1. Field of the Invention
The present invention relates generally to apparatus and methods for endoluminal placement of grafts, stents, and other structures. More particularly, the present invention relates to a low profile, compressible graft structure and apparatus and methods for vascular placement of such structures for the treatment of abdominal and other aneurysms.
Vascular aneurysms are the result of abnormal dilation of a blood vessel, usually resulting from disease and/or genetic predisposition which can weaken the arterial wall and allow it to expand. While aneurysms can occur in any blood vessel, most occur in the aorta and peripheral arteries, with the majority of aortic aneurysms occurring in the abdominal aorta, usually beginning below the renal arteries and often extending distally into one or both of the iliac arteries.
Aortic aneurysms are most commonly treated in open surgical procedures where the diseased vessel segment is bypassed and repaired with an artificial vascular graft. While considered to be an effective surgical technique, particularly considering the alternative of a usually fatal ruptured abdominal aortic aneurysm, conventional vascular graft surgery suffers from a number of disadvantages. The surgical procedure is complex and require experienced surgeons and well equipped surgical facilities. Even with the best surgeons and equipment, however, patients being treated frequently are elderly and weakened from cardiovascular and other diseases, reducing the number of eligible patients. Even for eligible patients prior to rupture, conventional aneurysm repair has a relatively high mortality rate, usually from 3% to 10%. Morbidity related to the conventional surgery includes myocardial infarction, renal failure, impotence, paralysis, and other conditions. Additionally, even with successful surgery, recovery takes several weeks, and often requires a lengthy hospital stay.
In order to overcome some or all of these drawbacks, endovascular graft placement for the treatment of aneurysms has been proposed. Although very promising, many of the proposed methods and apparatus suffer from other problems. Often times the proposed graft structures will have exposed anchors or frame which can be thrombogenic. It is also difficult to provide graft structures which remain sealed to the blood vessel lumen to prevent the leakage or bypass of blood into the weakened aneurysm, especially when subjected to external deforming forces which result from vessel expansion and contraction as the heart beats. Many vascular graft structures have difficulty in conforming to the internal arterial wall, particularly since the wall can have a highly non-uniform surface as a result of atherosclerosis and calcification and is expanding and contracting with the patient's heartbeat and blood flow. Additionally, many previous vascular graft structures are difficult to position and anchor within the target region of the vessel.
For these reasons, it would be desirable to provide improved apparatus and methods for the endovascular placement of intraluminal grafts for treating aneurysms and other conditions. It would be particularly desirable if the graft structures were easy to place in the target region, displayed little or no thrombogenicity, provided a firm seal to the vascular wall to prevent leakage and blood bypass, and were able to conform to uniform and non-uniform blood vessel walls, even while the wall is expanding and contracting with the patient's heartbeat.
2. Description in the Background Art
Vascular grafts and devices for their transluminal placement are described in U.S. Pat. Nos. 5,219,355; 5,211,658, 5,104,399; 5,078,726; 4,820,298; 4,787,899; 4,617,932; 4,562,596; 4,577,631; and 4,140,126; and European Patent Publications 508 473; 466 518; and 461 791.
Expandable and self-expanding vascular stents are described in U.S. Pat. Nos. 5,147,370; 4,994,071; and 4,776,337; European patent Publications 575 719; 556 850; 540 290; 536 610; and 481 365; and German patent Publication DE 42 19 949. A flexible vascular stent structure having counter wound helical elements, some of which are separated at particular locations to enhance flexibility, is commercially available from Angiomed, Karlsruhe, Germany, as described in a brochure entitled Memotherm Iliaca Stents.
Catheters for placing vascular stents are described in U.S. Pat. Nos. 5,192,297; 5,092,877; 5,089,005; 5,037,427; 4,969,890; and 4,886,062.
Vascular grafts intended for open surgical implantation are described in U.S. Pat. Nos. 5,236,447; 5,084,065; 4,842,575; 3,945,052; and 3,657,744; and PCT applications WO 88/00313 and WO 80/02641; and SU 1697787.
Nickel titanium alloys and their use in medical devices are described in U.S. Pat. Nos. 4,665,906 and 4,505,767.
