1. Field of the Invention
The present invention generally relates to extended surface area tubing. The present invention also generally relates to a machine that produces textured surfaces on both inner and outer surfaces of a tube. The textured surfaces may be patterns of ribs and grooves formed in the inner and outer surfaces of the tube.
2. Description of Related Art
A heat exchanger tube may be used in a process that transfers heat between a first fluid inside the heat exchanger tube and a second fluid outside of the heat exchanger tube. The efficiency of heat transfer between the first fluid and the second fluid may be a complicated function that depends on the characteristics of the fluids, on the characteristics of the heat exchanger tube, and on the characteristics of fluid movement relative to the heat exchanger tube. The term “fluid” refers to a liquid, a gas, or a combination of a liquid and a gas. A heat exchanger tube may also be used to transfer heat between a fluid and a solid. The solid may be located inside or outside of the tube.
Each end of a tube may be pointed. A pointed tube may have reduced diameter cylindrical portions at each end of the tube that transition to a larger diameter main body section of the tube. A pointed tube may facilitate attachment of the tube to support structures. The support structures may be tube sheets of a heat exchanger. Tube sheets may support several tubes within a shell of a tube-and-shell heat exchanger. Fluid that is directed past outside surfaces of tubes of a tube-and-shell heat exchanger may flow in a direction that is substantially coaxial to a longitudinal axis of the shell of the heat exchanger. Tubes having pointed ends may be easier to position and seal to support structures than are tubes that do not have pointed ends. U.S. Pat. No. 5,311,661, which issued to Zifferer and which is incorporated by reference as if fully set forth herein, describes an apparatus that may be used to form heat exchanger tubes having pointed ends.
It is desirable to maximize the heat transfer rate across a wall of a tube of a heat exchanger. Increasing the surface area of a tube may increase the heat transfer rate across the tube. Also, directing fluid flow past and through a tube in desired fluid flow patterns may increase the heat transfer rate across the tube.
One method of increasing the surface area of a tube is to attach fins to an outer surface of the tube. Fins may be attached to a tube after the tube is formed, or fins may be formed in the outer surface of the tube. Fins may be formed on the outer surface of a tube by a finning tool of a finning machine. A finning tool typically includes three or four disks mounted on an arbor. The disks form a spiraled flight of fins on an outer surface of a tube during use. The fins formed by a finning tool may have heights that are greater than about 30 mils (0.030 inches). Generally, the fins formed by a finning tool are oriented substantially perpendicular to the longitudinal axis of the tube. A small amount of skew from a true perpendicular orientation allows the finning tool to provide a driving force to the tube that moves the tube through the finning machine.
Fins may be oriented substantially perpendicular to a longitudinal axis of the tube, or the fins may be oriented substantially parallel to the longitudinal axis of the tube. Fins on an outer surface of a tube that are substantially perpendicular to a longitudinal axis of the tube may be used in heat transfer applications where fluid flow is directed substantially perpendicular to the longitudinal axis of the tube. Heat exchanger tubes of condensers and evaporators may be finned tubes wherein the fins are oriented substantially perpendicular to longitudinal axes of the tubes. Fins that are oriented substantially parallel to a longitudinal axis of a tube may be used in heat transfer applications where fluid flow is directed substantially coaxial to the longitudinal axis of the tube. Tubes having fins that are oriented substantially parallel to longitudinal axes of the tubes may be used in tube and shell heat exchangers.
Another method of increasing the surface area of a heat exchanger tube is to texture the inner surface of the tube. A knurling tool may be used to form a groove and rib pattern on an inner surface of a tube. The knurling tool may be placed within the tube. Force may be applied to an outer surface of the tube to press the inner surface of the tube against the knurling tool. Pressing the inner surface of the tube against the knurling tool forms a knurl pattern on the inner surface of the tube.
A finning tool and a knurling tool may be used in combination to form a tube that has a finned outer surface and a knurled inner surface. U.S. Pat. No. 4,886,830, which issued to Zohler and which is incorporated by reference as if fully set forth herein, describes a method of forming a tube that has a finned outer surface and a knurled inner surface.
