Apparatus and methods for filling containers with pills

Information

  • Patent Grant
  • 6799413
  • Patent Number
    6,799,413
  • Date Filed
    Thursday, November 20, 2003
    21 years ago
  • Date Issued
    Tuesday, October 5, 2004
    20 years ago
Abstract
There is provided an automated packaging apparatus for depositing a predetermined number of pills into a series of containers. The packaging apparatus includes a plurality of independently rotatable rotary slats. Each rotary slat includes an outer peripheral edge portion and the rotary slats are configured so that the outer peripheral edge portions define a common interior space. Each outer peripheral edge portion also defines an inner surface and a plurality of pill apertures. The pill apertures are configured to receive one of the pills from the common interior space at a first position and transmit the pill outside the rotary slats at a second position. A conveyor is configured to move a plurality of open containers along a predetermined path of travel and position each of the containers adjacent a respective rotary slat to define a delivery path that extends between the second position of the rotary slat and the container. At least one drive motor is in driving engagement for rotating the rotary slats. A controller is connected to the drive motor for controlling the drive motor such that the rotary slats can be rotated for different durations.
Description




BACKGROUND OF THE INVENTION




1) Field of the Invention




The present invention relates to packaging machines, and more particularly relates to automated packaging machines for filling containers with pills and associated methods.




2) Description of Related Art




Pharmaceutical medicines and associated packaging apparatus are typically subject to relatively strict consumer protection guidelines. For example, pills, capsules, and the like, must be produced and packaged in such a way as to at least meet the minimum sterility requirements mandated by federal regulations. In addition, the pills should be delivered into the packaging such that the contents accurately meet the claimed labeling “count”, i.e., each package includes exactly the predetermined number of pills. Notwithstanding the above, it is also desired to package the product in a mass production operation to offset costs typically attributed to a labor intensive operation in order to provide an economic product.




In the past, pill filling machines have been proposed that provide automated bottle counts by filling a hopper with pills and causing a plurality of the pills to be caught by a pill capturing device, such as an array of rotary slats. The rotary slats drop the captured pills into a plurality of bottles disposed in alignment with the dropping pills. The bottles are distributed along an endless conveyor belt that is timed to advance and stop the bottles according to the filling operation.




Conventional pill capturing devices more particularly include a series of rotary slats each configured to receive, hold, and move a plurality of capsules or pills along a closed path. The rotary slats are typically discs fixed on a rotatable shaft and have a plurality of openings in the outer peripheral edge portion thereof for capturing individual pills. Accordingly, the closed path is arcuate and generally disposed between a pill hopper and discharge area above the conveyor belt. By the rotary action of the slat, the pills move in a direction normal to the conveyor belt. The pill capturing device then generally discharges the pills by rotating the slats, which move corresponding to the closed path, such that the pills fall out of the respective openings at the filling station. The pills are often funneled through a chute that empties into a corresponding bottle.




The “count,” or number of pills in the bottle, is determined by positioning the bottles in the pill dropping zone for a predetermined time. The duration of the filling operation for each bottle corresponds to the number of openings in each slat that the machine is capable of delivering to the bottles per unit of time. The duration of the filling operation, speed of the rotary slats, and configuration of the pill capturing device are used to calculate the count.




Unfortunately, if the pill capturing device fails to capture a pill in each and every cavity or receptacle, or if a pill should mistakenly be diverted, at least one of the bottles can be improperly filled. The conventional solution to this problem is to situate an operator adjacent to the slats to ensure that each receptacle is filled with a pill. If a pill is missing, the operator manually places a pill in the receptacle. Such an approach involves labor costs and can be unsatisfactory for sterility purposes. In addition, the accuracy of the count of each bottle is largely determined by the operator and, as such, a fully and consistently accurate count cannot be guaranteed.




U.S. Pat. No. 6,185,901 to Aylward, which is incorporated herein by reference, provides an exemplary solution to this problem by way of a machine with independently driven rotary slats. The pills are allowed to fall into an exterior receptacle of a rotary slat and, in one embodiment, passed under a rotary brush in an attempt to prevent two pills from being disposed in the same receptacle. A separate counting device is associated with each rotary slat for counting each pill as it falls from the slat into the container. A positive count is provided for each container and improperly filled slats will not affect the total count for that container. If a particular container has a low count, the respective slat can be further rotated to fill the container. Because the slats are independently driven, the other slats can remain stationary to prevent overfilling. Thus, the machine permits an accurate filling of each bottle.




One alternative apparatus is a rotatable drum, as provided in U.S. Pat. No. 4,094,439 to List. The rotatable drum includes a plurality of parallel rows of throughgoing holes that constitute receptacles for dragees. The dragees enter the receptacles in the drum from the interior of the drum at an inner input location, exit to the exterior of the drum at an outer retrieval location, and are filled into bottles. An ordering device facilitates the entry of the dragees into the receptacles, and feeler blades engage the receptacles. If any of the receptacles in an axially extending row do not contain a dragee, one of the feeler blades actuates a bolt pusher, which prevents any of the dragees in the row from being filled into the bottles. Instead, a solenoid and knockout bar empty the receptacles of the row. By preventing the bottles to be filled from partially filled rows of receptacles, the apparatus prevents the different bottles from being filled at different rates.




