556 | Sicurello et al. | Feb 2013 | B2 |
8372423 | Marshall et al. | Feb 2013 | B2 |
8385998 | Zhang et al. | Feb 2013 | B2 |
8386004 | Kamath et al. | Feb 2013 | B2 |
8423114 | Simpson et al. | Apr 2013 | B2 |
8428678 | Kamath et al. | Apr 2013 | B2 |
8452361 | Muller | May 2013 | B2 |
8452363 | Muller et al. | May 2013 | B2 |
8460231 | Brauker et al. | Jun 2013 | B2 |
8465425 | Heller et al. | Jun 2013 | B2 |
8483793 | Simpson et al. | Jul 2013 | B2 |
8527025 | Shults et al. | Sep 2013 | B1 |
8527026 | Shults et al. | Sep 2013 | B2 |
8535262 | Markle et al. | Sep 2013 | B2 |
8543182 | Botvinick et al. | Sep 2013 | B2 |
8543184 | Boock et al. | Sep 2013 | B2 |
8543354 | Luo et al. | Sep 2013 | B2 |
8562558 | Kamath et al. | Oct 2013 | B2 |
8579879 | Palerm et al. | Nov 2013 | B2 |
8608924 | Cooper et al. | Dec 2013 | B2 |
RE44695 | Simpson et al. | Jan 2014 | E |
8622903 | Jin et al. | Jan 2014 | B2 |
8628471 | Mazar et al. | Jan 2014 | B2 |
8647271 | Muller et al. | Feb 2014 | B2 |
8647393 | Marshall et al. | Feb 2014 | B2 |
8666471 | Rogers | Mar 2014 | B2 |
9244064 | Muller et al. | Jan 2016 | B2 |
9826926 | Muller et al. | Nov 2017 | B2 |
10219729 | Kintz et al. | Mar 2019 | B2 |
20020043651 | Darrow et al. | Apr 2002 | A1 |
20020048577 | Bornstein et al. | Apr 2002 | A1 |
20020094526 | Bayley et al. | Jul 2002 | A1 |
20020151772 | Polak | Oct 2002 | A1 |
20020193672 | Walsh et al. | Dec 2002 | A1 |
20030004554 | Riff et al. | Jan 2003 | A1 |
20030050542 | Reihl et al. | Mar 2003 | A1 |
20030088682 | Hlasny | May 2003 | A1 |
20030099682 | Moussy et al. | May 2003 | A1 |
20030171666 | Loeb et al. | Sep 2003 | A1 |
20030208166 | Schwartz | Nov 2003 | A1 |
20040106215 | Lehmann | Jun 2004 | A1 |
20040106951 | Edman et al. | Jun 2004 | A1 |
20040143221 | Shadduck | Jul 2004 | A1 |
20040176669 | Colvin, Jr. | Sep 2004 | A1 |
20040195528 | Reece et al. | Oct 2004 | A1 |
20040258732 | Shikinami | Dec 2004 | A1 |
20040259270 | Wolf | Dec 2004 | A1 |
20050027175 | Yang | Feb 2005 | A1 |
20050043606 | Pewzner et al. | Feb 2005 | A1 |
20050096587 | Santini, Jr. et al. | May 2005 | A1 |
20050118726 | Schultz et al. | Jun 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050154374 | Hunter et al. | Jul 2005 | A1 |
20050182389 | LaPorte et al. | Aug 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20060002890 | Hersel et al. | Jan 2006 | A1 |
20060002969 | Kyriakides et al. | Jan 2006 | A1 |
20060089548 | Hogan | Apr 2006 | A1 |
20060148983 | Muller et al. | Jul 2006 | A1 |
20060155179 | Muller et al. | Jul 2006 | A1 |
20060252976 | Rosero | Nov 2006 | A1 |
20060270919 | Brenner | Nov 2006 | A1 |
20060275340 | Udipi et al. | Dec 2006 | A1 |
20060289307 | Yu et al. | Dec 2006 | A1 |
20070002470 | Domschke et al. | Jan 2007 | A1 |
20070004046 | Abbott | Jan 2007 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070030443 | Chapoy et al. | Feb 2007 | A1 |
20070093617 | DesNoyer et al. | Apr 2007 | A1 |
20070105176 | Ibey et al. | May 2007 | A1 |
20070134290 | Rowland et al. | Jun 2007 | A1 |
20070135698 | Shah et al. | Jun 2007 | A1 |
20070244379 | Boock et al. | Oct 2007 | A1 |
20070270675 | Kane et al. | Nov 2007 | A1 |
20080020012 | Ju et al. | Jan 2008 | A1 |
20080139903 | Bruce et al. | Jun 2008 | A1 |
20080249381 | Muller et al. | Oct 2008 | A1 |
20090005663 | Parker et al. | Jan 2009 | A1 |
20090131773 | Struve et al. | May 2009 | A1 |
20090221891 | Yu et al. | Sep 2009 | A1 |
20090270953 | Ecker et al. | Oct 2009 | A1 |
20100113901 | Zhang et al. | May 2010 | A1 |
20100123121 | Taylor | May 2010 | A1 |
20100160749 | Gross et al. | Jun 2010 | A1 |
20100185066 | March | Jul 2010 | A1 |
20100202966 | Gross et al. | Aug 2010 | A1 |
20100249548 | Mueller | Sep 2010 | A1 |