The present invention comprises apparatus and methods for the endoluminal placement of intraluminal grafts for the treatment of disease conditions, particularly aneurysms. The intraluminal grafts comprise a radially compressible, perforate tubular frame having a proximal end, a distal end, and an axial lumen between said ends. An interior liner, typically a fabric, polymeric sheet, membrane, or the like, covers all or most of the surface of the lumen of the tubular frame, extending from a near-proximal location to a near-distal location. The liner is attached to the frame at at least one end, as well as at a plurality of locations between said ends. Optionally, a second liner may be provided over at least a portion of the exterior of the frame to cover both sides of the frame. Such exterior coverage provides a circumferential seal against the inner wall of the blood vessel lumen in order to inhibit leakage of blood flow between the graft and the luminal wall into the aneurysm or stenosis which is being treated.
The grafts of the present invention will find particular use in the treatment of vascular conditions, such as abdominal and other aneurysms, vascular stenoses, and other conditions which require creation of an artificial vessel lumen. For the treatment of vascular stenoses, the graft may serve as a stent to maintain vessel patency in a manner similar to that described in the above-described U.S. and foreign patent documents relating to stents. Other intraluminal uses of the devices and methods of the present invention include stenting of the ureter, urethra, biliary tract, and the like. The devices and methods may also be used for the creation of temporary or long term lumens, such as the formation of a fistula.
Such graft structures provide a number of advantages over previously proposed designs, particularly for vascular uses. By covering the lumen of the tubular frame, thrombogenicity of the graft resulting from exposed frame elements is greatly reduced or eliminated. Such reduction of thrombogenicity is achieved while maintaining the benefits of having a frame structure extending over the graft. Such an external frame helps anchor the graft in place and maintain patency and evenness of the graft lumen, both of which are advantages over graft structures which are anchored and supported only at each end. The vascular grafts of the present invention are also self-expanding and easy to place. The self-expanding nature of the frame also counteracts external deforming forces that may result from the continuous physiologic expansion and contraction of the blood vessel lumen. Moreover, the lack of cleats, tines, or other penetrating elements on the graft allows the graft to more closely conform to the surrounding vessel wall and facilitates retrieval and/or repositioning of the graft, as will be described in more detail hereinafter. Additionally, the resilient tubular frame structure permits the graft to conform to even irregular regions of the blood vessel wall as the wall is expanding and contracting as a result of the pumping of the patient's heart.
The tubular frame preferably comprises a plurality of radially compressible band or ring structures, each of which have a relaxed (i.e., non-compressed) diameter which is greater than the diameter of the blood vessel to be treated. Adjacent compressible band members may be independent of each other or may be joined at one or more locations therebetween. If joined, the bands are preferably joined at only two diametrically opposed points to enhance flexibility of the frame over its length. Independent band members will be held together by their attachment to the interior and/or exterior liner(s).
Alternatively, the tubular frame may comprise a plurality of laterally compressible axial members, with adjacent axial members preferably not being directly connected to each other. The axial members will usually comprise a multiplicity of repeating structural units, e.g., diamond-shaped elements, which are axially connected. The axial members will be attached to the inner liner, either by stitching or by capturing the axial members in pockets formed between the inner liner and an outer liner disposed over the frame. The pockets may be formed by attaching the inner and outer liners to each other along axial lines between adjacent axial members.
The present invention also provides methods and systems for the in situ placement of bifurcated grafts for the treatment of aorto-iliac segments and other bifurcated lumens. The system comprises a bifurcated base structure including a proximal anchor, typically a self-expanding frame, which defines a common flow lumen and a pair of connector legs that establish divergent flow lumens from the common flow lumen. The system also includes a first tubular graft which can be anchored within first of the connector legs to form a continuous extension of the first divergent flow lumen and a second tubular graft which can be anchored within a second of the connector legs to form a continuous extension of the second divergent flow lumen. The method of placement comprises first introducing the bifurcated base structure so that the anchor section is positioned within a primary vessel, i.e., the aorta, below the renal arteries. After the bifurcated base structure is anchored, the first tubular graft is introduced into the first connector leg and anchored between said leg and the first branch artery, e.g., the right iliac. The second tubular graft is then inserted into the second connector section and anchored between the second connector and the second branch artery. By properly selecting the dimensions of the bifurcated base structure, the first tubular graft, and the second tubular graft, the resulting bifurcated graft structure can have dimensions which are specifically matched to the vessel dimensions being treated. Preferably, the bifurcated base structure, first tubular graft, and second tubular graft, will be formed from radially compressible perforate tubular frames having interior and/or exterior liners, generally as described above for the preferred vascular graft of the present invention. The radially compressible perforate tubular frame on the base structure, however, will terminate above the region where the connector legs diverge. The connector legs below the divergent region will be reinforced by placement and expansion of the tubular graft structures therein.
