Apparatus and methods for fracture repair

Abstract
Apparatus and methods for bone fracture repair. The apparatus may include a structural support for positioning a first bone segment relative to a second bone segment. The apparatus may include an anchoring substrate. The anchoring substrate may be configured to compress the first bone segment to the second bone segment. The anchoring substrate may transmit tension from a distal bone segment anchor in the first bone segment to a proximal bone segment anchor in the second bone segment. The apparatus may be configured to be deployed percutaneously in an inner cavity of a bone. The apparatus may be installed in an open fracture. The apparatus may be expanded, self-expanding or configured for mechanically actuation. Some embodiments of the apparatus may include a central axis member that may be used in conjunction with expansion of one or both of the structural support and the anchoring substrate to configure the apparatus.
Description
FIELD OF TECHNOLOGY

Aspects of the disclosure relate to providing apparatus and methods for repairing bone fractures. In particular, the disclosure relates to apparatus and methods for repairing bone fractures utilizing a device that is inserted into a bone.


BACKGROUND

Currently, there are many known ways to treat long bone fractures. Common fracture treatments include: (1) non-surgical immobilization; (2) osteosuture and tension band technologies; (3) percutaneous fixation (e.g., using pins, wires, screws etc.); (4) rigid intramedullary nailing (e.g., using a large rod and external screws); (5) flexible plate osteosynthesis (e.g., a “load sharing” suture); (6) arthroplasty (e.g., using a prosthesis); (7) plating and other indication-specific techniques. Severe fractures that meet certain clinical criteria may require surgical repair rather than non-surgical immobilization.


The midshaft of an elongated or long bone is typically classified as the diaphysis. The end of such a bone is typically classified as the epiphysis. Bone that is transitional between the midshaft and the end is typically classified as the metaphysis.


Metaphysis and epiphysis bone are typically less dense, more cancellous (porous), and less cortical than diaphysis bone. Repair of metaphysis and epiphysis fractures are often complicated by their proximity to a joint. Because of such bone quality and anatomical differences, fixation of plates and screws in metaphysis and epiphysis bone is typically more difficult than fixation of plates and screws in diaphysis bone. This may be especially true if the patient is elderly and suffers from osteoporosis.


In general, fracture fixation may provide longitudinal (along the long axis of the bone), transverse (across the long axis of the bone), and rotational (about the long axis of the bone) stability. Fracture fixation may also preserve normal biologic and healing function.


There are two primary categories for surgical fixation: (1) a device that is within the skin (internal fixation); and (2) a device that extends out of the skin (external fixation). There are two common types of internal fixation approaches for long bone surgery (a) a plate that is screwed to the outside of the bone; or (b) a rod that goes down the center of the bone.


Plates and screws are characterized by relatively invasive surgery, support of fractured bone segments from one side outside of bone, and screws that anchor into the plate and through the entire bone. Successful repair is dependent on fracture pattern, bone quality, physician skill set, and patient tolerance of a foreign body. Plates and screws may not properly address the alignment and stability requirements for periarticular and intrarticular fractures.


Intramedullary rods or nails, such as those used in mid shaft treatments, are more effective than plates and screws at minimizing soft-tissue trauma and complications. However, rods and nails often do not stabilize multi-segment fractures in many cases. The typical intramedullary rod or nail is fixed in diameter and is introduced into the medullary canal through an incision. In cases where there is a medullary plenum larger than the rod, rotational and transverse stability may be compromised. If a larger rod is used, reaming of the entire shaft length may be necessary. Such reaming may thin out existing cortical bone support. Also, predetermined threaded screw holes in the rods may limit the ways in which different fracture patterns can be reduced and stabilized.


Flexible intramedullary rod-like solutions utilize structures that can be inserted into the medullary cavity through an access site, which can then become rigid. These solutions may be easier for the user to install than rigid intramedullary rods. These structures may be reinforced with polymers or cements. Flexible intramedullary solutions, similar to rigid intramedullary rods, may have limited benefits for periarticular or intrarticular fractures. Multi-segment fractures, of either the midshaft or end-bone, require alignment and stability in a manner that generates adequate fixation in multiple directions.


Midshaft fractures and end-bone fractures are fundamentally different. The loading conditions, fracture patterns, alignment needed, and compression force to promote healing are different. Midshaft fractures have ample bone material on either side of the fracture in which anchors may be driven. End-bone fractures, especially on the articular surface may have thin cortical bone, soft cancellous bone, and minimal anchoring locations.


Midshaft fractures tend to be loaded primarily in bending and torsion. End-bone fractures tend to be loaded in complex and multi-directional stress patterns. Midshaft repair approaches, therefore, may not be appropriate for repair of end-bone fractures.


Appropriate sizing of an implant helps realignment and healing of the fracture. As a result, many different sizes of known repair products are often stored in inventories to ensure proper matching of the implant device to a patient's anatomy. The inventories may be a burden to hospitals and insurance carriers, but they may be necessary to provide to a surgeon intraoperative flexibility.


It would be desirable, therefore, to provide apparatus and methods for proper anatomic alignment and stabilization, while reducing trauma and complications.





BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is a side view of apparatus in accordance with the principles of the invention disposed;



FIG. 1A is a perspective view of the apparatus shown in FIG. 1;



FIG. 1B is a partial sectional view of the apparatus shown in FIG. 1A;



FIG. 1C is front view of the apparatus shown in FIG. 1A in accordance with the principles of the invention;



FIG. 2 is a front view of an illustrative human skeleton;



FIG. 3 is a partial sectional view of a fractured bone;



FIG. 4 is a perspective view showing a body portion that may be treated using the apparatus shown in FIG. 1;



FIG. 5 is a perspective view showing the a portion of the body portion shown in FIG. 4;



FIG. 6 is a sectional view of apparatus in accordance with the principles of the invention;



FIG. 7 is a sectional view of apparatus shown in FIG. 6 along with additional apparatus in accordance with the principles of the invention;



FIG. 8 is a sectional view of apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 9 is a partial sectional view of apparatus shown in FIG. 1 along with additional apparatus in accordance with principles of the invention;



FIG. 10 is a partial sectional view showing the use of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles and methods of the invention;



FIG. 11 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 12 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 13 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 14 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 15 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 16 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 17 is a partial sectional view of the apparatus shown in FIG. 1 along with additional apparatus in accordance with the principles of the invention;



FIG. 18 is a partial sectional view of apparatus in accordance with the principles of the invention;



FIG. 19 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 20 is a partial sectional view of apparatus in accordance with the principles of the invention;



FIG. 21 is an end view of the apparatus shown in FIG. 20;



FIG. 22 is a partial sectional view of apparatus shown in FIG. 1;



FIG. 23 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 24 is a partial sectional view of the apparatus shown in FIG. 23;



FIG. 25 is a side view of apparatus in accordance with the principles of the invention;



FIG. 26 is a side view of apparatus in accordance with the principles of the invention;



FIG. 27 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 28A is a side view of apparatus in accordance with the principles of the invention;



FIG. 28B is a side view of apparatus in accordance with the principles of the invention;



FIG. 28C is a partial sectional view of apparatus in accordance with the principles of the invention;



FIG. 29 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 30 is sectional view of a portion of the apparatus shown in FIG. 29;



FIG. 31 is a side view of apparatus in accordance with the principles of the invention;



FIG. 32 is a sectional view of apparatus shown in FIG. 31;



FIG. 33 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 34 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 35 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 36 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 37 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 38 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 39 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 40 is a partial sectional view of apparatus shown in FIG. 39;



FIG. 41 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 42 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 43 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 44 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 45 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 46 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 47 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 48 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 49 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 50 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 51 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 52 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 53 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 54 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 55 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 56A is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 56B is a side view of the apparatus shown in FIG. 56A;



FIG. 56C is an end view of the apparatus shown in FIG. 56A;



FIG. 57A is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 57B is a side view of the apparatus shown in FIG. 57A;



FIG. 57C is an end view of the apparatus shown in FIG. 57A;



FIG. 58 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 59 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 60 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 61 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 62 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 63 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 64 is a side view of apparatus in accordance with the principles of the invention inside a body portion;



FIG. 65 is a perspective view showing the use of apparatus in accordance with the principles of the invention;



FIG. 66 is a perspective view of apparatus in accordance with the principles of the invention;



FIG. 67 is a perspective view of apparatus in accordance with the principles of the invention; and



FIG. 68 is an illustrative flow diagram that shows a method in accordance with the principles of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Apparatus and methods for fracture repair are provided. The apparatus may include a structural support for positioning a first bone segment relative to a second bone segment. The structural support may be configured to be deployed in an inner cavity of a bone. The apparatus may include an anchoring substrate. The anchoring substrate may be configured to compress the first bone segment to the second bone segment. The anchoring substrate may be configured to be deployed in the inner cavity.


The term “bone segment” may refer to portions or fragments of a bone. The term “structural support” may include a “structural cage.”