Undesirably, the additional mechanical components that are required for emptying the partially filled rows of apertures increase the complexity, cost, and likelihood of failure of the apparatus. Additionally, emptying the partially filled rows slows the process of filling the bottles because no pills are dispensed from those rows.




Accordingly, there is a great need for a packaging apparatus which provides an accurate count for each container and operates at a high speed. The apparatus should require a minimum of operator intervention. Additionally, the apparatus should be cost effective, both in initial cost and maintenance costs.




BRIEF SUMMARY OF THE INVENTION




The present invention provides an automated packaging apparatus for depositing a predetermined number of pills into a series of containers. The pills are first disposed into the interior of a plurality of rotary slats of the packaging apparatus. Each slat receives the pills into pill apertures at a peripheral edge portion of the slat, rotates, and dispenses the pills through the pill apertures. Each slat is rotated independent of the other slats, and a detector and controller determine when the corresponding container has been filled. Thus, even if some pill apertures in some rotary slats do not receive or dispense pills, each rotary slat still provides an accurate count. In addition, by using a common interior space of a plurality of slats, no brush or other complex machinery is required.




The packaging apparatus includes a plurality of independently rotatable rotary slats. The rotary slats, which are formed of a polymer, are supported by a plurality of cradle rollers and positioned with small gaps between adjacent slats. Thus, the rotary slats are configured so that their outer peripheral edge portions define a common interior space. Each of the outer peripheral edge portions of the rotary slats defines an inner surface and a plurality of pill apertures. The pill apertures are configured to receive a pill from the common interior space at a first position and transmit the pill outside the rotary slats at a second position. In one embodiment, an inner contour of each of the rotary slats slopes toward the pill apertures to facilitate the entry of pills into the pill apertures. In another embodiment, the inner contour may also vary around the circumference of the rotary slat to facilitate the entry of pills into the pill apertures.




A shroud, which may be adjusted, extends from a location proximate to the first position to a location proximate to the second position such that the shroud prevents the pills from exiting the rotary slats through the pill apertures prior to the pills reaching the second position. A first air blower is located in the common interior space and configured to emit air towards the pill apertures at the second position. The pills may also be urged from the pill apertures by a plow that extends from within the rotary slats toward the pill apertures. The pills may fall from the pill apertures at the second position by virtue of the pill apertures being slanted downward toward the outside of the rotary slats when positioned at the second position.




A conveyor is configured to move open containers along a predetermined path of travel and position each of the containers adjacent a respective rotary slat to define a delivery path that extends between the second position and the container. Chutes define the delivery paths that extend from the second position of each rotary slat to the corresponding container. A delivery sensor detects the delivery of a pill through the delivery path. A second air blower is located outside of the rotary slats and is configured to emit air towards the pill apertures at a third position such that any jammed pills positioned within the pill apertures at the third position are urged back into the common interior space. A sensor detects the quantity of the pills in the common interior space, and a reservoir gate controls the passage of pills from a reservoir, which holds the pills and feeds them into the common interior space.




Each of the rotary slats is independently rotatable, and a drive motor is in driving engagement with each of the rotary slats. Drive wheels, which are engaged with the rotary slats for independently rotating them, have outer surfaces that are contoured to match the outer peripheral edge portions of the rotary slats. A controller is connected to and controls the drive motors such that the rotary slats can be rotated for different durations. In one embodiment, the controller alternately accelerates and decelerates the rotary slats to vibrate them and agitate the pills.




Additionally, the present invention provides a method of depositing pills into containers. The pills are first disposed in a common interior space defined by a drum made up of several rotary slats. The pills are captured in pill apertures defined by the outer peripheral edge of the rotary slats. The rotary slats are accelerated and decelerated to agitate the pills and urge them into the pill apertures. Each of the rotary slats is independently rotated so that the pill apertures are moved to a position at which the pills are released from the apertures and delivered to containers. Air is directed toward the pills to facilitate their release from the apertures. If a pill fails to release from a pill aperture, air is directed toward the pill to urge the pill back into the interior of the drum. The released pills are directed toward chutes that delivery the pills toward the containers. As the pills are delivered, they are counted and the number of pills delivered to each container is calculated. When one of the containers receives a predetermined number of pills, the rotary slat corresponding to that container is stopped. The rotation of the other rotary slats is continued until each corresponding container has received the predetermined number of pills. The number of pills in the interior of the drum is also detected and additional pills are automatically fed into the interior as necessary.




Thus, the packaging apparatus of the present invention provides an accurate count for pills dispensed to each container. The apparatus requires a minimum of operator intervention, and it can operate at a high rate of speed. Additionally, the apparatus provided is cost effective, both in initial cost and maintenance cost.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)




Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:





FIG. 1

is a perspective view of a packaging apparatus according to the present invention;





FIG. 2

is an exploded view of the rotary slats of the drum of the packaging apparatus;





FIG. 3

is an elevation view of the packaging apparatus according to the present invention shown with one chute partially cut away for illustrative clarity;





FIG. 3A

is a section view of the packaging apparatus of

FIG. 3

as seen from line


3


A—


3


A;





FIG. 3B

is a section view of the packaging apparatus of

FIG. 3

as seen from line


3


B—


3


B of

FIG. 3A

;





FIG. 4

is an elevation view of the rotary slat of the packaging apparatus of

FIG. 3

;





FIG. 4A

is a section view of the rotary slat of

FIG. 4

as seen from line


4


A—


4


A;





FIG. 4B

is a section view of the rotary slat of

FIG. 4

as seen from line


4


B—


4


B;





FIG. 4C

is an enlarged section view of the pill apertures from the indicated section of

FIG. 4A

;





FIG. 5A

is an elevation view of a plow with a rotary slat according to another embodiment of the present invention; and





FIG. 5B

is a section view of the plow and the rotary slat of

FIG. 5A

as seen from line


5


B—


5


B.