The present invention further provides a delivery catheter for endovascular placement of radially compressible grafts or stents, such as the vascular grafts and bifurcated base structures described above. The catheter comprises an elongate shaft having a proximal end and a distal end. Preferably, a retaining structure is provided near the distal end of the shaft for holding the graft or the stent on the shaft until such a time that the graft or stent is positively released, e.g., by withdrawing a pull wire which extends through locking stays on either side of the graft or stent. The delivery catheter further comprises a sheath slidably mounted over the shaft. The sheath is initially disposed to cover and restrain the radially compressed graft or stent while the catheter is being intervascularly introduced to a desired target location. The sheath may then be withdrawn, releasing the radially compressed graft or stent to occupy and anchor within the vasculature or other body lumen. Preferably, the graft or stent will remain fixed to the shaft even while the sheath is being withdrawn so that the physician can recapture the graft by advancing the sheath back over its exterior. Only after the graft or stent is fully expanded at the target location within the vessel lumen is the graft or stent finally released. Preferably, the sheath will have a flared or outwardly tapered distal end to facilitate both release and recapture of the graft or stent by axial translation of the sheath. The flared end may be fixed or deployable, i.e., selectively shiftable between a flared and a non-flared configuration. Preferably, the flared end will be deployable so that the sheath may be introduced with the distal end in its non-flared configuration to minimize its profile. After properly positioning the sheath, the distal end may be opened to assume its tapered configuration.
The present invention provides apparatus and methods for the transluminal placement of graft structures, particularly within the vascular system for treatment of aneurysms and other vascular conditions, but also in other body lumens, such as ureter, urethra, biliary tract, gastrointestinal tract, and the like, for the treatment of other conditions which benefit from the introduction of a reinforcing or protective structure in the lumen. The apparatus and methods can also find use in the creation of artificial lumens through solid tissue and structures, such as the placement of a TE fistula via an endoscope. The vascular grafts will be placed endovascularly. As used herein, “endovascularly” will mean placement by percutaneous or cutdown transluminal procedures using a catheter over a guidewire under fluoroscopic guidance. The catheters and guidewires may be introduced through conventional access sites to the vascular system, such as through the brachial and subclavian arteries for access to the aorta and through the femoral arteries for access to the aorta or to peripheral and branch blood vessels.
A vascular graft according to the present invention will comprise a radially compressible perforate tubular frame and an inner or interior liner attached within a central lumen defined by the frame and optionally a second or outer liner formed over the exterior of the frame. The radially compressible frame can take a variety of forms, usually comprising or consisting of a plurality of independent or interconnected structural elements, such as rings, bands, helical elements, serpentine elements, axial struts, parallel bars, and the like, that can be compressed from a relaxed, large diameter configuration to a small diameter configuration to facilitate introduction, as discussed below. It is necessary, of course, that the liner(s) remain attached to the frame both in its radially compressed configuration and in its expanded, relaxed configuration.
A preferred configuration for the tubular frame comprises a plurality of radially compressible band members, where adjacent band members are joined to each other at only two diametrically opposed points in order to enhance flexibility. In a particularly preferred aspect, the diametrically opposed attachment points are rotationally staggered in order to provide flexibility in more than one direction. A preferred method for forming such a tubular frame is described in more detail hereinafter. In another preferred configuration, at least some of the bands of the frame are independent i.e., are not directly connected to each other. Instead, the bands are connected only to the liner(s) which maintain the axial integrity of the graft. Preferably, the independent bands are stitched or sealed between interior and exterior liners, as will be described in more detail below. Other suitable frame structures are described in the patent literature.