The structural support may be self-expanding. The structural support may be expanded by balloon. The structural support may be expanded by mechanical actuation. The anchoring substrate may be self-expanding. The anchoring substrate may be expanded by balloon. The anchoring support may be expanded by mechanical actuation.


The structural support may be used as a frame to position and align the bone segments. Anchors may used to secure the bone segments to the anchoring substrate. The anchoring substrate may be tensioned to compress the bone segments against each other. Some embodiments of the apparatus may include a central axis member. The central axis member may be used in conjunction with expansion of one or both of the structural support and the anchoring substrate. The central axis member may be used in conjunction with the tensioning of the anchoring substrate after anchors are placed. A proximal anchor may be used to fix one end of the apparatus to a bone segment to “lock in” the tensioning of the anchoring substrate.


The apparatus may include delivery apparatus. The delivery apparatus may deliver one or more portions of the apparatus, such as the structural support and the anchoring substrate, through an access hole in the bone and into the intramedullary cavity in the bone. The portions may be delivered in a contracted or collapsed state. The portions may then be expanded for repair of the fracture.


The apparatus and methods may involve reducing, aligning, compressing and/or stabilizing the fracture from within the intramedullary cavity. In some instances, the resulting stabilized bone may then heal while maintaining mobility of the patient.


The apparatus and methods may provide stabilization in axial bending, torsion, rotation, compression, and may provide inter-segment tension or compression.


The stabilization may repair compacted and impacted fractures, control length, and control alignment of the fracture segments. The apparatus may separate the tasks of revision, reduction, fixation, stabilization, rotation and offset.


The apparatus and methods may distribute load between the apparatus and native bone. The apparatus may have flexibility and modulus that are similar to native bone. Some embodiments may provide apparatus that is selectively weaker than or stronger than the native bone to promote beneficial fracture healing response.


The apparatus and methods may be used for closed reduction, open reduction, and minimally invasive surgical procedures (“MIS”). The apparatus and methods may facilitate arthroscopic surgical procedures. The apparatus and methods may provide percutaneous fracture repair. In such repair, the apparatus may be deployed into the cavity of a bone through a small incision.


The apparatus may be delivered at a point other than that of the fracture site. This may help reduce soft tissue damage. The apparatus may be delivered into an intramedullary cavity through a small access hole that may be placed along the midshaft of the long bone in an area in which minimal soft tissues would need to be displaced.


The apparatus and methods may reduce the need to place foreign bodies in muscle, tendon and nerve areas. As such, the apparatus and methods may reduce tissue erosion and disintegration. Preservation of the soft tissue may reduce chronic pain and stiffness. The apparatus and methods may reduce infection risk because of its noninvasiveness.


In some embodiments, the apparatus and methods may be made completely from biologically friendly metals such as titanium and Nitinol. Such materials reduce the risk of infection and do not generally interfere with normal biological processes within the fractured bone.


The apparatus and methods may be used to repair many different types of bones. For example, the apparatus and methods may be used to repair long bones, short bones, flat bones, irregular bones, and sesamoid bones.


The apparatus and methods may be used to repair many different types of fractures. For example, the apparatus and methods may be used to repair comminuted fractures, epiphyseal fractures, metaphyseal fractures, mid shaft fractures, intra-articular fractures, periarticular fractures, multipart fractures and other types of fractures.


The apparatus may be used in the reconstruction of fractured joints. The apparatus and methods may also facilitate such joint replacements by providing an adequate anchoring substrate. For example, the apparatus and methods may provide stable anchoring for a prosthesis, and reduce aseptic loosening.


The terms “end-bone” and “end-bone fracture” may be used to refer to fractures that occur in the epiphyseal or metaphyseal region of long bones. Such fractures include peri-articular and intra-articular fractures.


The apparatus and methods may be used to treat osteoporotic bone, indications involving poor bone quality. In connection with such indications, the apparatus may compensate for deficiencies in native bone and may reduce concerns regarding stress shielding. The apparatus and methods may be used in connection with fusion of bones and joints for various indications including arthritis.


The apparatus and methods may be used in conjunction with bone cement or in place of bone cement. In some embodiments, the apparatus may act as a bone filler. For example, the apparatus may be used for filling bone void in connection with the treatment of cysts and tumors. The apparatus may behave as an osteoconductive scaffold to promote bone growth.


The apparatus and methods may be used in connection with provisional alignment for staged repair procedures, such as revisions, high energy trauma, or other cases in which there is infection or soft tissue that needs to heal before bone fixation is completed. The apparatus and methods may be used in combination with various antibiotics that promote healing.


The structural support may prevent bone segments from moving inward, so the apparatus may reduce the likelihood of collapse of the fracture. The apparatus may conform to the shape of bone and may thus minimize undue stresses. For example, the apparatus and methods may reduce hoop stress by selecting a degree of implant expansion or stiffness.


The apparatus may be self-centering, because it expands into the bone cavity. Many of the cavities are not straight like a pipe; they vary depending on the anatomy. The apparatus may be straight, bent, curved, and cavity-compliant.


The apparatus and methods may provide anchoring at the distal end of the apparatus. This feature may be used for repairs of articular fractures and fractures with small or mobile bone segments.


The apparatus and methods may provide for the use of small anchors, because the apparatus provides structural support for the bone segments that require anchoring.


The apparatus and methods may provide anchoring in any suitable direction. Some embodiments may provide anchoring in any plane.


Because the anchoring substrate expands toward the inside surface of the bone segments, relatively shorter anchors may be used in comparison with typical repair methods. For the same reason, the use of a screw that is longer than required to engage the anchoring substrate will not result in driving the screw into or through bone that is opposite the anchored segment. This is so because the screw will terminate in the intramedullary cavity.


The apparatus and methods may be used in conjunction with plates, screws, pins, external fixators, replacement joints, bone graft matrices, factor based bone substitutes, and cell based bone substitutes.


Delivery Instrument


The delivery instrument may deliver the apparatus to the intramedullary cavity through an access hole in the bone. The delivery instrument may be used to remove the apparatus from the intramedullary cavity through the access hole. The delivery instrument may engage the apparatus by any suitable mechanism, including one or more of threading, a socket, a pin, a snap, a collet, a cable, and any other suitable mechanism.


The mechanism may deliver, expand, adjust, rotate, lock, release and recapture the apparatus. Each of the acts, and other suitable acts, may be performed independently on the structural cage, the anchor substrate, the central axis member, locking features, and associated coupling mechanisms. The delivery device may include a handle set capable of delivering the forces needed to actuate the mechanism or mechanisms.


The delivery instrument may include a sheath to help deliver the apparatus in a compacted state. The shaft of sheath may be bendable to access the intramedullary cavity. In some embodiments, the delivery instrument may not have a sheath. In those embodiments, the delivery instrument may push the apparatus into place unguarded.


The delivery instrument may be radio opaque in whole or in part.


In some embodiments, the delivery instrument may be attached to a flexible scope or endoscope. In some embodiments, the delivery instrument may be integrated with the flexible scope or endoscope.


Structural Support


The structural support may provide one or more of axial, bending, torsional, and positional structural support to the fracture segments. The structural support may reduce or eliminate adverse effects such as stress risers. The structural support may provide a guide or surface for alignment of the fracture segments during reduction and healing.


The structural support may be configured in a contracted state and introduced through a hole in the shaft of the bone. The structural support may have sufficient flexibility in the contracted state to conform to curvature in an access pathway.


The structural support may be positioned inside the intramedullary cavity near a fracture site. The structural support may be expanded. When expanded, the structural support may be rigid. The structural support may be expanded sufficiently to fill the available cavity and/or displace low density material that may border the cavity. Expansion may vary along the surface of the structural support such that the expanded structural support may conform to irregular cavity shapes.


In some embodiments, an expansion state may be maintained with or without the structural support being in a stressed condition. Radial pressure against the cavity walls can be tailored along the length of the structural support. The structural support may provide strain relief in desired locations to promote healing.


The expansion of the structural support may be elastic. This may be achieved using a spring material that returns to its original configuration shape or pressure after release from the contracted state.


The expansion of the structural support may be plastic. The structural support may be deformed into a desired expanded configuration. The deformation may be achieved by a mechanism, such as a lever or reciprocating manipulators that change the length of the structural support. The lever or manipulators may shorten the distance between two portions of the structural member. Shortening the distance may cause radial expansion of a portion of the structural support.


Force for shortening the distance may be supplied by a central axis member that may transect the structural support. The resulting shape could be derived from a combination of the expansion described and the resistance of the cavity walls.


The deformation may be achieved by direct force, such as by a balloon.


The structural support may be expanded torsionally. The torsional expansion may be either elastic or plastic in nature. For example, the distal end of the structural support may be rotated relative to the proximal end. The structural support may then expand to fill the cavity.


Many different materials could be utilized to achieve the desire expansion and strength features described.