DETAILED DESCRIPTION OF THE INVENTION




The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.




Generally described, the present invention is directed to an automated packaging apparatus


1


, which delivers pills


23


from a drum


2


into containers


22


. The term “pill” is used herein throughout, but the term is not intended to be limiting and includes any discrete articles of the type used in the pharmaceutical industry or otherwise including, but not limited to, capsules, caplets, gelcaps, dragees, and tablets. Similarly, the receiving container


22


, although illustrated as a bottle throughout, is not limited thereto and can be any one of a number of configurations which provides an opening for receiving discrete articles therein, such as pouches or boxes.




As shown in

FIG. 1

, the packaging apparatus


1


includes a plurality of rotary slats


3


and end plates


13




a


,


13




b


which together comprise the drum


2


, a shroud


15


that surrounds part of the drum


2


, a drive assembly


41


, first and second cradle rollers


36


,


38


, a plurality of chutes


25


with delivery sensors


33


, and a conveyor


24


. The drive assembly


41


comprises a plurality of drive devices


42


, each of which includes a motor in driving engagement with a drive wheel


44


. As shown in

FIG. 3A

, the packaging apparatus


1


also includes a level sensor


32


and first and second air blowers


20


,


21


. A filling station


26


is defined by a respective rotary slat


3


, chute


25


, delivery sensor


33


, and an aligned container


22


. As such, the apparatus includes a plurality of filling stations


26


corresponding to the number of rotary slats


3


.




As shown in

FIGS. 2 and 3A

, each rotary slat


3


defines an outer peripheral edge portion


4


and sidewalls


5


. The outer peripheral edge portion


4


of each rotary slat


3


defines a plurality of pill apertures


7


through which a pill


23


can pass. The sidewalls


5


define slat connection apertures


8


such that when the rotary slats


3


are positioned adjacent one another, the slat connection apertures


8


of adjacent rotary slats


3


correspond to one another and the rotary slats


3


together define a common interior space


12


of the drum


2


. In the figures, the first and second end plates


13




a


,


13




b


are positioned proximate to the first and last rotary slats


3




a


,


3




b


, respectively, so as to further define the common interior space


12


. The first end plate


13




a


is a closed, circular plate. The second end plate


13




b


defines a drum fill apparatus


14


through which pills


23


are fed into the drum


2


. In another embodiment, the end plates


13




a


,


13




b


are not separate components but are instead integral to the rotary slats


3


so that each of the first and last rotary slats


3




a


,


3




b


of the packaging apparatus


1


define a slat connection aperture


8


in only one sidewall


5


. The opposite sidewall


5


of each of the first and last rotary slats


3




a


,


3




b


comprises the end plates


13




a


,


13




b


respectively and may define a drum fill aperture


14


or may be closed with no aperture.




A variety of materials can be used for the construction of the rotary slats


3


including, but not limited to, metals, metal alloys, and polymers. Preferably, the rotary slats


3


are formed of a durable, low friction material that is cost effective for manufacture. A preferred material is a compound comprising acrylonitrile-butadiene-sytrene and polytetrafluoroethylene. Depending on the type of pills


23


that are to be used with the rotary slats


3


, it may also be important that the material of the rotary slats


3


does not chemically affect the pills


23


. The other components of the packaging apparatus


1


can be made of the same or different materials. Another suitable material, which is preferable for the chutes


25


, is acetal or Delrin® polymer, available from DuPont.




The rotary slats


3


of the drum


2


are held between the cradle rollers


36


,


38


and the drive wheels


44


of the drive assembly


41


with a small interslat gap


10


between adjacent rotary slats


3


. In one embodiment, each of the rotary slats


3


defines a double beveled alignment guide


11


on the outer peripheral edge portion


4


of the rotary slat


3


. The cradle rollers


36


,


38


comprise cradle roller wheels


35


that define V-shaped slots


49


that correspond to the shape of the alignment guides


11


of the rotary slats


3


. Similarly, the drive wheels


44


of the drive assembly


41


also correspond to the shape of the alignment guides


11


of the rotary slats


3


. Thus, the engagement of the rotary slats


3


with the rollers


36


,


38


,


42


maintains the position of the rotary slats


3


and the interslat gaps


10


between the rotary slats


3


. The interslat gaps


10


are preferably smaller than the smallest dimension of the pills


23


so that the pills


23


cannot pass through the interslat gaps


10


. For example, the interslat gap


10


can be between about 0.5 and 1 millimeter. Further, each of the cradle roller wheels


35


and the drive wheels


44


are independently rotatable. Thus, each rotary slat


3


is rotatable separate from the other rotary slats


3


.