In an alternate configuration, the perforate tubular frame comprises a plurality of laterally compressible axial members which are attached directly, e.g., by stitching, or indirectly, e.g., by lamination, to the inner liner. The axial members may be a multiplicity of repeating structural elements, such as diamonds, or could be formed from two or more overlapping elements. By positioning the axial members in pockets formed between an inner liner and an outer liner, the axial elements will be able to flex independently while providing the desired radial compressibility and self-expansion characteristics for the graft.
The dimensions of the tubular graft will depend on the intended use. Typically, the graft will have a length in the range from about 50 mm to 500 mm, preferably from about 80 mm to 200 mm for vascular applications. The relaxed diameter will usually be in the range from about 4 mm to 45 mm, preferably being in the range from about 5 mm to 25 mm for vascular applications. The graft will be radially compressible to a diameter in the range from 3 mm to 9 mm, preferably from 4 mm to 6 mm for vascular applications.
The liner(s) will be composed of conventional biological graft materials, such as polyesters, polytetrafluoroethylenes (PTFE's), polyurethanes, and the like, usually being in the form of woven fabrics, non-woven fabrics, polymeric sheets, membranes, and the like. A presently preferred, fabric liner material is a plain woven polyester, such as type 56 Dacron® yarn (Dupont, Wilmington, Del.), having a weight of 40 denier, woven at 27 filaments with 178 warp yarns per circumferential inch, and 78 yarns per inch in the fill direction.
The liner will be attached to the interior lumen of the tubular frame and will cover most or all of the interior surface of the lumen. For example, the liner may be stitched or otherwise secured to the tubular frame along a plurality of circumferentially spaced-apart axial lines. Such attachment permits the liner to fold along a plurality of axial fold lines when the frame is radially compressed. The liner will further be able to open and conform to the luminal wall of the tubular frame as the frame expands. Alternatively, when inner and outer liners are used, the liners may be stitched, heat welded, or ultrasonically welded together to sandwich the tubular frame therebetween. In an exemplary embodiment where a plurality of independent band members are disposed between interior and exterior liners, the liners are secured together along circumferential lines between adjacent band members to form pockets for holding the band members. In a second exemplary embodiment where a plurality of independent axial members are disposed between interior and exterior liners, the liners are secured together along axial lines to form pockets for holding the axial members.
The liner will preferably be circumferentially sealed against the tubular frame at least one end, preferably at both ends in the case of straight (non-bifurcated) grafts. It is also preferred in some cases that the distal and proximal end of the perforate tubular frame be exposed, i.e., not covered by the liner material, typically over a length in the range from about 1 mm to 25 mm. Frame which is not covered by the liner permits blood perfusion through the perforations and into branch arteries such as the renal arteries in the case of abdominal aorta grafts, while providing additional area for anchoring the frame against the blood vessel lumen. In an exemplary embodiment, the liner will extend through the frame and over the exterior surface near either or both ends to provide a more effective seal against the adjacent blood vessel wall.
The radially compressible perforate tubular frame will be composed of a resilient material, usually metal, often times a heat and/or shape memory alloy, such as nickel titanium alloys which are commercially available under the trade name Nitinol®. The frames may also be composed of other highly elastic metals, such as MP-35 N, Elgiloy, 316 L stainless steel, and the like. In the case of Nitinol® and other memory alloys, the phase transition between austenitic and martensitic states may occur between an introduction temperature, e.g., room temperature (approximately 22° C.), and body temperature (37° C.), to minimize stress on the unexpanded frame and enhance radial expansion of the frame from its radially compressed condition. Expansion can also be achieved based on the highly elastic nature of the alloy, rather than true shape recovery based on phase change.