20100303772 | McMillan et al. | Dec 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110036994 | Frayling | Feb 2011 | A1 |
20110215432 | Uematsu et al. | Sep 2011 | A1 |
20110224514 | Muller et al. | Sep 2011 | A1 |
20110230835 | Muller et al. | Sep 2011 | A1 |
20110306511 | Lea | Dec 2011 | A1 |
20120123276 | Govari et al. | May 2012 | A1 |
20120140094 | Shpunt et al. | Jun 2012 | A1 |
20120172686 | Esenaliev et al. | Jul 2012 | A1 |
20120172692 | Tamada et al. | Jul 2012 | A1 |
20120179014 | Shults et al. | Jul 2012 | A1 |
20120186581 | Brauker et al. | Jul 2012 | A1 |
20120190953 | Brauker et al. | Jul 2012 | A1 |
20120191063 | Brauker et al. | Jul 2012 | A1 |
20120215201 | Brauker et al. | Aug 2012 | A1 |
20120220979 | Brauker et al. | Aug 2012 | A1 |
20120226121 | Kamath et al. | Sep 2012 | A1 |
20120238852 | Brauker et al. | Sep 2012 | A1 |
20120245445 | Black et al. | Sep 2012 | A1 |
20120258551 | Herbrechtsmeier et al. | Oct 2012 | A1 |
20120265034 | Wisniewski et al. | Oct 2012 | A1 |
20120283538 | Rose et al. | Nov 2012 | A1 |
20120289796 | Esenaliev et al. | Nov 2012 | A1 |
20120296311 | Brauker et al. | Nov 2012 | A1 |
20130006069 | Gil et al. | Jan 2013 | A1 |
20130030273 | Tapsak et al. | Jan 2013 | A1 |
20130060105 | Shah et al. | Mar 2013 | A1 |
20130060106 | Aasmul et al. | Mar 2013 | A1 |
20130076531 | San Vicente et al. | Mar 2013 | A1 |
20130076532 | San Vicente et al. | Mar 2013 | A1 |
20130078912 | San Vicente et al. | Mar 2013 | A1 |
20130158413 | Lisogurski et al. | Jun 2013 | A1 |
20130211212 | Stumber | Aug 2013 | A1 |
20130211213 | Dehennis et al. | Aug 2013 | A1 |
20130213110 | Papadimitrakopoulos et al. | Aug 2013 | A1 |
20130229660 | Goldschmidt et al. | Sep 2013 | A1 |
20130231542 | Simpson et al. | Sep 2013 | A1 |
20130310666 | Shults et al. | Nov 2013 | A1 |
20130310670 | Boock et al. | Nov 2013 | A1 |
20130311103 | Cooper et al. | Nov 2013 | A1 |
20130337468 | Muller et al. | Dec 2013 | A1 |
20140000338 | Luo et al. | Jan 2014 | A1 |
20140275869 | Kintz et al. | Sep 2014 | A1 |
20140316224 | Sato | Oct 2014 | A1 |
20140357964 | Wisniewski et al. | Dec 2014 | A1 |
20140364707 | Kintz et al. | Dec 2014 | A1 |
20160213288 | Wisniewski et al. | Jul 2016 | A1 |
20160374556 | Colvin et al. | Dec 2016 | A1 |
20170087376 | McMillan et al. | Mar 2017 | A1 |
20170325722 | Wisniewski et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1790245 | Jun 2006 | CN |
102811657 | Dec 2012 | CN |
S59-189828 | Oct 1984 | JP |
H08-304741 | Nov 1996 | JP |
H09-257440 | Oct 1997 | JP |
2001-508340 | Jun 2001 | JP |
2001-320034 | Nov 2001 | JP |
2003-054025 | Feb 2003 | JP |
2003-222640 | Aug 2003 | JP |
2004-267613 | Sep 2004 | JP |
2004-537344 | Dec 2004 | JP |
2006-051374 | Feb 2006 | JP |
2006-280934 | Oct 2006 | JP |
2007-044512 | Feb 2007 | JP |
2008-523375 | Jul 2008 | JP |
2008-541881 | Nov 2008 | JP |
2009-526993 | Jul 2009 | JP |
2012-095803 | May 2012 | JP |
5076035 | Nov 2012 | JP |
2013-103094 | May 2013 | JP |
2013-104851 | May 2013 | JP |
WO 9109312 | Jun 1991 | WO |
WO 9719188 | May 1997 | WO |
WO 9806406 | Feb 1998 | WO |
WO 2000002048 | Jan 2000 | WO |
WO 2001018543 | Mar 2001 | WO |
WO 2002087610 | Nov 2002 | WO |
WO 2003006992 | Jan 2003 | WO |
WO 2005120631 | Dec 2005 | WO |
WO 2006004595 | Jan 2006 | WO |
WO 2006010604 | Feb 2006 | WO |
WO 2006044972 | Apr 2006 | WO |
WO 2006130461 | Dec 2006 | WO |
WO 2007126444 | Nov 2007 | WO |
WO 2008141241 | Nov 2008 | WO |
WO 2008142158 | Nov 2008 | WO |
WO 2008143651 | Nov 2008 | WO |
WO 2009106805 | Sep 2009 | WO |
WO 2010037847 | Apr 2010 | WO |
WO 2010133831 | Nov 2010 | WO |
WO 2010141377 | Dec 2010 | WO |
WO 2011101624 | Aug 2011 | WO |
WO 2011101625 | Aug 2011 | WO |
WO 2011101627 | Aug 2011 | WO |
WO 2011101628 | Aug 2011 | WO |