As shown in

FIG. 2

, each of the rotary slats


3


and the end plates


13




a


,


13




b


are individually removable from and assembleable on the cradle rollers


36


,


38


. Preferably, one or more of the cradle rollers


36


,


38


and the drive assembly


41


are at least partially removable to facilitate disassembly of the rotary slats


3


, which are secured between the cradle rollers


36


,


38


and the drive wheels


44


of the drive assembly


41


. For example, each of the drive devices


42


of the drive assembly


41


is supported by an air cylinder


51


. The air cylinders


51


hold the drive devices


42


against the rotary slats


3


so that the rotary slats


3


are held in alignment and so that the drive wheels


44


engage the rotary slats


3


without slipping. The force exerted by the air cylinders


51


can be adjusted to optimize the engagement of the drive wheels


44


with the rotary slats


3


during operation. Additionally, the air cylinders


51


can retract the drive devices


42


so that the rotary slats


3


can be removed or serviced. The assembly and disassembly flexibility provided by the invention is such that the packaging apparatus


1


can accommodate different numbers of filling stations


26


(such as the five illustrated in

FIG. 1

) by increasing or decreasing the number of rotary slats


3


. Additionally, if one of the components malfunctions, the other filling stations


26


remain operable and, advantageously, modular repair or replacement of only the problematic rotary slat


3


or end plate


13




a


,


13




b


can improve repair costs and decrease machine downtime. Further, the rotary slats


3


can be replaced with other rotary slats


3


that are configured to dispense pills


23


with specific characteristics. Thus, by changing the rotary slats


3


, the packaging apparatus


1


can be used to dispense pills


23


of varying size, shape, weight, and composition.




Each rotary slat


3


is operably connected with the drive assembly


41


so that it can be operated individually, or separately from, the other rotary slats


3


. One possible drive assembly


41


is illustrated in FIG.


3


B. The drive assembly


41


includes the drive devices


42


, which are located at consecutively spaced positions that correspond to the positions of the rotary slats


3


so that each of the drive wheels


44


is rotatably connected to a respective rotary slat


3


. In the embodiment shown in

FIG. 3B

, the drive wheels


44


are shaped to correspond to the alignment guides


11


of the rotary slats


3


. The alignment guides


11


keep the rotary slats


3


in proper alignment with the drive wheels


44


and separated from each other so as to maintain the interslat gaps


10


. The drive wheels


44


are formed of an elastomeric traction material such as hard rubber. Because each of the drive wheels


44


is rotatable independently of the other drive wheels


44


, each drive wheel


44


can be rotated at a different speed than the other drive wheels


44


. Thus the rotary slats


3


can be operated at varying speeds, independent of the other rotary slats


3


. Each drive device


42


further comprises a drive motor (not shown) in driving engagement with the drive wheel


44


via a drive transfer mechanism (not shown). Each drive transfer mechanism comprises a drive shaft or other conventional power transmission components such as gears, belts, and pulleys. Accordingly, rotation of each drive motor causes the respective rotary slat


3


to rotate. An alternative drive assembly


41


comprising frustoconical drive wheels for rotating rotary slats


3


is further described in U.S. Pat. No. 6,185,901, which is herein incorporated by reference and could be used to drive the drive wheels


44


acting on a groove (not shown) or the alignment guides


11


of the rotary slats


3


. Alternatively, the drive assembly


41


may comprise other components for engaging the rotary slats


3


. For example, the drive assembly


41


may comprise drive wheels


44


that engage other arrangements of flat or bevel gears and/or belts that are connected to the drive motors.




As each of the rotary slats


3


rotates, the pill apertures


7


move in a path defined by the outer peripheral edge portion


4


of the rotary slat


3


, passing through a first position


27


and a second position


28


, as shown in FIG.


3


A. Pills


23


contained in the common interior space


12


of the drum


2


are rotated and tumbled near the first position


27


of the pill apertures


7


. Pills


23


fall into, and become seated in, the pill apertures


7


. Once a pill


23


is seated in a pill aperture


7


, the shroud


15


prevents the pill


23


from falling through the pill aperture


7


. Instead, the pill


23


is held seated in the pill aperture


7


as the pill aperture


7


approaches the second position


28


. The second position


28


preferably occurs at or before a position where the tangential direction of the outer peripheral edge portion


4


of the rotary slat


3


at the pill aperture


7


is vertical. Because the shroud


15


extends to, but not beyond, the second position


28


, a pill


23


seated in a pill aperture


7


that reaches the second position


28


is no longer retained within the rotary slat


3


by the shroud


15


. Thus, the pill


23


falls out of the pill aperture


7


toward one of the chutes


25


, which directs the pill


23


into the container


22


that corresponds to the filling station


26


. A first air blower


20


, supported by a beam


31


extending longitudinally in the drum


2


, is configured to blow air toward the pill aperture


7


at the second position


28


in a direction toward the outside of the drum


2


. The first air blower


20


facilitates the ejection of the pills


23


from the pill apertures


7


in a direction toward the corresponding chute


35


. A second air blower


21


is configured to blow air toward the pill apertures


7


in a direction toward the inside of the drum


2


. The second air blower


21


is located so that it blows air at the apertures


7


after the apertures have passed through the second position


28


and before they have reached the first position


27


. If a pill


23


becomes seated in one of the pill apertures


7


and is not ejected from the pill aperture


7


at the second position


28


, the second air blower


21


will exert a force upon the pill


23


so that the pill


23


falls back into the drum


2


. Thus, the pills


23


preferably enter the pill apertures


7


where the tangential direction of the rotary slats


3


is horizontal at the first position


27


and exit the pill apertures


7


where the tangential direction of the rotary slats


3


is vertical at the second position


28


.