An alternate method of texturing a tube is to form a desired pattern of ribs and grooves on surfaces of a flat metal plate. The plate may then be rolled into a cylindrical shape. A weld may be formed to join the ends of the plate together and form a tube. U.S. Pat. No. 5,388,329, which issued to Randlett et al., describes a method of manufacturing an extended surface heat exchanger tube using a rolled and welded metal plate.
A heat transfer rate across a tube may be increased by directing fluid flow in a desired flow pattern through and by the tube. A desired flow pattern may increase internal mixing of the fluid. A desired flow pattern may promote non-laminar fluid flow of one or both of the heat exchange fluids. In a straight, smooth-walled cylindrical tube, fluid may flow past or through the tube in a laminar flow pattern. Laminar fluid flow may develop a boundary layer at a wall of the heat exchanger tube. The boundary layer may inhibit heat transfer throughout the fluid. Non-laminar fluid flow may minimize the formation of a boundary layer and promote internal mixing of the fluid so that heat transfer takes place throughout the fluid.
One method that may be used to obtain a desired fluid flow pattern is to change the geometrical configuration of the surfaces of a heat exchanger tube. The geometrical configuration of the surfaces of a heat exchanger tube may be changed by texturing the surfaces of the tube. Texturing the surfaces of the tube may increase the heat transfer surface area of the tube and promote internal mixing of fluid that flows through or by the tube.
Inner and outer surfaces of a tube may be simultaneously textured with a texturing machine. The texturing machine may include an outer knurling device and an inner knurling device. The knurling devices may be used to form grooves in inner and outer surfaces of a tube. The depth of the grooves may be less than about 35 mils (0.035 inches), and are preferably less than about 25 mils. The depth of the grooves may be greater than about 4 mils. The grooves formed in the outer surface of the tube may have a different depth and a different pattern than the grooves formed in the inner surface of the tube. The grooves formed in the surfaces of the tube may increase the surface area of the tube, promote internal mixing of fluid that flows by or through the tube, and inhibit formation of stagnant areas of fluid adjacent to inner and outer surfaces of the tube. The grooves may be formed in a helical pattern about a longitudinal axis of the tube. The angles of the helical patterns formed in the inner and outer surfaces of the tube may be less than about 45° relative to the longitudinal axis of the tube. Angle patterns that are less than about 45° relative to the longitudinal axis of the tube may allow the tube to be used as a heat exchanger element wherein fluid flows by and through the tube in directions that are substantially coaxial with the longitudinal axis of the tube.
Texturing in an outer surface of a tube may be formed in a helical pattern by a texturing machine. An angle of the pattern relative to a longitudinal axis of the tube may be less than 90°, and is preferable less than about 45°. The angle of the pattern relative to a longitudinal axis of the tube may be greater than about 2°. Texturing in an inner surface of the tube may also be formed in a helical pattern. An angle of the inner tube surface pattern relative to a longitudinal axis of the tube may be less than about 90°, and may preferably be between about 5° and 45°. The angle of the inner tube surface pattern relative to a longitudinal axis of the tube may preferably be about 30°.
An embodiment of a texturing machine may be used to form a texturing pattern in an outer surface of a tube that is oriented in an opposite direction to a texturing pattern formed in an inner surface of the tube. For example, a pattern formed in an outer surface of a tube may be a 20° right-hand helical orientation of grooves, while a pattern formed in an inner surface of the tube may be a 30° left-hand helical orientation of grooves. In an alternate embodiment, the angle pattern in the outer tube surface may be formed in a left-hand helical orientation, and the angle pattern in the inner tube surface may be formed in a right-hand helical orientation. The oppositely oriented patterns may cause the formation of a crosshatched pattern in the outer and inner surfaces of the tube. The crosshatched pattern may be a result of grooves being formed in the outer surface when ribs are formed on the inner surface. Similarly, grooves may be formed in the inner surface when ribs are formed on the outer surface. Embodiments of texturing machines may form helical patterns in tubing that are in the same orientation. For example, helical patterns in inner and outer tube surfaces may both be formed in right-hand helical orientations. Helical patterns in inner and outer tube surfaces may also both be formed in left-hand helical orientations.
An outer knurling device of a texturing machine may include one or more knurling tools. In an embodiment, the outer knurling device includes three knurling tools that are offset from each other by 120°. The outer knurling tools may be connected to drive mechanisms. When the drive mechanisms are engaged, the knurling tools rotate. The outer knurling device may also be coupled to a mechanism that brings the knurling tools into contact with a tube. When the knurling tools are brought into contact with a tube and when the drive mechanisms are engaged, the knurling tools rotate and form a helical pattern of grooves in an outer surface of the tube. The rotation of the knurling tools may drive the tube through the texturing machine.