The structural support may include support members that form a cage or a portion of a cage. The support members may have one or more of many different configurations. The structural support may have any suitable number of support members. For example, the number of support members may be 1, 2, 3, 4, 5, 6, 7, 8, 10, 25, 50, 100 or more.


The support members may have any suitable cross-sectional shape. For example, the support members may have one or more of the following cross-sectional shapes: round, flat, rectangular, “I” beam, tubular, stranded, twisted and many others.


The structural support may have any suitable shape. For example, the structural support may be round, cylindrical, flat, rectangular, spiral, helical, wisk or egg beater like, egg like or oval, branching or free-ended.


The structural support may be constructed from unitary or multi-component assemblies. The structural support may be: machined, laser cut form a tube, etched from a sheet, assembled and joined strips, molded, deposited and or sintered.


The proximal end of the structural support may join and lock to the anchor substrate. The proximal end may also interface with the delivery instrument. The proximal end may have suitable features for delivery, actuation, locking and release. Such features may include, for example, one or more thread, socket, pin, snap, collet, cable mechanisms and other suitable mechanism.


Anchoring Substrate


The apparatus may include one or more anchoring substrates. An anchoring substrate may receive one or more anchors and hold them in a desired position with or without the joint assistance of the structural support and with or without cancellous bone. The anchoring substrate may be sized and shaped such that it may be engaged by an anchor that penetrates into the intramedullary space.


The anchoring substrate may be sized and shaped such that once the anchoring element penetrates into the intramedullary space, the anchoring substrate may engage the anchor. The anchoring substrate may provide to an anchor tension that is supplemental to tension caused by the engagement of the anchor and the anchoring substrate.


There are several methods by which the anchors and the anchoring substrate may engage.


Some of the methods are passive engagement methods. In passive engagement, anchoring substrate features may be appropriately sized to engage an anchor. For example, the anchor and anchoring substrate may be configured such that they engage in a manner analogous to a screw and hole. A laser cut structure could take any shape necessary to achieve appropriate anchor engagement and retention. The receiving cavities (“cells”) could be round, square, slotted, triangle, or any shape that facilitated engagement. The geometry of the cells may be that of a shortening design. The cells may form a matrix, a “fabric,” or a “cloth.” The anchoring substrate may include a single layer or multiple layers.


Matrix characteristics may be varied along an axis of the anchoring substrate to provide anchoring characteristics along the axis. For example, cell geometry may be varied to provide engagement with different types of anchors. Anchoring substrate thickness may be varied to provide different degrees of anchor retention strength and forces.


There are several approaches to active engagement. One such approach is cell size reduction. The anchoring substrate may be deformed such that the size of cells is reduced. The cell size reduction may cause tightening (or locking) of the cell onto the anchor.


Another such approach involves relative displacement between first and second anchoring substrates. The relative displacement effectively reduces cell size when corresponding cells are offset from each other. The relative displacement may be axial, rotational, radial, etc . . . . The relative displacement may trap an anchor between the two displaced anchoring substrates and effectively lock or hold the anchor. Cells of selected shapes, either similar or different, in the first and second anchoring substrates may be moved in a cooperative manner to trap or engage the anchor.


Another such approach involves twisting the anchoring substrate. This action may be similar to stretching and locking the anchor in the medium of the substrate. Other approaches include wrapping, plicating and bunching the anchoring substrate. A plicated or bunched configuration may exert force by having several layers of material binding on the anchor at one time, effectively wire tying the anchor.


The arrangement of different portions of the anchoring substrate may be selected to facilitate engagement with an anchor. Portions of the anchoring substrate may extend radially away from a central or longitudinal axis of the apparatus or the anchoring substrate. Portions of the anchoring substrate may be supported in a perpendicular orientation with respect to the axis.


After the anchoring substrate is engaged with an anchor, the anchoring substrate may apply tension to the anchor. The tension may urge the anchor to move relative to the structural element. This can be accomplished by moving the anchoring substrate in an axial direction relative to the structural member. If the anchoring substrate is moved proximally relative to the structural support, tension would be applied to the anchors and their corresponding fracture segments.


The tension may be achieved by reducing the diameter of the anchoring substrate. This can be accomplished though lengthening and therefore reducing the anchoring substrate diameter. The tension may be applied by wrapping, folding, twisting, rotating or radially pulling in the anchoring substrate. The plicated or bunched configuration mentioned above may be used for this approach.


In some embodiments, the anchoring substrate may be internal to the structural support. In some embodiments, the anchoring substrate may be external to the structural support. Some embodiments may include one or more anchoring substrates that are internal to the structural support and one or more anchoring substrates that are external to the structural support. In some embodiments, the anchoring substrate may be attached to the structural support.


In some embodiments, the anchoring substrate may cooperate mechanically with the structural support. The anchor substrate may provide structural integrity to the device. For example, the matrix may include interlockable features. The interlocking features may become interlocked during or after the anchoring substrate is expanded.


In some embodiments, the anchoring substrate may be mechanically independent of the structural support. This may allow for relative movement between the anchoring substrate and the structural support.


The anchoring substrate may be expandable. The anchoring substrate may expand simultaneously with the structural support. The anchoring substrate may be expanded by the structural support. The anchoring substrate may be expanded by a delivery device such as a balloon. The substrate may be self-expanding. Self-expanding embodiments may include spring like elements. Self-expanding embodiments may include elements that include shape memory materials, such as shape memory alloys. In some embodiments, the anchoring substrate may be non-expanding. In some embodiments, the anchoring substrate may be expandable by mechanical actuation.


The anchoring substrate may be constructed in many different forms and of many different materials. The forms may include, for example, braid, mesh, weave, strand, laser cut members, deposited members or other filament construction. The anchoring substrate cells may be round elements, square element, rectangular elements, or profiled, or a combination of cell types. The anchor substrate cells may be designed to mimic bone and act as a growth or graft scaffold.


The anchoring substrate may be made form a unitary element such as an extruded tube or flat sheet with a pattern cut into it that would facilitate engagement. Examples include a laser-cut tube, a stamped or etched sheet, and other suitable approaches.


The anchoring substrate may be made of many materials including but not limited to; Nitinol, Titanium, steel alloys, polymers, porous materials, sponge like materials, sintered metal, etched materials, deposited material, extruded material and molded materials.


Anchors


Anchors may facilitate the attachment of bone segments to the anchoring substrate. The anchors may mate, couple, engage, lock and otherwise interact with the anchoring substrate. Some of the anchors may be configured to engage the bone. Some of the anchors may be configured to not engage the bone.


An anchor may have an elongated element. The elongated element may include one or catch features that are configured to engage the anchoring substrate. The engagement may be occur substantially immediately after penetration of the anchoring substrate by the anchor. The engagement may occur only after a predetermined length of the elongated member has passed into the anchoring substrate. Some anchors may lock to the anchoring substrate. Some anchors may not lock to the anchoring substrate


Catch features may be self-actuating. Catch features may be user actuated.


Anchors may have any suitable length. Anchors of different lengths may be used in conjunction with the apparatus. The anchors can be configured to enter and engage the anchoring substrate with an end portion of the anchor. Those anchors, after they are locked, may terminate inside the anchoring substrate. Some anchors may be configured to pass through the anchoring substrate and engage bone on an opposite side of the anchoring substrate. Some anchors may be configured to not engage bone on either side of the anchoring substrate. Example anchors include: screws, helical elements, T bar, barbed features, anchors cut from a tube, with tabbed features.


In some embodiments, anchors may be used in conjunction with buttress elements such as plates, washers, spacers and the like.


A proximal anchor may be inserted to anchor a proximal portion of the anchoring substrate to the bone. In some embodiments, the proximal anchor may be engaged to preserve tension in the anchoring substrate. In some embodiments, the proximal anchor may be configured to adjust the tension.


Central Axis Member


In embodiments that include a central axis member, the central axis member may be used to position the apparatus, actuate one or more changes (e.g., of expansion state or stress state) of the apparatus, move one portion of the apparatus relative to another portion of the apparatus and provide mechanical support (e.g., rigidity) to the apparatus.


In some embodiments, the apparatus may have a distal end and a proximal end. The support structure may have a distal end and a proximal end. The anchoring substrate may have a distal end and a proximal end. The central axis member may have a distal end and a proximal end. In some embodiments, the central axis member may extend proximally beyond the proximal ends of the structural support and the anchoring member. In those embodiments, an intermediate portion of the central axis member may generally align with the proximal ends of the structural support and the anchoring substrate.


The central axis member may be used to maintain rigidity of the structural support and/or the anchoring substrate. In those embodiments, the distal end of the central axis member may be longitudinally fixed to the distal end of the structural support and/or the anchoring substrate. The proximal end or intermediate portion of the central axis member may be longitudinally fixed to the proximal end of the structural support and/or the anchoring substrate.