In some cases, it may be desirable to form a tubular frame having different elastic or other mechanical properties at different regions along its length. For example, it is possible to heat treat different regions of the tubular frame so that some regions possess elastic properties while others become malleable so that they may be deformed by external force. For example, by providing at least one malleable end portion and an elastic (radially compressible) middle portion, the graft can be firmly expanded and implanted by internal balloon expansion force (to anchor the end(s) in the inner wall of the blood vessel) while the middle will remain open due to the elastic nature of the tubular member. Malleable end portions are a particular advantage since they can be expanded with a sufficient force, and re-expanded if necessary, to assure a good seal with the blood vessel wall. Alternatively, the malleable ends could be formed from a different material than that of the middle portion of the tubular frame. The use of different materials would be particularly convenient when the frame is formed from a plurality of independent bands, where one or more band members at either or both ends could be formed of a malleable metal. Usually, such malleable end(s) will extend over a distance in the range from 5 mm to 50 mm, preferably from 5 mm to 20 mm.
Malleable portions or segments can also be formed in other parts of the tubular frame. For example, some circumferentially spaced-apart segments of the tubular frame could be malleable while the remaining circumferential segments would be elastic. The frame would thus remain elastic but have an added malleability to permit expansion by applying an internal expansion force. Such a construction would be advantageous since it would allow the diameter of the graft or stent structure to be expanded if the initial diameter (which resulted entirely from elastic expansion) were not large enough for any reason. The proportion of elastic material to malleable material in the tubular frame can be selected to provide a desired balance between the extend of initial, elastic opening and the availability of additional, malleable opening. Such construction can be achieved by selective heat treatment of portions of a frame composed of a single alloy material, e.g. nickel titanium alloy, or by forming circumferential segments of the frame from different materials having different elastic/malleable properties. In particular, individual laterally compressible axial members 204 (as described in connection with
Referring now to
The tubular frame 14 comprises a plurality of radially compressible band members 11, each of which comprises a zig-zag or Z-shaped element which forms a continuous circular ring. Each band member 11 will typically have a width w in the range from 2 mm to 15 mm, and the tubular frame will comprise from 1 to 30 individual band members. Adjacent band members 11 are preferably spaced-apart from each other by a short distance d and are joined by bridge elements 13. Flexibility is enhanced by providing only two diametrically opposed bridge elements 13 between each adjacent pair of band members 11. As will be described further with reference to
Usually, the perforate tubular frame 14 will be left open at each end, e.g., at least a portion of the last band member 11 will remain uncovered by the liner 12. The liner 12 will be stitched or otherwise secured to the band members 11, preferably at the junctions or nodes when the element reverses direction to form the Z-pattern (although the stitching should not cross over between the band members in a way that would restrict flexibility). The liner 12 will usually pass outward from the inner lumen of the tubular frame 14 to the exterior of the frame through the gap between adjacent band members, as illustrated in
The joining pattern of adjacent band members 11 is best illustrated in
A preferred method for forming the tubular frame 14 in the present invention may be described with reference to
Preferably, each end of the liner 12 will be circumferentially sealed at or near the distal and proximal ends of the tubular graft. As illustrated in
Referring now to
Referring now to
Referring now to
Referring to
The catheter 30 may be modified to provide alternate delivery techniques for the graft G. For example, the catheter 30 may include a balloon at or near its distal end for use with grafts having malleable portions which need to be expanded. The catheter 30 might also include bumpers or other means for aligning the graft on the shaft 46 while the sheath 42 is being retracted. A variety of other catheter constructions and techniques for delivering the radially-compressible graft and stent structures of the present invention.
Referring now to
Femoral access and retrograde placement of the graft structures of the present invention will be possible although such an approach is not presently preferred.