In an embodiment, an angle of each outer knurling tool of a texturing machine may be adjustably positionable relative to a longitudinal axis of a tube positioned within the texturing machine. The outer knurling tools may be angled from about 0.5° to about 4.5° in 0.5° increments. The lower ends of the knurling tools may be positioned close to an exit end of the texturing machine. Each outer knurling tool may be set at the same angle. The set angle of the outer knurling tools may determine the feed rate of a tube through the texturing machine. For a tube that is made of a material that is difficult to work, e.g. titanium or cupro-nickel, a small set angle may be preferred. For a tube that is made of a material that is easy to work, e.g. copper, a larger set angle may be preferred so that there is a higher production rate of textured tubing from the texturing machine.
A tube may be positioned over an inner knurling device. The inner knurling device may be positioned beneath an outer knurling device of a texturing machine. The inner knurling device may be rotatively coupled to a mandrel. When a knurling tool or knurling tools of an outer knurling device are brought into contact with an outer surface of a tube, the outer knurling device may press an inner surface of the tube against the inner knurling device. When a drive mechanism or drive mechanisms of the knurling device are engaged to move the tube through the texturing machine, the inner knurling device forms texturing on the inner surface of the tube as the outer knurling device forms texturing on the outer surface of the tube.
A tube that is to be textured by a texturing machine may be placed over a mandrel of the machine so that a portion of a first end of the tube extends beyond the outer knurling device. The outer knurling device may be pressed against the tube to press an inner surface of the tube against the inner knurling device. A drive or drives may be engaged to move the tube through the machine so that the knurling devices form textured inner and outer tube surfaces. The drive or drives may be disengaged before the outer knurling device reaches a second end of the tube. Placing a portion of the first end of the tube beyond the outer knurling device and disengaging the knurling machine before reaching the second end of the tube leaves un-textured portions of tubing at each end of the tube. Un-textured portions of tube may allow the tube to be easily attached and sealed to support structures, such as tube sheets of a heat exchanger.
Each end of a textured tube may also be pointed by a pointing machine to promote easy attachment of the tube to support structures. To point an end of a tube, the end of the tube may be brought into contact with a tube-pointing die. The tube-pointing die may form a frustro-conical section and a cylindrical section having a reduced diameter at the end of the tube.
A texturing machine may form a tube having inner and outer textured surfaces in a single operation. The textured surfaces may have increased surface area, and the textured surfaces may promote internal mixing of fluid that flows past the surfaces. Inner and outer textured surfaces may increase the effective heat transfer coefficient of the tube as compared to an un-textured tube of the same diameter.
A texturing machine may form grooves in inner and outer surfaces of a tube that are less than about 35 mils. The depth of the grooves may inhibit formation of stagnant fluid areas adjacent to the inner and outer surfaces of the tube while still promoting internal mixing of fluid flowing by or through the tube.
A texturing machine may be used to form texturing patterns having a variety of angle patterns and orientations. Different knurling devices may be installed in the texturing machine to form different patterns and different orientations. The angle of the patterns formed in the inner and outer tube surfaces may be less than about 90° relative to a longitudinal axis of the tube. The angle of the patterns formed in the inner and outer tube surfaces may preferably be less than about 45° relative to the longitudinal axis of the tube to promote efficient heat transfer across the tube when the flow of fluid by and through the tube is directed substantially coaxial to the longitudinal axis of the tube. The texturing machine may be used to form a helical pattern in an outer surface of a tube in a first direction that is opposite in orientation to a helical pattern formed in an inner surface of the tube. Oppositely oriented helical patterns may result in the formation of a crosshatched pattern in the inner and outer surfaces of the tube.
An angle of outer knurling tools relative to a longitudinal axis of a tube positioned within a texturing machine may be adjustable. Adjusting the angle of the knurling tools allows a user to control throughput of tubing processed by the texturing machine. The throughput of the machine may be controlled to compensate for differences in hardness and workability of different types of tubing.