The central axis member may be used to adjust the length of the structural support and/or the anchoring substrate. In those embodiments, the distal end of the central axis member may be fixed to the distal end of the structural support and/or anchoring substrate. The proximal ends of the structural support and/or anchoring substrate may be longitudinally movable (whether linearly, rotationally or otherwise) with respect to the central axis member. As such, the central axis member may be used to expand the structural support or the anchoring substrate. The central axis member may be used to lock the apparatus in an expanded configuration. The central member may be locked in place by other elements of the apparatus.


In some embodiments, the central axis member may be used to place a lower or upper limit on the longitudinal separation between distal and proximal ends of the support structure and/or anchoring substrate. This may be accomplished by providing detents at selected locations along the central axis member.


In some embodiments, the central axis member may be used to linearly displace the structural support relative to the anchoring substrate or the anchoring substrate relative to the support structure. The central axis member may be used to linearly displace one anchoring substrate relative to another anchoring substrate. In such embodiments, the central axis member may be longitudinally fixed to whichever of the structural support and the anchoring substrate that is to be moved relative to another.


The central axis member may be used to mechanically load the structural support and/or the anchoring substrate. The load may be in tension, compression or rotation. The load may be applied by suitable engaging the central axis member with a portion of the structural support and/or anchoring substrate. The central axis member may then be loaded, for example, at its proximal end. The central axis member may then transfer the load through the engagement with the structural support and/or anchoring structure.


Where the central axis member is longitudinally fixed to the structural support and/or anchoring substrate, it may remain free to rotate. Where the central axis member is not longitudinally fixed, the apparatus may include suitable bushings, bearings, frictional surfaces and the like to permit suitable linear displacement and/or rotation between the central axis member and the structural support and/or anchoring substrate.


For example, the central axis member may be longitudinally fixed to the distal end of the structural support and rotationally fixed to the proximal end of the anchoring substrate. The distal end of the anchoring substrate may or may not be rotationally fixed to the distal end of the support structure. The central axis may thus be used in different configurations to deform (e.g., wrap, fold, twist, etc.) the anchoring substrate. Similar configurations may be used to deform the structural support.


In some embodiments, the central axis member may include or serve as an anchoring substrate. The central axis member may be removable so that it may be removed from the apparatus after its desired effect is achieved.


The central member may be flexible or rigid. The central member may be integral with one or both of the structural support and the anchoring substrate. The central axis member may include one or more cables, coils, thread, braids, extrusions, beading, rods, bundles, strands, meshes, nested elements and the like.


Apparatus Removal


The apparatus may be removable from the bone. Approaches for removal may include collapsing the apparatus.


In some instances, tissue may grow into interstices of the apparatus. Energy (e.g., vibrations, ultrasonic energy, heat and the like) may be coupled into the apparatus to release the tissue. When heat energy is used, the heat may be generated from energy in any suitable form, such as radio frequency, microwave, induction, electrical resistance, and others.


The apparatus and methods may include removal instruments such as a hollow drill, a coring drill and the like. The apparatus may fit inside one or more of such instruments.


Bone Ingrowth


One or more surfaces of the apparatus may be coated with agents that promote bone ingrowth. The agents may include calcium phosphate, heat treated hydroxylapatite, Basic fibroblast growth factor (bFGF)-coated hydroxyapatite, hydroxyapatite/tricalcium phosphate (HA/TCP), and other suitable agents, including one or more of those listed in Table 1.


One or more surfaces of the apparatus may be coated with agents that inhibit or prohibit bone ingrowth. Such surfaces may include impermeable and other materials such as one or more of those listed in Table 1.


Drug Delivery


One or more surfaces of the apparatus may be coated with agents that may elute therapeutic substances such as drugs.


Complications


The apparatus and methods may include means to address complications that may be associated with bone implants. One such complication is infection. The apparatus and methods may include features that counteract infection. For example, such a feature may include a coating. The coating may include antibiotics such as tobramycin or other effective antimicrobials. Another such feature may be the delivery of heat to raise the apparatus temperature sufficiently high to kill bacteria and other undesirable tissues on or near the implant.


Installation


The following is one illustrative method of installation of the apparatus in a bone that has a fracture. The procedure may be completed either in an inpatient or an outpatient setting.

    • 1. Provisionally reduce the fracture using standard techniques
    • 2. Access the intramedullary cavity in a location that causes minimal tissue damage to the patient and sufficient access for the physician; proximal or distal.
    • 3. Introduce a delivery catheter into the bone near the area of the fracture. Position can be confirmed on fluoroscopy.
    • 4. Deploy the structural support. A positioning aid, which may be a central axis member, may be used. External manipulation may be applied.
    • 5. Reposition the fractured bone into its ideal healing location. The positioning aid may then be locked into the wall of the intramedullary cavity by deploying the anchoring mechanism.
    • 6. Deploy an anchor tensioning element (such as an anchoring substrate) into the space inside the structural support and near the location of the fracture.
    • 7. Deploy anchors in the fracture fragments, either externally or internally, depending on accessibility. The anchors are driven through both the fragments and the anchoring substrate.
    • 8. Confirm location of the fragments via x-ray, fluoro, or direct visualization. Apply tension as needed to position the fracture in the desired position with adequate pressure on the fragment surfaces to stabilize the fracture for healing.
    • 9. Lock the apparatus in place.
    • 10. Disengage delivery instruments from the apparatus. Remove the delivery instruments from the patient, and close patient.


Numerous other steps may be involved and many different sequences of steps may be practiced without departing from the principles of the invention.


Materials


The apparatus and portions thereof may include any suitable materials. Table 1 lists illustrative materials that may be included in the apparatus and portions thereof.









TABLE 1







Materials









Category
Type
Material





Metals
Nickel titanium alloys
Nitinol



Stainless steel alloys
304




316L




BioDur ® 108 Alloy




Pyromet Alloy ® CTX-909




Pyromet ® Alloy CTX-3




Pyromet ® Alloy 31




Pyromet ® Alloy CTX-1




21Cr—6Ni—9Mn Stainless




21Cr—6Ni—9Mn Stainless




Pyromet Alloy 350




18Cr—2Ni—12Mn Stainless




Custom 630 (17Cr—4Ni)




Stainless




Custom 465 ® Stainless




Custom 455 ® Stainless Custom




450 ® Stainless




Carpenter 13-8 Stainless




Type 440C Stainless



Cobalt chromium alloys
MP35N




Elgiloy




L605




Biodur ® Carpenter CCM alloy



Titanium and titanium
Ti—6Al—4V/ELI



alloys
Ti—6Al—7Nb




Ti—15Mo



Tantalum



Tungsten and tungsten



alloys



Pure Platinum



Platinum- Iridium



alloys



Platinum -Nickel



alloys



Niobium



Iridium



Conichrome



Gold and Gold alloys


Absorbable

Pure Iron


metals

magnesium alloys


Polymers

Polyetheretherketone (PEEK)




polycarbonate




polyolefin's




polyethylene's




polyether block amides




(PEBAX)




nylon 6




6-6




12




Polypropylene




polyesters




polyurethanes




polytetrafluoroethylene (PTFE)




Poly(phenylene sulfide) (PPS)




poly(butylene terephthalate)




PBT




polysulfone




polyamide




polyimide




poly(p-phenylene oxide) PPO




acrylonitrile butadiene




styrene (ABS)




Polystyrene




Poly(methyl methacrylate)




(PMMA)




Polyoxymethylene (POM)




Ethylene vinyl acetate




Styrene acrylonitrile resin




Polybutylene


Membrane

Silicone


materials

Polyether block amides




(PEBAX)




Polyurethanes




Silicone polyurethane




copolymers




Nylon




Polyethylene terephthalate




(PET)




Goretex ePTFE




Kevlar




Spectra




Dyneena




Polyvinyl chrloride (PVC)


Absorbable

Poly(glycolic acid) (PGA)


polymers

Polylactide (PLA),




Poly (ε-caprolactone),




Poly(dioxanone)




Poly(lactide-co-glycolide)


Radiopaque

Barium sulfate


materials

Bismuth subcarbonate


Biomaterials
Collagen
Bovine, porcine, ovine, amnion




membrane


Bone growth

Demineralized bone matrix


factors

Bone morphogenic proteins




(BMP)




Calcium phosphate




Heat-treated hydroxylapapatite




Basic fibroblast growth factor




(bFGF) -coated hydroxyapaptite




Hydroxyapaptite/tricalcium




phosphate (HA/TCP


Anti-


microbial


Coatings









The apparatus may be provided as a kit that may include one or more of a structural support, an anchoring substrate, a central axis member, an anchor, a delivery instrument and associated items.


Apparatus and methods in accordance with the invention will now be described in connection with the FIGS. The FIGS. show illustrative features of apparatus and methods in accordance with the principles of the invention. The features are illustrated in the context of selected embodiments. It will be understood that features shown in connection with one of the embodiments may be practiced in accordance with the principles of the invention along with features shown in connection with another of the embodiments.