WO 2012048150 | Apr 2012 | WO |
WO 2013036493 | Mar 2013 | WO |
WO 2013073270 | May 2013 | WO |
WO 2013132400 | Sep 2013 | WO |
WO 2014158988 | Oct 2014 | WO |
WO 2014160258 | Oct 2014 | WO |
Entry |
---|
Examination Report for Canadian Application No. 2913474, dated Jun. 19, 2020, 4 pages. |
Examination Report for Canadian Application No. 2913474, dated Mar. 12, 2021, 6 pages. |
Examination Report for Canadian Application No. 2913474, dated Dec. 8, 2021, 7 pages. |
Decision of Rejection for Japanese Application No. 2016-518027, dated Feb. 12, 2019, 18 pages. |
Extended European Search report for European Application No. 20176588.0, dated Dec. 11, 2020, 7 pages. |
Office Action for Japanese Application No. 2019-109783, dated Feb. 13, 2020, 6 pages. |
Office Action for Japanese Application No. 2019-109783, dated Feb. 9, 2021, 9 pages. |
Office Action for Japanese Application No. 2019-109783, dated Dec. 6, 2021, 11 pages. |
Office Action for U.S. Appl. No. 14/297,787, dated Oct. 6, 2017, 12 pages. |
Office Action for U.S. Appl. No. 14/297,787, dated Jan. 26, 2017, 11 pages. |
Office Action for U.S. Appl. No. 14/297,787, dated Jul. 8, 2016, 9 pages. |
Examination Report No. 1 for Australian Application No. 2014274784, dated Jan. 29, 2018, 7 pages. |
First Office Action for Chinese Application No. 201480031998.X, dated Jan. 8, 2018, 8 pages. |
Supplementary European Search Report for European Application No. 14807637.5, dated Dec. 21, 2016, 7 pages. |
Office Action for Japanese Application No. 2016-518027, dated Apr. 4, 2018, 16 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/041284, dated Dec. 4, 2014, 17 pages. |
Alexeev et al., “High ionic strength glucose-sensing photonic crystal,” Anal. Chem., 75:2316-2323 (2003). |
Alexeev et al., “Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid,” Clinical Chemistry, 50(12):2353-2360 (2004). |
Aslan et al., “Nanogold plasmon-resonance-based glucose sensing 2: wavelengthratiometric resonance light scattering,” Anal. Chem., 77(7):2007-2014 (2005). |
Badylak et al., “Immune response to biologic scaffold materials,” Seminars in Immunology, 20(2): 109-116 (2008). |
Ballerstadt et al., “Competitive-binding assay method based on fluorescence quenching of ligands held in close proximity by a multivalent receptor,” Anal. Chem., Acta. 345:203-212 (1997). |
Bhardwaj, U. et al., “A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors,” Journal of Diabetes Science and Technology, 2(6): 1016-1029 (2008). |
Billingsley et al., “Fluorescent nano-optodes for glucose detection, ”Anal. Chem., 82(9):3707-3713 (2010). |
Brasuel et al., “Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium pebble sensors with real-time application to viable rat C6 glioma cells,” Anal. Chem., 73(10):2221-2228 (2001). |
Brasuel et al., “Liquid polymer nano-pebbles for CL- analysis and biological applications,” Analyst, 128(10):1262-1267 (2003). |
Braun et al., “Comparison of tumor and normal tissue oxygen tension measurements using oxylite or microelectrodes in rodents,” Am. J. Physiol. Heart Circ. Physiol., 280(6):H2533-H2544 (2001). |
Bridges et al., “Chronic inflammatory responses to microgel-based implant coatings,” J Biomed. Mater. Res. A., 94(1):252-258 (2010). |
Chaudhary et al., “Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres,” Biotechnology and Bioengineering, 104(6):1075-1085 (2009). |
Cordeiro, P.G. et al., “The protective effect of L-arginine on ischemia-reperfusion injury in rat skin flaps,” Plast Reconstruct Surg., 100(5):1227-1233 (1997). |
Dunphy, I. et al., “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching phosphorescence,” Anal. Biochem., 310:191-198 (2002). |