A texturing machine may leave un-textured portions at each end of the tube. The un-textured portions may allow the tube to be easily attached and sealed to support structures. Also, end portions of a textured tube may be pointed to allow the tube to be easily and conveniently attached and sealed to a support structure. A tube may be sealed to a support structure by a sealing method. The sealing method may be, but is not limited to, welding or application of sealant. Attaching a textured tube that has un-textured ends may be easier to accomplish than attaching a textured tube with textured ends because special procedures do not have to be implemented to ensure that a seal is formed adjacent to all of the grooves and ribs formed in the tube. A texturing machine may be sturdy, durable, simple, efficient, reliable and inexpensive; yet the machine may also be easy to manufacture, install, maintain and use.
Advantages of the present invention will become apparent to those skilled in the art with the benefit of the following detailed description of embodiments and upon reference to the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
A texturing machine 20 may form a textured tube 28. Cylindrical tube 26 may be used as a starting material to form a textured tube 28. The cylindrical tube 26 may have an outer diameter that is greater than about ¼ of an inch. In an embodiment, the outer tube diameter of the cylindrical tubing stock 26 is about 1½ inches. Preferably, the cylindrical tube 26 is a metallic tube. In certain embodiments, the cylindrical tubing stock 26 may be made of a high thermal conductivity metal; including, but not limited to, copper, brass, or aluminum. In other embodiments, the cylindrical tubing stock 26 may be made of a corrosion resistant metal; including, but not limited to, stainless steel, titanium, or titanium alloy. Preferably, the cylindrical tube 26 used to form a textured tube 28 has a thin wall thickness. The tubing material may be chosen based upon a number of factors including, but not limited to, material cost, required heat transfer rate across the tubing, and corrosive properties of fluids that contact the tubing. A length of the cylindrical tube 26 may be reduced when the texturing machine 20 forms the tube into a textured tube 28.
A texturing machine 20 may simultaneously texture both an inner surface 22 and an outer surface 24 of a tube 26. The texturing formed in the inner and outer surfaces 22, 24 may be helically formed patterns of grooves 30. Forming a pattern of grooves 30 in the inner and outer surfaces 22, 24 may result in the formation of ribs 32 between adjacent grooves. The angle of the helical pattern of grooves 30 and ribs 32 in the inner surface 22 of a textured tube 28 relative to longitudinal axis 34 of the tube may be less than 90°, and preferably is less than 45°, and most preferably is about 30°. The angle of the helical pattern of grooves 30 and ribs 32 in the inner surface 22 of a textured tube 28 relative to longitudinal axis 34 of the tube may be greater than about 5°. The angle of the helical pattern of grooves 30 and ribs 32 in the outer surface 24 of the tube 28 relative to the longitudinal axis 34 of the tube may be less than 90°, and preferably less than about 45°, and most preferably is less than about 30°. The angle of the helical pattern of grooves 30 and ribs 32 in the outer surface 24 of the tube 28 relative to the longitudinal axis 34 of the tube may be greater than about 2°.
An angle pattern of grooves 30 that is less than about 45° relative to a longitudinal axis 34 of a textured tube 28 may inhibit stagnation of fluid that flows through or by the textured inner and outer surfaces 22, 24 if the flow is directed substantially coaxial to a longitudinal axis 34 of a tube 28. An angle pattern of greater than about 45° may allow the ribs 32 to act as baffles that inhibit fluid through the grooves 30 if the flow is directed substantially coaxial to the longitudinal axis 34 of the tube 28. If the ribs 32 function as baffles, the ribs may allow fluid within the grooves 30 to be substantially immobile or stagnant. The angle pattern of textured inner surface 22 may be substantially the same as the angle pattern formed in textured outer surface 24. Alternately, the angle pattern of textured inner surface 22 may be may be unequal to the angle pattern of outer textured surface 24. For example, the inner surface 22 may have an angle pattern of 30° relative to a longitudinal axis 34 of the tube 28, and the outer surface 24 may have an angle pattern of 20° relative to the longitudinal axis of the tube.
The helical pattern formed by a texturing machine 20 in an inner surface 22 of a tube 26 may be in a right-handed helical orientation or a left-handed helical orientation. Similarly, the helical pattern formed by a texturing machine 20 in an outer surface 24 of a tube 26 may be in a right-handed helical orientation or a left-handed helical orientation. The helical patterns formed in the inner surface and outer surface 22, 24 of a tube 28 may both have the same orientation. For example, the helical pattern formed in the inner and outer surfaces 22, 24 may both have right or left-handed helical orientations.