Apparatus and methods described herein are illustrative. Apparatus and methods of the invention may involve some or all of the features of the illustrative apparatus and/or some or all of the steps of the illustrative methods. The steps of the methods may be performed in an order other than the order shown and described herein. Some embodiments may omit steps shown and described in connection with the illustrative methods. Some embodiments may include steps that are not shown and described in connection with the illustrative methods.


Illustrative embodiments will now be described with reference to the accompanying drawings, which form a part hereof.


The apparatus and methods of the invention will be described in connection with embodiments and features of an illustrative bone repair device and associated hardware and instrumentation. The device and associated hardware and instruments will be described now with reference to the FIGS. It is to be understood that other embodiments may be utilized and structural, functional and procedural modifications may be made without departing from the scope and spirit of the present invention.



FIG. 1 shows illustrative device 100 implanted in bone B, which is illustrated as a radius. Bone B includes bone portions PB, Ph and Pa in distal end D. Bone segment PB is the largest portion of bone B. Bone segment Ph is a head portion. Bone segments Ph and Pa include articular surface AS. Bone portions PB, Ph and Pa are separated or partially separated along fractures Fa and Fh. Fracture Fa transects articular surface AS. Fracture Fh transects head H.


It will be appreciated that bone portions PB, Ph and Pa define an illustrative fracture in bone B. Device 100 may be used to treat fractures that have a greater or lesser number of bone portions. The bone portions may have different shapes, orientations and sizes from those shown in FIG. 1. It will be appreciated also that the fracture shown in FIG. 1 is illustrated as a fracture near the end of a long bone, but device 100 may be used to treat fractures in other portions of long bones, such as the midshaft, and in bones that may be identified as being other than long bones, e.g., vertebrae.


Device 100 is elongated along its longitudinal axis LD (in which D indicates device). Device 100 is in intramedullary space IS of bone B. Distal end 102 of device 100 is in epiphyseal region E of bone B. Proximal end 104 is in or adjacent diaphyseal region D of bone B. Portions of device 100 that are between distal end 102 and proximal end 104 are in metaphyseal region M of bone B.


Device 100 may include structural cage 105. Structural cage 105 may include support members 106. Support members 106 may extend from cage base 108 to distal hub 110. (The direction extending from cage base 108 will be referred to as the “distal direction.” The opposite direction will be referred to as the “proximal direction.” “Distal,” relative to “proximal,” generally means the leading end of apparatus that is inserted, or is to be inserted, in the body.) The distance along axis LD between cage base 108 and distal hub 110 may be adjusted to change the shape of support members 106.


When cage base 108 is maximally spaced apart from distal hub 110, structural cage 105 is in a compressed state. When cage base 108 and distal hub 110 are pushed or drawn together, structural members 106 are deflected radially outward along radial direction RD (in which “D” indicates device). In this way, structural cage 105 may expand. Device 100 is shown in an expanded state. In some embodiments, structural members 106 and anchor substrate 124 may self-expand radially. This may draw base 108 and distal hub 110 together longitudinally.


Structural cage 105 may be used to provide support to bone portions PB, Pa and Ph. The support may include aligning and stabilizing bone segments PB, Pa and Ph during reduction and/or healing. The support may be subchondral support. Structural cage 105 may be used to provide load resistance to bone B during healing.


Device 100 may include anchoring substrate 112. Substrate 112 may be engaged by anchors such as 114 and 116. Anchor 114 fastens bone segment Ph to substrate 112. Anchor 116 fastens bone segment Pa to substrate 112. The anchors may engage substrate 112 in a wide range of positions. The anchors may engage substrate 112 from a wide range of angles. Each of the anchors may apply a force to its respective bone portion. The force may be oriented to appropriately position the bone portions for healing. The force may be directed at least in part toward axis LD. The force may be considered an inward force (at least partially in direction −RD). Structural cage 105 may apply to the bone portions a force that is directed at least in part away from axis LD. The force from structural cage 105 may be considered an outward force (at least partially in direction RD).


Anchors 114 and 116 are illustrated as threaded screws, but any suitable anchors may be used.


The anchors, anchoring substrate and support structural cage may thus be used in concert to select for each bone portion one or more of a desired position, orientation and force. One or both of the position and orientation may be selected by appropriate selection of anchor size, anchor position, anchor tension, structural cage size, and support member configuration and position. Because the position and orientation may be selected, the bone portions may be appropriately aligned relative to each other.


Device 100 may include stem 128. Stem 128 may extend in the proximal direction from cage base 108. Stem 128 may include stem anchoring substrate 118 and proximal base 120. Stem anchoring substrate 118 may support proximal base 120. Anchor 122 may fasten stem 128 to bone B portion PB. Anchor 122 may be engaged such that it applies longitudinal and/or rotational forces to device 100. Anchor 122 may be engaged such that it applies a radial force to device 100. The radial force may induce or counteract bending of device 100 along axis LD. Anchor 122 may apply a resistive longitudinal force to device 100. The resistive longitudinal force may resist forces applied to device 100 by distal anchors 114 and 116.


Proximal base 120 may support device retention feature 122. Device retention member 126 may be used to engage device 100 for insertion and manipulation. A device manipulator (not shown) may be used in conjunction with device retention member 126 to draw device 100 in the proximal direction.


Device may include illustrative central member hub 130. Central member hub 130 may be used to recapture and remove device 100 after deployment.


Drawing device 100 in the proximal direction may adjust forces (tensile, compressive or both) between bone portions Pa, Ph and PB. Drawing device 100 in the proximal direction may adjust the orientation and position of bone portions Pa with respect to PB. In some embodiments, anchor 122 may be used to retain the compressive forces after device 100 is drawn in the proximal direction.


Device 100 may include central axis member 124. Central axis member 124 may extend from distal hub 110, through cage base 108 and through proximal base 120 into intramedullary space IS of bone B. Central axis member 124 may be used to effect expansion of structural cage 105. Some embodiments may not include central axis member 124. (In some embodiments, anchoring substrate 112 may be drawn proximally relative to structural cage 105 to adjust the tension while maintaining the position and support of the bone segments.)


In some embodiments, central axis member 124 may be used to expand structural cage 105 by applying tension between hub 100 and cage base 108 and/or 120. In some embodiments, this may be done by applying simultaneously a proximally directed force to central axis member 124 and a distally directed force to cage base 108. In some embodiments, central axis member may be rotatably connected to hub 110 and threaded through cage base 108. In those embodiments, structural cage 105 may be expanded by rotating central axis member 124. In some embodiments, structural cage 105 may be self-expanding.


The final expanded shape may be designed into the structure of structural cage 105. The final expanded shape may be limited by the space available in the cavity. The expansion may be elastic and may be based on a spring material that returns to a predetermined shape.


Device 100 in its compressed state may be delivered into the body through a small access incision along the mid shaft section bone (D, in FIG. 1) in an area where soft tissue disruption can be minimized.



FIG. 1A shows device 100 in isometric view. Structural cage 105 includes support members 106. Support members 106 may expand or contract along direction RD based on relative positioning of cage base 108 and hub 110 along device axis LD. Support cage 105 may be contracted for introduction into intramedullary space IS.


Support cage 105 is illustrated as having six support members 106. It will be appreciated that any suitable numbers of support members may be used. for example, support cage 105 may have a number of support members 106 in the range of 2-40 or more than 40.


Support members 106 are illustrated as having a rectangular cross-sectional shape. It will be appreciated that support members 106 may have any suitable cross-sectional shape. For example, the cross-sectional shape may be round, square, braided, stranded or profiled. Support cage 105 may include support members that have different cross-sectional shapes, dimensions or material properties. When support members have different shapes, dimensions or material properties, support cage 105 may undergo non-radial deformation. Such deformation may be helpful for conforming device 100 to the inside of bone B (including bone segments Pa, Ph and PB).


Support members 106 are illustrated as being joined at cage base 108 and hub 110. The ends of the members are shown joined at both ends. In some embodiments, support members 106 may have one or more free or partially free ends.


Support members 106 may be cut of a single tube or could be made independently and then joined.


Anchoring substrate 112 is present inside structural cage 105. Anchoring substrate 112 may have a collapsed state and an expanded state. The collapsed state may be used for delivery. The expanded state may be used for deployment and fracture repair.


In some embodiments, anchoring substrate 112 may include a laser-cut structure. Anchoring substrate 112 may be constructed so as to engage with an anchor such as 114 (shown in FIG. 1) and hold the anchor under a mechanical load. In some embodiments, anchoring substrate 112 may be affixed to support cage 105. Anchoring substrate 112 may be affixed to one or more of hub 110, one or more portions of support members 106, central axis member 124, cage base 108 and proximal base 120.


In some embodiments, anchoring substrate 112 may not be affixed to device 100 (although it may be retained by support cage 105). Such lack of attachment may facilitate adjustment of the tension and loading of bone segments.