Garg, S. K. et al., “Improved glucose excursions using an implantable real-time continuous glucose sensor in adults with Type 1 diabetes,” Diabetes Care, 27(3)734-738 (2004). |
Henninger, N., et al., “Tissue response to subcutaneous implantation of glucose-oxidase-based glucose sensors in rats,” Biosens Bioelectron, 23(1):26-34 (2007). |
Horgan et al., “Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection,” Biosensors and Bioelectronics, 21 (9):1838-1845 (2006). |
Ibey et al., “Competitive binding assay for glucose based on glycodendrimer fluorophore conjugates,” Anal. Chem., 77(21)7039-7046 (2005). |
Isenhath et al., “A mouse model to evaluate the interface between skin and a percutaneous device,” J Biomed. Mater. Research, 83A:915-922 (2007). |
Ju, Y. M. et al., “A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitrol in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold,” J Biomed. Mater. Research, 87A:136-146 (2008), Available online Dec. 17, 2007. |
Kaehr et al., “Multiphoton fabrication of chemically responsive protein hydrogels for microactuation,” PNAS USA, 105(26):8850-8854 (2008). |
Kasprzak, S. E., “Small-scale polymer structures enabled by thiol-ene copolymer systems,” Doctoral Dissertation, Georgia Institute of Technology, May 2009, 170 pages. |
Klimowicz, A. et al., “Evaluation of skin penetration of topically applied drugs by cutaneous microdialysis:acyclovir vs salicylic acid,” J Clin Pharm Ther, 3(2):143-148 (2007). |
Kloxin, A. M. et al., “Photodegradable hydrogels for dynamic tuning of physical and chemical properties,” Science, 324:59-63 (2009). |
Leavesley, S. J. et al., “Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue,” J. Biophontonics, Jan. 2012; 5(1):67-84. doi: 10.1002/jbio.201100066. Epub Oct. 11, 2011. |
Mansouri et al., “A miniature optical glucose sensor based on affinity binding,” Nature Biotechnology, 23:885-890 (1984). |
Marshall et al., “Biomaterials with tightly controlled pore size that promote vascular in-growth,” ACS Polymer Preprints, 45(2):100-101 (2004). |
McShane et al., “Glucose monitoring using implanted fluorescent microspheres,” IEEE Engineering in Medicine and Biology Magazine, 19(6):36-45 (2000). |
Nagler, A. et al., “Topical treatment of cutaneous chronic graft versus host disease with halofuginone: a novel inhibitor of collagen Type 1 synthesis,” Transplantation, 68(11):1806-1809 (1999). |
Nielsen et al., “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J Diabetes and Technology, 3(1):98-109 (2009). |
Nielson, R. et al., “Microreplication and design of biological architectures using dynamicmask multiphoton lithography,” Small, 5(1):120-125 (2009). |
Onuki, Y. et al., “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” Journal of Diabetes Science and Technology, 2(6):1003-1015 (2008). |
Ostendorf, A. et al., “Two-photon polymerization: a new approach to micromachining,” Photonics Spectra, 40(10)72-79 (2006). |
Ozdemir et al., “Axial pattern composite prefabrication of high-density porous polyethylene: experimental and clinical research,” Plast. Reconstr. Surg., 115(1):183-196 (2005). |
Phelps et al., “Bioartificial matrices for therapeutic vascularization,” PNAS USA, 107(8):3323-3328 (2010). |
Pickup, J. C. et al., “In vivo glucose monitoring: the clinical reality and the promise,” Biosens Bioelectron., 20(10):1897-1902 (2005), Available online Oct. 3, 2004. |
Rounds et al., “Microporated peg spheres for fluorescent analyte detection,” Journal of Fluorescence, 17(1):57-63 (2007), Available online Nov. 17, 2006. |
Russell et al., “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in apoly(ethylene glycol) hydrogel,” Anal. Chem., 71(15):3126-3132 (1999). |
Sanders et al., “Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density,” J Biomed. Mater. Research, 52:231-237 (2000). |