The shroud


15


that is shown in the figures extends around approximately half the circumference of the outer peripheral edge portion


4


. The shroud


15


also defines a plurality of shroud cut-outs


16


that correspond to the positions of the alignment guides


11


and the cradle roller wheels


35


of the first and second cradle rollers


36


,


38


. The alignment guides


11


of the rotary slats


3


extend through the shroud cut-outs


16


to contact the cradle roller wheels


35


. Alternatively, the cradle roller wheels


35


can extend through the shroud cut-outs


16


to contact the rotary slats


3


. The shroud cut-outs


16


, and the cradle roller wheels


25


, are located out of the path defined by the pill apertures


7


so that the shroud


15


retains the pills


23


as they pass between the first position


27


and the second position


28


and the pills


23


do not escape through the shroud cut-outs


16


. It will be understood that the size and position of the shroud


15


can be varied from that shown in the figures, as may be necessary for optimum efficiency of the packaging apparatus


1


depending on the shape, size, and surface characteristics of the pills


23


.




The inner surface


6


of each of the rotary slats


3


may define a variety of shapes or patterns to increase the efficiency of the packaging apparatus


1


. For example, a rotary slat


3


according to one embodiment is shown in

FIG. 4. A

cross-sectional view of the rotary slat


3


, shown in

FIG. 4A

, shows an inner contour


9


defined by the inner surface


6


of the rotary slat. The inner contour


9


of this embodiment, which comprises a plurality of ridges


17


, facilitates the lifting of pills


23


as the rotary slat


3


rotates. The inner contour


9


is especially useful when the packaging apparatus


1


is used to package pills


23


that have a smooth or slippery outer surface because the inner contour


9


increases the mixing of the pills


23


and, hence, the likelihood that the pills


23


will become seated in the pill apertures


7


. The inner contour


9


may also comprise other ridges, bumps, grooves, channels, knurling, and the like. The inner contour


9


may vary around the circumference of the rotary slat


3


, such as the ridges


17


shown in

FIG. 4A

, or the inner contour


9


may be uniform around the circumference of the rotary slat


3


. Also, the inner contour


9


may extend to a location near the pill apertures


7


, or the inner contour


9


may intersect the pill apertures


7


so that the pill apertures


7


are disposed in the inner contour


9


. For example, as shown in

FIG. 4B

, the inner contour


9


slopes toward the pill apertures


7


to comprise a groove in the rotary slat


3


that extends at the same depth around the entire circumference of the inner surface


6


of the rotary slat


3


. The pill apertures


7


are disposed within the groove of the inner contour


9


and the slope of the inner contour


9


toward the pill apertures


7


facilitates the entry of pills


23


into the pill apertures


7


.




The exit of the pills


23


from the pill apertures


7


is facilitated by the shape of the pill apertures


7


. In a preferred embodiment, shown in

FIG. 4C

, the pill apertures


7


are not perpendicular to the tangent of the outer peripheral edge portion


4


of the rotary slats


3


. Instead, each pill aperture


7


is slanted downward, toward the outside of the drum


2


, when the pill aperture


7


is positioned at the second position


28


. Thus, a pill


23


disposed in the pill aperture


7


will tend to fall toward the outside of the drum


2


when the pill aperture


7


reaches the second position


28


. The rotary slat


3


shown in

FIG. 4A

may be used with or without the first air blower


20


.




In an alternate embodiment shown in

FIG. 5A

, plows


34


urge the pills


23


from the pill apertures


7


at the second position


28


. The plows


34


extend from the beam


31


toward the rotary slats


3


. Each plow


34


extends into a channel


19


defined by the inner surface


6


of each rotary slat


3


, as shown in FIG.


5


B. Each plow


34


has a curved surface that contacts the pills


23


and pushes the pills


23


out of the pill apertures


7


and toward the chutes


25


. The plows


34


may be used in conjunction with the first air blower


20


, but preferably the plows


34


are used instead of the first air blower


20


. Similarly, an upper plow (not shown) may substitute for the second air blower


21


. Additionally, or alternatively, a vibratory actuator may be mounted on the beam


31


to cause the pills


23


to drop from the apertures


7


.




As shown in

FIG. 3A

, the packaging apparatus


1


includes a delivery sensor


33


associated with each filling station


26


. The delivery sensor


33


is positioned near the top of the chute


25


and is configured to detect the passage of each pill


23


into the chute


25


or container


22


. The delivery sensor


33


detects the passage of each pill


23


as the pill enters the chute


25


and drops into the corresponding container


22


. Alternatively, the delivery sensor


33


may be positioned above, below, or elsewhere within the chute


25


. In the embodiment shown in

FIG. 3A

, the top of each chute


25


is tangential to the drum


2


at the second position


28


of the rotary slats


3


, and each chute


25


curves toward the containers


22


. Each delivery sensor


33


detects across the tangential top of the respective chute


25


. It is appreciated that other embodiments of the chutes


25


are possible including, for example, straight chutes with horizontal or angled tops. Additionally, the chute


25


may not be necessary if the top of the container


22


is positioned proximate to the second position


28


of the rotary slat


3


. If no chute


25


is used, the delivery sensor


33


may be located between the second position


28


and the top of the container


22


.