FIG. 1B is a cross-sectional view taken along lines 1B-1B (shown in FIG. 1A). FIG. 1B shows central axis member 124 running from hub 110 (not shown) through anchoring substrate base 132 (which is concentrically within cage base 108), stem 128, proximal base 120 and device retention member 126.


Central member hub 130 protrudes proximally from device retention member 126. Central member hub 130 may be configured to be engaged to adjust or control tension and or rotation of central member 124. Manipulation of central member hub 130 may facilitate delivery and expansion of structural cage 105, and or anchor substrate 112. Central member hub 130 may maintain tension between distal and proximal ends of structural cage 105 or anchoring substrate 112.


Device retention member 126 may be used to in connection with delivery, manipulation and or removal of device 100.


Stop 134 on central axis member 124 may be drawn in proximal direction DP by pulling central member hub 130 in direction DP relative to stem 128. In some embodiments, this may be accomplished by pushing device retention member 126 distally (−DP) while pulling central member hub 130 proximally. The pushing and pulling may be accomplished using apparatus and methods shown and described herein or known grasping device instruments.


Stop 134 will urge anchoring substrate base 108 in direction DP. Anchoring substrate base 108 will then draw anchoring substrate 112 in direction DP. Motion of anchoring substrate 112 in direction DP will apply force to anchors 114 and 116. The force may have a distal component and a radially inward (−RD) component. The force may thus compress bone segments Pa and Ph against bone segment PB (shown in FIG.


Stop 134 may transfer longitudinal force from device retention member 126 in a proximal direction to anchor substrate 112 through the coupling mechanism between device retention member 126, proximal base 120 and central member hub 130. Alternatively central axis member 124 may be coupled mechanically to cage base 108 by a ratchet, screw or other suitable mechanism.



FIG. 1C shows a view taken along lines 1C-1C (shown in FIG. 1A). FIG. 1C shows expanded support cage 105 (including hub 110) and expanded anchoring substrate 112. Locking anchor 122 is also shown.


One or more of the surfaces or elements of device 100 may include a coating. The coating may include an agent. The agent may provide a bone growth promotion agent, a bone growth inhibition or prohibition agent, a drug eluting agent or any other suitable agent.



FIG. 2 shows illustrative skeleton S. Skeleton S includes illustrative bones Si in which device 100 (shown in FIG. 1) may be used as shown and described in connection with bone B (shown in FIG. 1). Table 2 includes a partial list of bones Si.









TABLE 2







Bones Si.











Reference numeral



Bone
in FIG. 2







Distal Radius
S0



Humerus
S1



Proximal Radius and Ulna (Elbow)
S2



Metacarpals
S3



Clavicle
S4



Ribs
S5



Vertebrae
S6



Ulna
S7



Hip
S8



Femur
S9



Tibia
S10



Fibula
S11



Metatarsals
S12











FIG. 3 schematically shows anatomy of bone B (shown in FIG. 1). Anatomical features of bone B are listed in Table 3. Apparatus and methods in accordance with the principles of the invention may involve one or more of the anatomical features shown in Table 3. Features of bone B may be described in reference to bone axis LB (in which B indicates bone) and radius RB (in which B indicates bone).









TABLE 3







Anatomical features of some of the bone types that


may be treated by the apparatus and methods.











Reference numeral



Anatomical feature
in FIG. 3







Articular surface
B0



Cancellous, spongy or trabecular bone
B1



Medullary cavity
B2



Cortical or dense bone
B3



Periosteum
B4



Proximal articular surface
B5



Diaphysis or midshaft
B6



Metaphysis or end region
B7



Epiphysis
B8



Articular surface
B9










The terms “end-bone” and “end-bone fracture” may be used to refer to fractures that occur in the epiphyseal or metaphyseal region of long bones. Such fractures include peri-articular and intra-articular fractures.



FIG. 4 shows portion 400 of an illustrative surgical environment in which a fracture in bone B may be diagnosed and treated. Patient P may be sedated appropriately. A limb nerve block may be administered. A pressure cuff may be used to maintain limb Q in a relatively blood-free state. Limb Q may be supported by procedure table 402 and any other appropriate supports to manage the position of bone B during surgery. Environment 400 may include imaging system 404.



FIG. 5 shows illustrative therapeutic scenario 500. In scenario 500, manual traction techniques are applied to reestablish anatomic reduction in fracture Fp in bone B.


Provisional or temporary reduction is often undertaken in fracture repair to restore bone segments to their normal positions before they are anchored.


When the number of bone segments is small and/or the dislocation of the bone segments is modest, closed reduction techniques may be employed. Closed reduction does not include incisions and utilizes manual traction by one or more physicians. The physicians will utilize different tension, compression, and bending motions to reestablishing normal bone segment positioning. A physician or assistant may maintain the normal bone segment positions during an implant procedure.


For more displaced fracture patterns, a limited open reduction can be utilized. K-Wires, external probes, and special clamps can be employed for the provisional reduction. Small incisions can be made allowing the probes and clamps to aid in repositioning the fracture segments. Once the bone segments are in position k-wires can be utilized to maintain the reduction. K-Wires are approximately 1-2 mm in diameter metallic wires that can be driven across fracture lines to provide temporary support. The k-wires may be positioned and then removed strategically to facilitate the procedure in a way that reduces interference with bone cavity preparation or implant deployment.



FIG. 6 shows illustrative sheath 600. Hollow sheath 600 is shown entering intramedullary space IS of bone B. Sheath 600 may include lumen 610. Lumen 610 may provide access to intramedullary space IS. Sheath 600 enters intramedullary space IS at position 602. Position 602 may be in diaphyseal section D of bone B. Position 602 may be selected to minimize soft tissue damage. Near position 602, a small incision may be made in the soft tissue (not shown). The tissue may be displaced to reveal bone surface BS.


A standard orthopaedic drill instrument may be used to create access hole 604 in bone B. Axis hole 604 may be drilled along axis Lh. Axis Lh may form an angle A with bone axis LB. Angle A may be an acute angle.


Hole 604 may be similar to commonly drilled bone access holes. Hole 604 may be sufficiently small that hole 604 does not cause stress risers at position 602. Distal end 606 of sheath 600 may be advanced, through intramedullary canal IC, into metaphyseal region M of bone B. Proximal end 608 of sheath 600 may be positioned in hole 604. Distal end 606 may be disposed in any portion of intramedullary space IS, such as in the end-bone.


Sheath 600 may be a thin-walled flexible cannula. Sheath 600 may be similar to the cannulas that are commonly used in minimally invasive or percutaneous interventional procedures elsewhere in the body. Sheath 600 may be made of rigid metal that is shaped to promote access to intramedullary space IS.



FIG. 7 shows illustrative intramedullary space reamer 700. Reamer 700 may be expandable and contractible. Reamer 700 may in a contracted state be inserted in proximal end 608 of sheath 600 (shown in FIG. 6). Reamer shaft 702 may be used to advance reamer 700 through lumen 610 into metaphyseal region M of bone B. Reamer 700 may have suitable features at or about surface 704 for removing undesirable tissue, such as cancellous bone, from the end-bone. Reamer shaft 702 may rotate reamer surface 704 about, and translate it along, bone axis L as appropriate to prepare the end-bone for further treatment.


In some embodiments, the use of reamer 700 may be consistent with procedures that are used in the implantation of intramedullary nails. Such procedures include the application of one or more of ultrasonic energy, vibration, RF energy, pressure, rotation, water jetting, suction and other suitable mechanisms to remove the undesirable tissue. In some embodiments, reamer 700 may have one or more of the following features: expansion, fixed size (non-expanding), uni-directional reaming, multi-directional reaming, rigid reamer shaft 702, flexible reamer shaft 702 and steerability.



FIG. 8 shows a stage in the delivery of device 100 to end-bone of bone B. In FIG. 8, device delivery apparatus 800 is engaged with device retention element 126 at the proximal end of device 100. Shaft 802 may control positioning and rotation of device delivery apparatus 800. Delivery apparatus 800 may include a keyed grasper for engagement and disengagement of portions of device 100 (shown in FIG. 1). Device 100 is in a compressed state. Device 100 is positioned within lumen 610 of sheath 600. Distal hub 110 of device 100 is in epiphyseal region E of bone B. Support members 106 and stem 128 are also shown within lumen 610.



FIG. 9 shows a subsequent step in the delivery of device 100 to the end-bone of bone B. In FIG. 9, device delivery apparatus 800 has moved device 100 distally out of sheath 600. Structural cage 105 has been expanded in the end-bone. In the example illustrated, the end-bone spans from the bone segments to midshaft D of bone B intramedullary space IS.



FIG. 9 also shows proximal delivery apparatus controller 900. Controller 900 may include handle 902, trigger mechanism 904 and set screw 906. Handle 902 may be used to apply, via shaft 802, the forces that are necessary to position and expand device 100. Trigger mechanism 904 may be used to engage or disengage device retention member 126.