Positioning and repositioning of the stent-graft structure of the present invention can be facilitated by use of an ultrasonic imaging catheter or guidewire, such as the guidewires described in U.S. Pat. No. 5,095,911 and PCT WO 93/16642. Such ultrasonic guidewires can be used in place of the conventional guidewire GW illustrated in
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
This is a Continuation of application Ser. No. 08/255,681, filed Jun. 8, 1994, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3878565 | Sauvage | Apr 1975 | A |
3890977 | Wilson | Jun 1975 | A |
3945052 | Liebig | Mar 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4140126 | Choudhury | Feb 1979 | A |
4149911 | Clabburn | Apr 1979 | A |
4214587 | Sakura, Jr. | Jul 1980 | A |
4225979 | Rey et al. | Oct 1980 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4306318 | Mano et al. | Dec 1981 | A |
4310354 | Fountain et al. | Jan 1982 | A |
4416028 | Eriksson et al. | Nov 1983 | A |
4425908 | Simon | Jan 1984 | A |
4503569 | Dotter | Mar 1985 | A |
4505767 | Quin | Mar 1985 | A |
4512338 | Balko et al. | Apr 1985 | A |
4545082 | Hood | Oct 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4560374 | Hammerslag | Dec 1985 | A |
4562596 | Kornberg | Jan 1986 | A |
4577631 | Kreamer | Mar 1986 | A |
4577632 | Grasset | Mar 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4629458 | Pinchuk | Dec 1986 | A |
4649922 | Wiktor | Mar 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4665906 | Jervis | May 1987 | A |
4665918 | Garza et al. | May 1987 | A |
4681110 | Wiktor | Jul 1987 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4728328 | Hughes et al. | Mar 1988 | A |
4729766 | Bergentz et al. | Mar 1988 | A |
4731073 | Robinson | Mar 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4757827 | Buchbinder et al. | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4772264 | Cragg | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4813434 | Buchbinder et al. | Mar 1989 | A |
4815478 | Buchbinder et al. | Mar 1989 | A |
4820298 | Leveen et al. | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4842575 | Hoffman, Jr. et al. | Jun 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4867173 | Leoni | Sep 1989 | A |
4872455 | Pinchuk et al. | Oct 1989 | A |
4872874 | Taheri | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4886065 | Collins, Jr. | Dec 1989 | A |
4898577 | Badger et al. | Feb 1990 | A |
4913141 | Hillstead | Apr 1990 | A |
4913701 | Tower | Apr 1990 | A |
4922905 | Strecker | May 1990 | A |
4923464 | DiPisa, Jr. | May 1990 | A |
4938220 | Mueller, Jr. | Jul 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4990151 | Wallsten | Feb 1991 | A |
4994071 | MacGregor | Feb 1991 | A |
5015253 | MacGregor | May 1991 | A |
5019085 | Hillstead | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5041126 | Gianturco | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047050 | Arpesani | Sep 1991 | A |
5057092 | Webster, Jr. | Oct 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5078720 | Burton et al. | Jan 1992 | A |
5078726 | Kreamer | Jan 1992 | A |
5078736 | Behl | Jan 1992 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089005 | Harada | Feb 1992 | A |
5092877 | Pinchuk | Mar 1992 | A |
5098440 | Hillstead | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5104399 | Lazarus | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5116318 | Hillstead | May 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5123917 | Lee | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5135536 | Hillstead | Aug 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5151105 | Kwan-Gett | Sep 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5161547 | Tower | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5178630 | Schmitt | Jan 1993 | A |
5183085 | Timmermans | Feb 1993 | A |
5190058 | Jones et al. | Mar 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5192297 | Hull | Mar 1993 | A |