Each delivery sensor


33


detects the passage of pills


23


along a delivery path associated with one of the filling stations


26


and extending from the second position


28


of the corresponding rotary slat


3


to the corresponding container


22


that is being filled at that filling station


26


. As shown in

FIG. 3A

, each delivery sensor


33


is communicatively connected with a controller


50


. Together, the delivery sensor


33


for each filling station


26


and the controller


50


calculate the number of pills


23


that have been delivered to the container


22


or the number of pills


23


that still must be delivered to the container


22


. For example, in one embodiment, the delivery sensor


33


sends a signal to the controller


50


each time the delivery sensor


33


detects the passage of a pill


23


along the delivery path of the corresponding filling station


26


. The controller


50


counts the signals from the delivery sensor


33


and calculates the difference between the number of pills


23


that are desired to be delivered to the container


22


and the number of pills


23


that have been delivered to that container


22


. Thus, the controller


50


can determine when each container


22


has received the correct number of pills


23


.




The controller


50


is also in communicative contact with the drive motors of the drive assembly


41


. Depending on whether the container


22


corresponding to a particular filling station


26


has received the desired number of pills


23


, the controller


50


controls the driving motors to start rotating, continue rotating, or stop rotating the rotary slats


3


. When the controller


50


determines that one of the containers


22


has received the desired number of pills


23


, the controller


50


stops the drive motor that corresponds to the filling station


26


of the filled container


22


. The drive motors corresponding to the other filling stations


26


continue to rotate the rotary slats


3


until the desired number of pills


23


have been delivered to each of the containers


22


. When the desired number of pills


23


has been delivered to each of the containers


22


, all of the rotary slats


3


are stopped and the conveyor


24


transports the filled containers


22


away from the filling stations


26


. When the delivery sensor


33


is positioned at the top of the chute


25


, a small delay may be built into the controller logic after the last pill


23


has been counted but before the conveyor


24


has been advanced to allow time for the last pill


23


to fall through the chute


25


. Because the controller


50


independently controls the delivery of pills


23


to each container


22


and independently calculates the number of pills


23


delivered to each container


22


, it is not important that the containers


22


are filled at uniform rates. Each container


22


receives the proper number of pills


23


even if some of the pill apertures


7


fail to receive and deliver pills


23


. Further, each container


22


receives the proper number of pills


23


regardless of whether more of the pill apertures


7


of one rotary slat


3


receive and deliver pills


23


than the pill apertures


7


of the other rotary slats


3


.




A number of transportation devices that are known in the art can be used to transport the containers


22


to the filling stations


26


, the most common type being the conveyor


24


comprising at least one conveyor belt and at least one conveyor motor


34


. Preferably, the conveyor


24


supports the containers


22


and transports them in a direction parallel to the axis of rotation of the rotary slats


3


. A first stop gate


60


is positioned proximate to the conveyor


24


so that when a first stop gate actuator


61


extends the first stop gate


60


, the first stop gate


60


blocks the path of the containers


22


on the conveyor


24


at the filling stations


26


and holds the containers


22


in positions corresponding to the filling stations


26


. Similarly, a second stop gate


62


is extended by a second stop gate actuator


63


to block the path of the unfilled containers


22


before they have entered the filling stations


26


. The first and second stop gate actuators


61


,


63


are controlled by the controller


50


. In a normal mode of operation, the first stop gate


60


is extended and the second stop gate


62


is retracted so that unfilled containers


22


are transported by the conveyor


24


into positions corresponding to the filling stations


26


. When a number of unfilled containers


22


corresponding to the number of filling stations


26


has proceeded past the second stop gate


62


, the second stop gate


62


is extended, blocking other containers


22


from proceeding to the filling stations


26


. The conveyor motors


34


may stop once the containers


22


are in position, or the conveyor


24


may continue to move, sliding beneath the containers


22


held at the filling stations


26


by the stop gates


60


,


62


. The controller


50


starts the drive assembly


41


to begin filling the containers


22


. The controller


50


may also control the speed of the drive motors of the drive assembly


41


, so that, for example, each rotary slat


3


can be slowed down before the corresponding container


22


is filled to prevent overfilling. Additionally, the controller


50


can alternately accelerate and decelerate the rotary slats


3


, individually or in unison, to cause a jerking or vibratory motion in the rotary slats and agitate the pills


23


. Such agitation of the pills


23


can be useful in encouraging the pills


23


to become seated in the pill apertures


7


. After the containers


22


at the filling stations


26


have been filled, the first stop gate


60


is retracted so that the containers are transported away from the filling stations


26


for further processing or packaging. The second stop gate


62


is again retracted and the first stop gate


60


is extended so that different, unfilled containers


22


are transported to the filling stations


26


.