Alternatively, a helical pattern formed in a textured inner surface 22 may be oriented opposite to a helical pattern formed in a textured outer surface 24. For example, the helical orientation of the inner surface 22 may be a right-hand helical orientation while the helical orientation of the outer surface 24 may be a left-hand helical orientation. In an alternate embodiment, the helical orientation of the inner surface 22 may be a left-hand helical orientation while the helical orientation of the outer surface 24 may be a right-hand helical orientation. The opposite helical orientations may produce a crosshatched pattern in the surfaces 22, 24 of the tube 28.
A height between a bottom of a groove 30 and a top of a rib 32 of a textured surface 22 or 24 may be less than about 35 mils, may preferably be less than about 25 mils, and may be more preferably be less than about 20 mils. The height between a bottom of a groove 30 and a top of a rib 32 may be greater than about 4 mil. In an embodiment, the height of the ribs 32 formed in the outer surface 24 may be substantially the same as the height of the ribs formed in the inner surface 22. In an alternate embodiment, the height of the ribs 32 formed in the outer surface 24 may be different than the height of the ribs formed in the inner surface 22. For example,
A pattern formed in an inner tube surface 22 may be formed by inner knurling tool 36 of a texturing machine 20.
A pattern formed in the outer surface 24 of a textured tube 28 may be formed by outer knurling tool 42, or by outer knurling tools. An outer knurling tool 42 may substantially resemble an inner knurling tool 36. The geometric properties of the knurling tools 36, 42, such as outer diameter and length, may differ. The knurling tools 36, 42 form ribs 32 and grooves 30 in inner and outer surfaces 22, 24 of the tube 26 in opposite patterns to the patterns of ribs formed in the surfaces of the knurling tools 36, 42. The knurling tools 36, 42 may be made of materials that are harder than the material of the tube 26 being textured. For example, the knurling tools 36, 42 may be formed of C2 carbide and the tube 26 may be formed of copper.
A knurling tool 36 or 42 may include a large number of grooves 38 and ribs 40 on an outer surface of the tool. For example,
Different knurling tools 36, 42 may be interchangeable positioned within a texturing machine 20. The ability to use different knurling tools 36, 42 within a texturing machine 20 may allow textured tubes 28 to be formed that have different rib heights, different angle patterns, and/or different helical pattern orientations. Tubes 28 with different rib heights, angle patterns, and/or helical pattern orientations may be needed for different heat transfer applications.
The inner knurling tool 36 and the outer knurling tools 42 may be configured to form different types of grooves 30 and ribs 32. For example, in an embodiment of a texturing machine 20, the inner knurling tool 36 may be configured to form substantially “U” shaped grooves 30, while the outer knurling tool 42 may be configured to form substantially “V” shaped grooves.
A mandrel 44 may be a guide and support for a tube 26 that is positioned within a texturing machine 20. A mandrel 44 may be a tube or rod with an inner knurling tool 36 rotatively mounted to the tube or rod near a first end of the mandrel. In an embodiment, the inner knurling tool 36 is not driven, but is free to rotate. In an alternate embodiment, the inner knurling tool 36 may be coupled to a drive mechanism. A second end of the mandrel 44 may be fixedly attached to support structure 54 of the texturing machine 20. The knurling tool 36 may have a diameter that is less than a diameter of the tube 26 to be textured. The mandrel 44 may position the inner knurling tool 36 centrally within the head 48. A user may slide a tube 26 that is to be textured over the inner knurling tool 36 and mandrel 44 so that the knurling tool supports a portion of the weight of the tube. Also, the tube 26 may be partially supported by a tube support 46.
A head 48 of a texturing machine 20 may include covers 56, end plates 58, outer knurling tools 42, and positioners 60.