5192307 | Wall | Mar 1993 | A |
5195984 | Schatz | Mar 1993 | A |
5201757 | Heyn et al. | Apr 1993 | A |
5201901 | Harada et al. | Apr 1993 | A |
5207695 | Trout, III | May 1993 | A |
5211658 | Clouse | May 1993 | A |
5219355 | Parodi et al. | Jun 1993 | A |
5235446 | Majima | Aug 1993 | A |
5236446 | Dumon | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5246445 | Yachia et al. | Sep 1993 | A |
5246452 | Sinnott | Sep 1993 | A |
5266073 | Wall | Nov 1993 | A |
5269757 | Fagan et al. | Dec 1993 | A |
5272971 | Fredericks | Dec 1993 | A |
5275622 | Lazarus et al. | Jan 1994 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5282824 | Gianturco | Feb 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5290305 | Inoue | Mar 1994 | A |
5292331 | Boneau | Mar 1994 | A |
5304200 | Spaulding | Apr 1994 | A |
5314472 | Fontaine | May 1994 | A |
5316023 | Palmaz et al. | May 1994 | A |
5330482 | Gibbs et al. | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5330528 | Lazim | Jul 1994 | A |
5336164 | Snider et al. | Aug 1994 | A |
5342371 | Welter et al. | Aug 1994 | A |
5342387 | Summers | Aug 1994 | A |
5344425 | Sawyer | Sep 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5354308 | Simon et al. | Oct 1994 | A |
5354309 | Schnepp-Pesch et al. | Oct 1994 | A |
5356423 | Tihon et al. | Oct 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5360443 | Barone et al. | Nov 1994 | A |
5365943 | Jansen | Nov 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5370618 | Leonhardt | Dec 1994 | A |
5370683 | Fontaine | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5382261 | Palmaz | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5383926 | Lock et al. | Jan 1995 | A |
5383928 | Scott et al. | Jan 1995 | A |
5385152 | Abele et al. | Jan 1995 | A |
5387235 | Chuter | Feb 1995 | A |
5389106 | Tower | Feb 1995 | A |
5392778 | Horzewski | Feb 1995 | A |
5397345 | Lazarus | Mar 1995 | A |
5403341 | Solar | Apr 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5413597 | Krajicek | May 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5429144 | Wilk | Jul 1995 | A |
5433200 | Fleischhacker, Jr. | Jul 1995 | A |
5433723 | Lindenberg et al. | Jul 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5443497 | Venbrux | Aug 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5448993 | Lynch et al. | Sep 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5464449 | Ryan et al. | Nov 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5480382 | Hammerslag et al. | Jan 1996 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5489295 | Piplani et al. | Feb 1996 | A |
5496344 | Kanesaka et al. | Mar 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5507769 | Marin et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5522880 | Barone et al. | Jun 1996 | A |
5522882 | Gaterud et al. | Jun 1996 | A |
5562678 | Booker | Oct 1996 | A |
5562724 | Vorwerk et al. | Oct 1996 | A |
5562726 | Chuter | Oct 1996 | A |
5562727 | Turk et al. | Oct 1996 | A |
5562728 | Lazarus et al. | Oct 1996 | A |
5571170 | Palmaz et al. | Nov 1996 | A |
5571173 | Parodi | Nov 1996 | A |
5575817 | Martin | Nov 1996 | A |
5578071 | Parodi | Nov 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5634475 | Wolvek | Jun 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5662700 | Lazarus | Sep 1997 | A |
5669936 | Lazarus | Sep 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683449 | Marcade | Nov 1997 | A |
5683450 | Goicoechea et al. | Nov 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5683453 | Palmaz | Nov 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5693029 | Leonhardt | Dec 1997 | A |
5693083 | Baker et al. | Dec 1997 | A |
5693086 | Goicoechea et al. | Dec 1997 | A |
5695517 | Marin et al. | Dec 1997 | A |
5709713 | Evans et al. | Jan 1998 | A |
5713913 | Lary et al. | Feb 1998 | A |
5713917 | Leonhardt et al. | Feb 1998 | A |