Alternatively, a screw auger (not shown) can be used to transport the containers


22


and position the containers


22


at the filling stations


26


. The screw auger maintains the containers


22


at consecutively spaced intervals, and as the screw auger is rotated, each of the containers


22


is transported toward or away from the filling stations


26


. Thus, the rotational speed of the screw auger can be adjusted to speed, slow, stop, or reverse the direction of the containers


22


.




The controller


50


is also in communicative contact with the level sensor


32


and a reservoir gate switch (not shown) that controls a reservoir gate


31


. The level sensor


32


detects the quantity of pills


23


in the common interior space


12


and communicates a corresponding value or signal to the controller


50


. For example, the level sensor


32


can detect the quantity of pills


23


by detecting the level of pills


23


piled in the common interior space


12


. When the controller


50


detects that the level of pills


23


in the common interior space


12


is below the desired level, the controller


50


signals the reservoir gate switch to open the reservoir gate


31


. By opening and closing the reservoir gate


31


, which controls the passage of pills


23


from the reservoir


30


to the common interior space


12


of the drum


2


, the controller


50


maintains a desired number of pills


23


in the rotary slats


3


of the drum


2


. The desired level of pills


23


may be adjusted to optimize the seating of pills


23


in the pill apertures


7


and to prevent wearing or breaking of the pills


23


caused by overfilling of the drum


2


. Also, while the embodiment of

FIG. 3

shows a single reservoir


30


on one side of the drum


2


, it is also understood that multiple reservoirs


30


may be used. For example, an additional reservoir


30


may be positioned at the opposite end of the packaging apparatus


1


, so that pills


23


are fed into the common interior space


12


of the drum


2


through both end plates


13




a


,


13




b


. In the case where pills


23


are fed into the common interior space


12


through both end plates


13




a


,


13




b


, the first end plate


13




a


is modified to define an aperture similar to the pill feed aperture


14


of the second end plate


13




b.






Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.



Claims
  • 1. An automated packaging apparatus for depositing a predetermined number of pills into a series of containers, comprising:one or more rotary slats, wherein each of said rotary slats is independently rotatable and comprises an outer peripheral edge portion, said outer peripheral edge portion of each rotary slat defining a common interior space, each of said outer peripheral edge portions defining a plurality of pill apertures extending therethrough, and each pill apertures of a respective one of said slats being configured to receive one of the pills from said common interior space of said respective slat at a first position and transmit the pill outside said respective rotary slats at a second position, each of said pill apertures of said respective slat being disposed in a single row for depositing pills into one of the containers; a conveyor configured to move a plurality of open containers along a predetermined path of travel and position each of said containers adjacent said respective rotary slat to define a delivery path extending between the second position of said rotary slat and said container; at least one drive motor in driving engagement with each of said rotary slats for rotating each of said rotary slats; and a controller connected to said at least one drive motor for controlling said at least one drive motor such that each of said rotary slats can be independently rotated for different durations.
  • 2. The automated packaging apparatus of claim 1 further comprising a shroud extending from a location proximate to said first position to a location proximate to said second position such that said shroud prevents the pills from exiting each of said rotary slats through said pill apertures prior to the pills reaching said second position.
  • 3. The automated packaging apparatus of claim 1 further comprising an air blower located in said common interior space of each rotary slat and configured to emit air towards said pill apertures at said second position.
  • 4. The automated packaging apparatus of claim 1 further comprising at least one plows, each plow extending toward said pill apertures at the second position of said respective rotary slats such that said plows urge said pills from said pill apertures.
  • 5. The automated packaging apparatus of claim 1 further comprising an air blower located outside each of said rotary slats and configured to emit air towards said pill apertures at a third position of said respective rotary slate such that pills positioned within said pill apertures of said respective rotary slat at said third position are urged into said common interior space of said respective rotary slat.
  • 6. The automated packaging apparatus of claim 1 wherein each of said rotary slats defines an inner contour sloped toward said pill apertures to facilitate the entry of pills into said pill apertures.
  • 7. The automated packaging apparatus of claim 1 wherein said pill apertures are slanted downward toward the outside of said rotary slats when positioned at the second position such that said pills tend to fall from said pill apertures and out of said rotary slats at the second position.
  • 8. The automated packaging apparatus of claim 1 wherein said inner surface of each of said rotary slats defines an inner contour that varies around the circumference of the rotary slat to facilitate the entry of pills into said pill apertures.
  • 9. The automated packaging apparatus of claim 1 wherein said rotary slats are supported by a plurality of cradle rollers.
  • 10. The automated packaging apparatus of claim 1 further comprising a drive assembly engaged to said rotary slats for independently rotating each of said rotary slats.
  • 11. The automated packaging apparatus of claim 10 wherein said drive assembly includes a plurality of drive wheels, each said drive wheel contoured to match said outer peripheral edge portion of said rotary slats.
  • 12. The automated packaging apparatus of claim 1 wherein said rotary slats are positioned with gaps of between about 0.5 to 1 millimeter between adjacent rotary slats.
  • 13. The automated packaging apparatus of claim 1 wherein said rotary slats are formed of a compound comprising acrylonitrile-butadiene-sytrene and polytetrafluoroethylene.
  • 14. The automated packaging apparatus of claim 1 further comprising a reservoir configured to hold the pills and feed the pills into said common interior space defined by said rotary slats.
  • 15. The automated packaging apparatus of claim 12 further comprising a reservoir gate configured to control the passage of pills from said reservoir to said common interior space of each rotary slat.
  • 16. The automated packaging apparatus of claim 1 further comprising a sensor configured to detect the quantity of the pills in said common interior space of said each rotary slats.
  • 17. The automated packaging apparatus of claim 1 further comprising a plurality of chutes, each of said chutes defining said delivery path extending from said second position of one of said rotary slats to the corresponding container.
  • 18. The automated packaging apparatus of claim 1 further comprising a delivery sensor that detects the delivery of a pill through said delivery path.
  • 19. The automated packaging apparatus of claim 1 wherein said controller is configured to alternately accelerate and decelerate said rotary slats such that said rotatary slats are vibrated and the pills are agitated.
  • 20. A method of depositing a predetermined number of pills into a series of containers, comprising:disposing a plurality of pills in an interior space of each of one or more rotary slats; capturing a plurality of the pills in individual pill apertures defined by an outer peripheral edge portion of the each rotary slats; independently rotating the rotary slats to a position where the pills are released from the pill apertures thereby delivering the pills to a plurality of containers; counting each pill as the pills are delivered to the containers; positively determining the number of pills deposited into each of the containers; and stopping the rotation of the rotary slats for which the respective containers have received a predetermined number of pills while continuing the rotation of any slats for which the respective container has not received the predetermined number of pills.
  • 21. The method of claim 20 further comprising directing air toward the pill apertures in a direction from the interior space of each rotary slats toward the outside of the rotary slats to facilitate the release of the pills from the pill apertures.
  • 22. The method of claim 20 further comprising contacting the pills with a plow to urge the pills from the rotary slats.
  • 23. The method of claim 20 further comprising directing air toward the pill apertures in a direction from the outside of a respective one of the rotary slats to urge pills in the pill apertures toward the interior space of the respective rotary slat.
  • 24. The method of claim 20 further comprising detecting the quantity of the pills in the interior space of each rotary slat and automatically feeding more pills into the interior space to maintain a predetermined quantity of pills in the interior space.
  • 25. The method of claim 20 wherein said rotating step comprises alternately accelerating and decelerating the rotary slats to agitate the pills.
  • 26. The method of claim 20 further comprising during said rotating step preventing the release of each of the pills from the pill apertures before each of the pills reaches a predetermined release position with a shroud that partially surrounds the rotary slats.
  • 27. The method of claim 20 further comprising supporting the rotary slats with at least two cradle rollers.
  • 28. The method of claim 20 further wherein said rotating step comprises independently driving each of the rotary slats with at least one drive device.
  • 29. The method of claim 20 wherein said delivering step comprises dropping the pills through chutes, the chutes guiding the pills toward the containers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/218,160, filed Aug. 13, 2002 now U.S. Pat. No. 6,681,550, which is hereby incorporated herein in its entirety by reference.