Positioners 60 of a head 48 may adjust the location of outer knurling tools 42 towards or away from a tube 26 centrally positioned within the head 48. In an embodiment, the positioners 60 may include hydraulically operated height adjustment cylinders. The positioners 60 may be independently adjustable so that a distance between each outer knurling tool 42 and a tube 26 centrally positioned within the head 48 may be independently adjusted. The positioners 60 may also be dependently adjustable so that a distance between a tube 26 centrally positioned in the head 48 and each knurling tool 42 may be simultaneously adjusted. When the positioners 60 are in an initial position, the knurling tools 42 may be offset a distance from a tube 26 that is centrally positioned within the head 48. The distance may allow a tube 26 to be inserted onto the mandrel 44. The distance may also allow a textured tube 28 to be removed from the texturing machine 20. When the positioners 60 are engaged, the outer knurling tools 42 may be moved towards the inner knurling tool 36. The positioners 60 may press the outer knurling tools 42 against a tube 26 positioned over the inner knurling tool 36. The positioners 60 may press the knurling tools 42 against the tube 26 with enough force to press an inner surface 22 of the tube 26 against the inner knurling tool 36.
Outer knurling tools 42 may be adjustable to establish a set angle of the outer knurling tools relative to a longitudinal axis 34 of a tube 26 positioned within the texturing machine 20.
A drive shaft 50 may be coupled to each outer knurling tool 42. Each drive shaft 50 may be coupled to a drive 52. In an embodiment, each drive 52 is an electrically operated motor. The drives 52 may be engaged to rotate the drive shafts 50 and the outer knurling tools 42. The rotating outer knurling tools 42 may texture the outer surface 24 of the tube 26 and propel the tube through the texturing machine 20.
Texturing machine 20 may be used to form a textured tube 28. Cylindrical tubing stock 26 may be placed over the inner knurling tool 36 of the mandrel 44. The tube 26 may be pushed down a length of the mandrel 44 so that the tube is supported by the mandrel and by tube support 46. A portion of the tube 26 may extend beyond the inner and outer knurling tools 36, 42. A portion of the tube 26 may be centrally positioned within the head 48. The inner surface 22 and outer surface 24 of the portion of the tube 26 that extend beyond the knurling tools 36, 42 will not be textured by the machine 20. Each outer knurling tool 42 may be adjusted so that outer knurling tools are canted at a desired set angle relative to the longitudinal axis 34 of the tube 26. The drives 52 may be engaged to rotate the outer knurling tools 42. Positioners 60 may be engaged to press the outer knurling tools 42 against the outer surface 24 of the tube 26. Pressing the outer knurling tools 42 against the outer surface 24 of the tube 26 may press the inner surface 22 of the tube against the inner knurling tool 36. Pressing the inner surface 22 of the tube against the inner knurling tool 36 may form grooves 30 and ribs 32 in the inner surface of the tube 26. Pressing the outer knurling tools 42 against the outer surface 24 of the tube 26 may form grooves 30 and ribs 32 in the outer surface of the tube.
The rotating outer knurling tools 42 drive the tube 26 through the head 48 so that texturing is formed on the inner surface 22 and outer surface 24 of the tube. The drives 52 may be disengaged to stop the rotation of the outer knurling tools 42 before the knurling tools texture an end portion of the tube 26. The drives 52 may be disengaged at a point during the formation of a textured tube 28 when a length of an un-textured portion 62 of a first end of the tube is about equal to a length of an un-textured portion 64 of a second end of the tube. The positioners 60 may be disengaged so the positioners return to initial positions. The textured tube 28 may be removed from the texturing machine 20.
After forming textured inner and outer surfaces 22, 24 of a tube 28, the tube may be pointed.
To point a textured tube 28, an end of the tube and a die 106 are pressed together by a drive 102. The frustro-conical surface 108 of the die 106 may reduce the tube diameter as the tube 28 and die are pressed together. The frustro-conical surface 108 may form frustro-conical portion 66 of textured tube 28 that tapers the tube from a large diameter to a smaller diameter. A leading portion of the tube 28 may be forced into the opening 110 of the die 106. The opening 110 may form cylindrical portions 68 at each end of the tube 28. Each cylindrical portion 68 has a reduced tube diameter as compared to a principal diameter of the tube 28. In an embodiment, the cylindrical portions 68 of the tube 28 are un-textured surfaces. In alternate embodiments, the cylindrical portions 68 may be textured, or partially textured surfaces. The frustro-conical portions 66 of the tube 28 may be textured, partially textured, or un-textured surfaces.