5716365 | Goicoechea et al. | Feb 1998 | A |
5718724 | Goicoechea et al. | Feb 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5735892 | Myers et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5782904 | White et al. | Jul 1998 | A |
5788668 | Leonhardt | Aug 1998 | A |
5797949 | Parodi | Aug 1998 | A |
5824039 | Piplani et al. | Oct 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824042 | Lombardi et al. | Oct 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5860923 | Lenker et al. | Jan 1999 | A |
5871536 | Lazarus | Feb 1999 | A |
5938696 | Goicoechea et al. | Aug 1999 | A |
6024763 | Lenker et al. | Feb 2000 | A |
6045557 | White et al. | Apr 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6165213 | Goicoechea et al. | Dec 2000 | A |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6551350 | Thornton et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6565596 | White et al. | May 2003 | B1 |
6582458 | White et al. | Jun 2003 | B1 |
6613073 | White et al. | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
7960491 | Aug 1993 | AU |
3295195 | Jan 1996 | AU |
2079944 | Apr 1993 | CA |
1766921 | Jan 1970 | DE |
2805749 | Feb 1977 | DE |
3918736 | Dec 1990 | DE |
3918736 | Dec 1990 | DE |
4219949 | Dec 1993 | DE |
4219949 | Dec 1993 | DE |
9319267 | Feb 1994 | DE |
0145166 | Jun 1985 | EP |
0 183 372 | Apr 1986 | EP |
0274846 | Jul 1988 | EP |
0 335 341 | Apr 1989 | EP |
0364420 | Apr 1990 | EP |
0364787 | Apr 1990 | EP |
0 423 916 | Apr 1991 | EP |
0461791 | Jun 1991 | EP |
0 421 729 | Oct 1991 | EP |
0461791 | Dec 1991 | EP |
0 464 755 | Jan 1992 | EP |
0464755 | Jan 1992 | EP |
0466518 | Jan 1992 | EP |
0 472 731 | Mar 1992 | EP |
0466518 | Apr 1992 | EP |
0479557 | Apr 1992 | EP |
0480667 | Apr 1992 | EP |
0481365 | Apr 1992 | EP |
0505686 | Sep 1992 | EP |
0508473 | Oct 1992 | EP |
508473 | Oct 1992 | EP |
0518704 | Dec 1992 | EP |
0518839 | Dec 1992 | EP |
0533511 | Mar 1993 | EP |
0 539 237 | Apr 1993 | EP |
0536610 | Apr 1993 | EP |
0540290 | May 1993 | EP |
540290 | May 1993 | EP |
0 551 179 | Jul 1993 | EP |
0556850 | Aug 1993 | EP |
556850 | Aug 1993 | EP |
0 566 245 | Oct 1993 | EP |
0 541 443 | Dec 1993 | EP |
0575719 | Dec 1993 | EP |
0 579 523 | Jan 1994 | EP |
0 596 145 | May 1994 | EP |
603959 | Jun 1994 | EP |
0 621 016 | Oct 1994 | EP |
0596145 | Nov 1994 | EP |
0 656 198 | Jun 1995 | EP |
0657147 | Jun 1995 | EP |
0 684 022 | Nov 1995 | EP |
0 686 379 | Dec 1995 | EP |
0 783 874 | Jul 1997 | EP |
0 792 627 | Sep 1997 | EP |
0 565 251 | Nov 2006 | EP |
2333487 | Jul 1977 | FR |
2 678 508 | Jan 1993 | FR |
2678508 | Jan 1993 | FR |
2 714 816 | Jul 1995 | FR |
2106190 | Apr 1983 | GB |
2189150 | Oct 1987 | GB |
05-76603 | Mar 1993 | JP |
1217402 | Mar 1986 | SU |
1318235 | Jun 1987 | SU |
1697787 | Dec 1991 | SU |
1457921 | Nov 2006 | SU |
8002641 | Dec 1980 | WO |
WO 8002641 | Dec 1980 | WO |
8300997 | Mar 1983 | WO |
8800813 | Feb 1988 | WO |
WO 8800813 | Feb 1988 | WO |
8901320 | Feb 1989 | WO |
WO 8908433 | Sep 1989 | WO |
9004982 | May 1990 | WO |
WO 9107928 | Jun 1991 | WO |
9112047 | Aug 1991 | WO |
WO 9200043 | Jan 1992 | WO |
9206734 | Apr 1992 | WO |
WO 9313825 | Jul 1993 | WO |
9315661 | Aug 1993 | WO |
9317636 | Sep 1993 | WO |
9319804 | Oct 1993 | WO |
WO9406372 | Mar 1994 | WO |
9412136 | Jun 1994 | WO |
9417754 | Aug 1994 | WO |
9417754 | Aug 1994 | WO |
WO 9424961 | Nov 1994 | WO |
9501761 | Jan 1995 | WO |
WO 9505207 | Feb 1995 | WO |
9508966 | Apr 1995 | WO |
9516406 | Jun 1995 | WO |
WO 9516406 | Jun 1995 | WO |
WO 9521592 | Aug 1995 | WO |
WO 9526695 | Oct 1995 | WO |
WO-9529725 | Nov 1995 | WO |
9610375 | Apr 1996 | WO |
9611648 | Apr 1996 | WO |
WO-9613228 | May 1996 | WO |
WO-9618361 | Jun 1996 | WO |
9628116 | Sep 1996 | WO |
WO-9703624 | Feb 1997 | WO |
9716219 | May 1997 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 08255681 | Jun 1994 | US |
Child | 08684508 | US |