US Referenced Citations (42)
Number Name Date Kind
422364 Bateson Mar 1890 A
792918 Ohlendorf et al. Jun 1905 A
1383623 Groves Jul 1921 A
1824432 Hendry Sep 1931 A
1839327 Mayo Jan 1932 A
2094460 McBean et al. Sep 1937 A
2479667 Boylan Aug 1949 A
2509069 Mrachek May 1950 A
2585558 Lakso Feb 1952 A
2845759 Cote et al. Aug 1958 A
3028713 Kennedy et al. Apr 1962 A
3139713 Merrill et al. Jul 1964 A
3206062 Rappaport Sep 1965 A
3225513 Ehe Dec 1965 A
3354607 Lakso Nov 1967 A
3387695 Hendrickson Jun 1968 A
3417542 Merrill et al. Dec 1968 A
3677437 Haigler Jul 1972 A
3722740 List Mar 1973 A
3782590 Apfel Jan 1974 A
3837139 Roseberg Sep 1974 A
3925960 Saari et al. Dec 1975 A
3979878 Berney Sep 1976 A
3986636 Hoppmann et al. Oct 1976 A
4017003 Heino Apr 1977 A
4047637 Grunstad et al. Sep 1977 A
4094129 List Jun 1978 A
4094439 List Jun 1978 A
4265072 Egli May 1981 A
4674259 Hills Jun 1987 A
4677283 Lewis Jun 1987 A
5463839 Stange et al. Nov 1995 A
5515668 Hunt et al. May 1996 A
5638657 Archer et al. Jun 1997 A
6185901 Aylward Feb 2001 B1
6266946 Aylward Jul 2001 B1
6269612 Aylward Aug 2001 B1
6401429 Aylward Jun 2002 B2
6422418 Collins et al. Jul 2002 B1
6505460 Aylward Jan 2003 B2
6561377 Pearson et al. May 2003 B1
6681550 Aylward Jan 2004 B1
Foreign Referenced Citations (3)
Number Date Country
2058834 Dec 1934 AU
2203856 Oct 1998 CA
WO 9415859 Jul 1994 WO
Continuations (1)
Number Date Country
Parent 10/218160 Aug 2002 US
Child 10/717994 US