FIG. 10 shows the fastening of bone segment Pa to anchoring substrate 112. A small incision may be made in skin K in an optimal location. Then, a small pilot hole may be made in the bone segment Pa. Provisional reduction may be maintained by assistant's hand 1002, tong/clamp type instruments, k-wires or other known methods. Support 1004 may be provided to position bone segments Pa, Ph and PB for the insertion of anchor 116. Then, instrument 1000 may be used to drive anchor 116 through bone segment Pa. Instrument 1000 may be a screwdriver or other suitable instrument.



FIG. 11 shows anchor 114 fastening bone segment Ph to anchoring substrate 112. Device 100 may be stabilized in bone B using device delivery apparatus 800.



FIG. 12 shows tensioning device 100 in intramedullary space IS of bone B. Anchors 114 and 116 have been completely or almost completely driven into bone segments Ph and Pa, respectively. Anchors 114 and 116 are secured inside bone B by anchoring substrate 112. The inward forces applied by anchors 114 and 116, in concert with anchoring substrate 112, and the outward forces applied by support members 106 of structural cage 105, have brought bone segments Ph and Pa into alignment along fracture Fa and have closed fracture Fa. The torque (applied to the anchors), angle and positioning of anchors 114 and 116 may be selected to provide a desired contact force between bone segments Ph and Pa along fracture Fa. The anchors may lock to anchor substrate 112 to prevent unintentional removal.


Fracture Fh remains open by separation amount Δf, which separates Pa and Ph from PB, the main segment of bone B. Intersegment compression of bone segments Pa, Ph and PB may be provided using one or more of device 100, device delivery apparatus 800 and delivery apparatus controller 900. The compression may help reduce or eliminate Δf. The compression may promote healing. The compression may provide stability to the bone segments in rotation and bending.


In some embodiments, the compression may be provided by drawing device 100 in proximal direction Dp, substantially. Length T of device 100 may be fixed, at least temporarily. For example, length T may be held fixed using a mechanical relationship of central axis member 124 to cage base 108 and hub 110. Device 100 may then be drawn in direction Dp by device delivery apparatus 800. Device delivery apparatus 800 may be drawn in direction Dp by shaft 802. Shaft 802 may be drawn through lumen 610 using delivery apparatus controller 900.


Device 900 may include a mechanism that may be activated by a trigger or lever such as 904 or 906. Shaft 802 may be drawn by drawing delivery apparatus controller 900 in direction Dh along axis Lh. Distal end 606 of sheath 600, to the extent that it remains in intramedullary space IS, will travel generally along direction Dp and draw device 100 in that direction via device delivery apparatus 800.


In some embodiments, length T may be allowed to extend when device 100 is drawn in direction Dp. Hub 110 may be substantially retained in position relative to bone segment Pa. Cage base 108 may be allowed to be displaced in direction Dp. This may reduce radius RD of structural cage 105. When the radius of structural cage 105 is reduced, radially outward forces on bone may be reduced, canceled or reversed.


As the length of device 100 is increased while its radius decreases, device 100 may collapse partially or completely to its delivered state. Depending on the diameter of intramedullary space IS of bone, B such contraction may be desirable to obtain proper placement of the bone segments. After proper bone segment position is obtained, the radial diameter can be adjusted to achieve the desired shape and radial force. This condition can then be maintained by locking central axis member 124 at distal and proximal ends of device 100.


In some embodiments, a proximal portion of anchoring substrate 112 may be drawn in direction Dp. This may draw anchors such as 114 and 116 in direction Dp and direction −RB. Anchoring substrate 112 may be drawn in direction Dp with a force that is greater, lesser or equal to that by which structural cage 105 is drawn in direction Dp.


In some embodiments, a physician may assess and, if appropriate, adjust one or more of segments Pa, Ph and PB to achieve a desired alignment. The assessment may be performed using fluoroscopic imaging, for example, using imaging system 404 (shown in FIG. 4). The assessment may be done under direct visualization during a full surgical cut down procedure.



FIG. 13 shows the application of force Φ in direction Dp. Force Φ is applied to device 100 at device retention member 126 by device delivery apparatus 800. Δf of fracture F has been stabilized, reduced or substantially eliminated. Anchor 122 is now inserted through bone B into stem 128. Anchor 122 may retain proximal portion of device 100 at or near an axial position along bone axis LB. Anchor 122 may prevent device 100 from rotating about bone axis LB. Anchor 122 may preserve the intersegment compression between bone segments Pa, Ph and PB. More generally, anchor 122 may preserve one or more of a desired position, orientation and state of stress for each of the individual bone segments. Anchor 122 may carry all or some of the load. Friction between structural cage 105 and other portions of device 100 may bear some of the load.


In some embodiments, the role of anchor 122 may be fulfilled by several anchors that may be used to lock device 100 in bone B while preserving the compression. Proximal anchors may gain purchase from both sides of the bone or just through one side. The angle of the anchors may range from near parallel to axis LD to perpendicular to axis LD.



FIG. 14 shows the release of device retention member 126 (by device delivery apparatus 800, which in FIG. 14 has been withdrawn into sheath 600). Device retention member 126 is shown as a simple keyed ball end that may be retained with a known grasping instrument. Other types of retention mechanisms are also considered and envisioned with respect to embodiments of the invention including but not limited to; threaded, socket, pinned, snap, collet, and any other mechanism known in the art.



FIG. 15 shows device in a final implanted state with sheath 600 (not shown) removed from intramedullary space IS of bone B. Device 100 retains segments Pa, Ph and PB in compression relative to each other. Fractures Fa and Fh are reduced.



FIG. 16 shows that device 100 may be recaptured in intramedullary space IS and removed from bone B. Illustrative delivery/recapture device 1600 may engage central member hub 130. Engagement member 1602 at the distal end of delivery/recapture device 1600 may slide over central member hub 130 and engage device retention member 126. Support members 106 of support cage 105 may contract as they are drawn into sheath 600.



FIG. 17 shows closure assembly 1700 that may be used to close hole 604 and preserve access to device 100 in bone B. Closure assembly 1700 may include plug 1702. Plug 1702 may seal or substantially seal hole 604. Plug 1702 may cap cannula 1704. Cannula 1704 may provide access to central member hub 130 (not shown) and device retention member 126 (not shown). Flange 1706 may engage with one or both of central member hub 130 (not shown) and device retention member 126 (not shown). Flange 1706 may be affixed to sheath 1704. Cannula 1704 may be configured to apply force to device 100 to adjust tension or radial diameter in structural cage 105 or anchoring substrate 112.


In some embodiments, some or all of the functionality provided by cannula 1704 may be provided by a cable or a shaft (not shown). In some of those embodiments, plug 1702 may be a threaded or ribbed plug, or a screw-like plug, that is linked to the cable.


Cap 1702 may be removed to insert an instrument such as engagement member 1602 to recapture device 100 in a manner such as that shown in FIG. 16.



FIG. 18 shows illustrative delivery/recapture member 1802, which in some embodiments may be an alternative to device retention member 126 in a device such as 100 (shown in FIG. 1). Delivery/recapture member 1802 may be formed from a tube. Notch 1810 may be cut into the tube. Any appropriate number of notches such as 1810 may be present in delivery/recapture member 1802. Delivery/recapture member 1802 may include ferrule 1804, which may be affixed to proximal end 1806 of device stem 1806. Stem 1806 may correspond to stem 128 of device 100 (shown in FIG. 1).


Recapture instrument 1812 may include one or more blades such as blade 1814. Recapture instrument 1812 and blade 1814 may be cut from a tube to match delivery/recapture member 1802 and notch 1810, respectively. Recapture instrument 1812 may be delivered through a sheath such as 600 (shown in FIG. 6) into an intramedullary space to retrieve a device attached to stem 1808.


Recapture instrument 1812 may be aligned with delivery/recapture member 1802. Blade 1814 may be inserted into cut-out 1816 in delivery/recapture member 1802. Recapture instrument 1812 may be rotated such that blade 1814 moves into notch 1810. Recapture instrument 1812 may thus engage delivery/recapture member 1802 to pull the device in proximal direction D. Blade 1814 and delivery/recapture member 1802 may bend radially out of plane from each other to disengage. The bending may be achieved by bending or releasing a spring-like mechanism or by plastic deformation of recapture instrument 1812.



FIG. 19 shows illustrative device 1900. Device 1900 may have features that function like some or all of the corresponding features of device 100 (shown in FIG. 1). For example, device 1900 may include supports 1906 that form cage 1905. Cage 1905 may include cage base 1908. Anchoring substrate base 1932 may be present concentrically within cage base 1908. Device retention member 1926 may extend proximally from anchoring substrate base 1932. Device 1900 does not include a stem such as stem 128. Proximal anchor 1932 may be used to engage a bone such as B (shown in FIG. 1) with the proximal end of anchoring substrate 1912.