A tube pointer die 106 may be a component of a pointing machine. The pointing machine 100 may be a single-end pointing machine, or a double-end pointing machine.
In an embodiment of a double-end pointing machine, two dies 106 may be separated by a distance that allows a tube 28 to be inserted into the machine 100. The machine may be activated to point the ends of a tube 28 positioned between the two dies 106. In an embodiment, the tube 28 is moved against one of the dies 106 to point the first end, and then against a second die to point the second end. In an alternate embodiment, the tube 28 is stationary, and the dies 106 are moved against the ends of the tube to point the tube. A double-end pointing machine may also be formed wherein one of the dies 106 is stationary, and wherein the other die is moveable. A first end of the tube 28 may be pointed by moving the tube into the stationary die. A second end of the tube 28 may be pointed by moving the moveable die against the second end of the tube.
Pointing a tube 28 may establish a variable wall thickness in the pointed section of the tube.
Un-textured, reduced diameter cylindrical portions 68 may allow several tubes 28 to be closely spaced together within heat exchanger 200.
Textured tubes 28 may be coupled to support structures 210 within a heat exchanger 200.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
This application is a divisional of Ser. No. 09/902,870 U.S. Pat. No. 6,760,972 entitled “Apparatus and Methods For Forming Internally and Externally Textured Tubing” filed on Jul. 10, 2001. This application claims priority to U.S. Provisional Application No. 60/234,458 entitled “Apparatus and Methods For Forming Internally and Externally Textured Tubing,” filed Sep. 21, 2000. The above-referenced provisional application is incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1785905 | Kerruish | Dec 1930 | A |
3407638 | Greis et al. | Oct 1968 | A |
3630058 | Kiplinger et al. | Dec 1971 | A |
3662578 | Gleason et al. | May 1972 | A |
3768291 | Rieger | Oct 1973 | A |
3881342 | Thorne | May 1975 | A |
3893322 | Campbell et al. | Jul 1975 | A |
3906605 | McLain | Sep 1975 | A |
4248179 | Bonner | Feb 1981 | A |
4330036 | Satoh et al. | May 1982 | A |
4332294 | Drefahl et al. | Jun 1982 | A |
4365487 | Dobney | Dec 1982 | A |
4373366 | Tatsumi | Feb 1983 | A |
4377083 | Shepard et al. | Mar 1983 | A |
4425696 | Torniainen | Jan 1984 | A |
4437329 | Geppelt et al. | Mar 1984 | A |
4514997 | Zifferer | May 1985 | A |
4658892 | Shinohara et al. | Apr 1987 | A |
4690211 | Kuwahara et al. | Sep 1987 | A |
4715436 | Takahashi et al. | Dec 1987 | A |
4729155 | Cunningham et al. | Mar 1988 | A |
4866830 | Zohler | Sep 1989 | A |
4921042 | Zohler | May 1990 | A |
5092038 | Geppelt et al. | Mar 1992 | A |
5186252 | Nishizawa et al. | Feb 1993 | A |
5251693 | Zifferer | Oct 1993 | A |
5259448 | Masukawa et al. | Nov 1993 | A |
5311661 | Zifferer | May 1994 | A |
5351397 | Angeli | Oct 1994 | A |
5388329 | Randlett et al. | Feb 1995 | A |
5409057 | Zifferer | Apr 1995 | A |
5415225 | Randlett et al. | May 1995 | A |
5551504 | Zifferer | Sep 1996 | A |
5573062 | Ooba et al. | Nov 1996 | A |
5690167 | Rieger | Nov 1997 | A |
5803128 | Reed | Sep 1998 | A |
5813438 | Reed | Sep 1998 | A |
5819807 | Reed | Oct 1998 | A |
5992512 | Tsuri et al. | Nov 1999 | A |
5996686 | Thors et al. | Dec 1999 | A |
6056048 | Takahashi et al. | May 2000 | A |
6067712 | Randlett et al. | May 2000 | A |
6488079 | Zifferer | Dec 2002 | B2 |
Number | Date | Country |
---|---|---|
2515312 | Oct 1976 | DE |
0882 939 | Dec 1989 | EP |
1 448 901 | Sep 1976 | GB |
07024522 | Jan 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20040250587 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60234458 | Sep 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09902870 | Jul 2001 | US |
Child | 10889622 | US |