Sanders et al., “Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid, and polyurethane,” J Biomed. Mater. Research, 62(2):222-227 (2002). |
Sanders et al., “Fibrous encapsulation of single polymer micro-fibers depends on their vertical dimension in subcutaneous tissue,” J Biomed. Mater. Research, 67A:1181-1187 (2003). |
Sanders et al., “Relative influence of polymer fiber diameter and surface charge on fibrous capsule thickness and vessel density for single-fiber implants,” J Biomed. Mater. Research, 65A:462-467 (2003). |
Sanders et al., “Polymer microfiber mechanical properties: a system for assessment and investigation of the link with fibrous capsule formation,” J Biomed. Mater. Research, 67A:1412-1416 (2003). |
Sanders et al., “Small fiber diameter fibro-porous meshes: tissue response sensitivity to fiber spacing,” J Biomed Mater Research, 72A:335-342 (2005). |
Sanders et al., “Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response,” Biomaterials, 26(7):813-818 (2005). |
Schultz et al., “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care, 5(3)245-253 (1982). |
Shibata, H et al., “Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring”, Proceedings of the National Academy of Sciences of the United States of America, Oct. 19, 2010, vol. 107, No. 42, p. 17894-17898. |
Smith, J. L., “The Pursuit of Noninvasive Glucose: ‘Hunting the Deceitful Turkey,”’ (2006), 136 pages. |
Srivastava et al., “Application of self-assembled ultrathin film coatings to stabilize macromolecule encapsulation in alginate microspheres,” J of Microencapsulation, 22(4):397-411 (2005). |
Srivastava et al., “Stabilization of glucose oxidase in alginate microspheres with photo reactive diazoresin nanofilm coatings,” Biotechnology and Bioengineering, 91(1):124-131 (2005). |
Takano et al., “An oxo-bacteriochlorin derivative for long-wavelength fluorescence ratiometric alcohol sensing,” Analyst, 135:2334-2339 (2010). |
Tian et al., “Dually fluorescent sensing of PH and dissolved oxygen using a membrane made from polymerizable sensing monomers,” Sensors and Actuators B, 147:714-722 (2010). |
Tian et al., “Influence of matrices on oxygen sensing of three-sensing films with chemically conjugated platinum porphyrin probes and preliminary application for monitoring of oxygen consumption of escherichia coli (e. coli),” Sensors and Actuators B, 150:579-587 (2010). |
Tian, Y. et al., “A New Cross-linkable Oxygen Sensor Covalently Bonded into Poly(2-hydroxyethylmethacrylate)-co-Polyacrylamide Thin Film for Dissolved Oxygen Sensing,” Chemistry Materials, 22(6):2069-2078 (2010). |
Vidavalur, R. et al., “Sildenafil induces angiogenic response in human coronary arterioloar endothelial cells through the expression of thioredoxin, hemaoxygenase, and VEGF,” Vasc Pharm, 45(2):91-95 (2006). |
Ward, W. K. et.al., “The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants,” Biomaterials, 23(21):4185-4192 (2002). |
Wisniewski, N. et.al., “Characterization of implantable biosensor membrane fouling,” Fresen J Anal Chem., 366 (6-7):611-621 (2000). |
Wisniewski, N. et al., “Methods for reducing biosensor membrane biofouling,” Colloids and Surfaces B: Biointerfaces, 18:197-219 (2000). |
Woderer, S., “Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats,” Anal Chim Acta., 581(1):7-12 (2007), Available online Aug. 18, 2006. |
Young et al., “A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold,” Journal of Biomedical Materials Research Part A., 2008, vol. 87, pp. 136-146. |
Number | Date | Country | |
---|---|---|---|
20200008716 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
61832078 | Jun 2013 | US | |
61832065 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14297787 | Jun 2014 | US |
Child | 16291268 | US |