FIG. 20 shows a cross-section of device 1900 taken along lines 20-20 (shown in FIG. 19). Illustrative central axis member 1924 is fixed at hub 1910 of support cage 1905. Central axis member 1924 may include flange 1902. Flange 1902 may be mechanically locked into chamber 1904 of device retention member 1926. In some embodiments, central axis member 1924 may be moved axially until flange 1902 snaps into chamber 1904. This may lock-in central axis member 1924 between proximal end 1920 and distal end 1922 of device 1900 and thus provide axial tension that may support the radial stiffness of device 1900. Central axis member 1924 may distribute tension that may be applied to device retention member 1926 between proximal end 1920 and distal end 1922 of device 1900.


In some embodiments, device 1900 may be expanded before deployment (as in an open reduction). In such embodiments, structural support 1905 and anchoring substrate 1932 may be longitudinally fixed with respect to each other at proximal end 1920 and distal end 1922 of device 1900.



FIG. 21 shows, in cross-section, illustrative ratchet mechanism 2100. Ratchet mechanism 2100 may be used to preserve tension in a central axis member such as 124 (shown in FIG. 1). A portion of such a central axis member may be embodied as ribbed member 2102. Ribbed member 2102 may be drawn through tabbed member 2104 in proximal direction D. Rib 2106 may be drawn in direction DP by deflecting annular tab 2108. After rib 2106 passes annular tab 2108, annular tab 2108 moves back to its rest position (as shown) and prevents rib 2106 from moving back to a position that is distal to annular tab 2108.


Ratchet mechanism 2100 may be provided in or about an anchoring substrate base such as 132, in or about a stem such as 128, in or about a proximal base such 120 or in or about device retention member 126 (all shown in FIG. 1). Tabbed member 2104 may be longitudinally fixed to the device. The central axis member may be provided over a portion of its length with ribbed member 2102. The central axis member may thus be drawn in proximal direction Dp and locked in place by annular tabs 2108. This may preserve tension in portions of the central axis member that are distal of tabs 2108.


Ratchet features may take on any shape or form to facilitate one-way locking. The one-way locking may be permanent or releasable. In some embodiments, tabs 2104 may be releasable so that ribbed member 2102 may be adjusted in either longitudinal direction.


The ratchet features may be incorporated into the apparatus. The ratchet features may be integral to one or more portions of the apparatus. For example, device stems, such as those shown in FIG. 25 may include complementary ratchet features so that when the stems are in a concentric relationship, the inner stem can move in only one direction.



FIG. 22 shows an end view of ratchet mechanism 2100 (shown in cross section, along lines 21-21, in FIG. 21).



FIG. 23 shows illustrative stacking rings 2300 that may form all or a portion of a central axis member such as 124 (shown in FIG. 1). The rings are shown as one continuous helix. In some embodiments, the rings may be individual annular rings with stacking features similar to helical stacking rings 2300.



FIG. 24 is a cross-sectional view taken along lines 24-24. The helical rings form S-links that interlock with each other under longitudinal loading of the stack—either in compression or in tension. The shape of stacking rings 2300 is such that may they wedge together in either compression or tension and effectively reduce the mechanical degree of freedom to move relative to each other. All or a portion of a central axis member such as 124 (shown in FIG. 1) may include a segment of helical rings 2300. When loaded in tension or compression, the central axis member may become straight and rigid. The straightness and rigidity may increase the amount of load, whether in tension, compression, or bending, that may be supported by a device such as 100.



FIG. 25 shows illustrative device 2500, which is in accordance with the principles of the invention. Device 2500 may include central axis member 2502. Central axis member 2502 may include cellular body 2504. Central axis member 2502 may include device retention member 2506.


Device 2500 may include intermediate member 2507. Intermediate member 2507 may include anchoring substrate 2506. Anchoring substrate 2506 is shown in an expanded state. Intermediate member 2507 may include stem 2508. Stem 2508 may be continuous with anchoring substrate 2506. Neck support 2510 may provide structural support and connection between anchoring substrate 2506 and stem 2508. When anchoring substrate 2506 is in a contracted state, intermediate member 2507 may contract to a diameter substantially equivalent to that of stem 2508. Device retention member 2512 may be present at the end of stem 2508.


Device 2500 may include outer member 2514. Outer member 2514 may include support cage 2516. Support cage 2516 is shown in an expanded state. Outer member 2514 may include stem 2518. Stem 2518 may be continuous with support cage 2516. Neck support 2520 may provide structural support and connection between support cage 2516 and stem 2518. When support cage 2516 is in a contracted state, outer member 2514 may contract to a diameter substantially equivalent to that of stem 2528. Device retention member 2522 may be present at the end of stem 2518.



FIG. 25 shows inner member 2502, intermediate member 2507 and outer member 2514 separate from each other, but they may be used together to perform some or all of the functions of device 100 (shown in FIG. 1). Inner member 2502, intermediate member 2507 and outer member 2514 may respectively correspond, at least in part, to a central axis member such as 124, an anchoring substrate such as 112 and a support cage such as 105 (shown in FIG. 1).


One or both of intermediate member 2507 and outer member 2514 may be self-expanding. One or both of intermediate member 2507 and outer member 2514 may be expandable by mechanical actuation.



FIG. 26 shows device 2500 in an assembled and expanded configuration. Inner member 2502 extends longitudinally inside intermediate member 2507. Intermediate member 2507 extends longitudinally inside outer member 2514. Device retention members 2506, 2512 and 2522 extend from the proximal end of device 2500. Proximal anchor 2524 transects stems 2518 (of outer member 2514) and 2508 (of intermediate member 2507, not shown) and cellular body 2504 of inner member 2502.


In the absence of proximal anchor 2524, inner member 2502, intermediate member 2507 and outer member 2514 may be moved longitudinally, with respect to each other, along axis LD. The relative motion may be induced by delivery/recapture instruments engaged with each of the device retention members. For example, a delivery/recapture instrument such as 1812 (shown in FIG. 18) may be provided for each of the device retention members. The three recapture instruments may be coaxial with each other.


In some embodiments, one or more of inner member 2502, intermediate member 2507 and outer member 2514 may be coupled to each other at the distal end of device 2500 to obtain an appropriate response to the application of longitudinal and rotational forces that may be applied to one or more of inner member 2502, intermediate member 2507 and outer member 2514. The response may be modified by coupling one or more of inner member 2502, intermediate member 2507 and outer member 2514 to each other at a more proximal portion of device 2500.


Inner member 2502, intermediate member 2507 and outer member 2514 are shown having closed distal ends. In some embodiments, one or more of the members may have an open or free distal end.


In some embodiments of the invention, device 2500 may not include inner member 2502. Those embodiments may include intermediate member 2507 and outer member 2514. In some embodiments, device 2500 may include two or more intermediate members 2507 and or two or more outer members 2514. For example, in some embodiments, device 2500 may include inner member 2502, intermediate member 2507, outer member 2514 and, external to outer member 2514, a fourth member (not shown), that is similar to intermediate member 2507. In some embodiments, device 2500 may include, internal to the other members, a fourth member (not shown) that is similar to outer member 2514. The device may include, radially outside the fourth member, intermediate member 2507, a fifth member (not shown) that is similar to intermediate member 2507, and outer member 2514.



FIG. 27 shows outer member 2514 in a contracted state. In some embodiments, outer member 2514 may have bending flexibility along longitudinal axis LD, as shown in FIG. 27. Inner member 2502 and intermediate member 2507 may also have bending flexibility along longitudinal axis LD. The flexibility may facilitate access into intramedullary space IS of bone B. In some embodiments, the contracted configuration of device 2500 may include curvature to facilitate access into intramedullary space IS of bone B.



FIG. 28A shows illustrative two-member fracture repair device 2800. Device 2800 is shown in a contracted state. Device 2800 may be self-expanding or balloon-expanding. Device 2800 may include cage member 2802 and anchoring member (inside cage member 2802) 2804.


Cage member 2804 may include support cage 2806. Support cage 2806 may include support members 2810. Support members 2810 may terminate at distal hub 2812 and cage base 2814. Cage stem 2816 may extend proximally from cage base 2814. Cage stem 2816 may terminate at device retention member 2818. Support cage 2806 may be expanded in an intramedullary space IS (shown in FIG. 1).


Anchoring member 2804 may include anchoring substrate 2820. Anchoring member 2804 may include anchoring stem 2822 and device retention member 2824. In the contracted state, anchoring member 2804 may slide longitudinally within cage member 2804.



FIG. 28B shows device 2800 in the expanded state. Support cage 2806 is expanded. Anchoring substrate 2820 is expanded.



FIG. 28C shows is a partial cross section, taken along lines 28C-28C (shown in FIG. 28B) of device 2800 in the expanded state. Anchoring substrate 2820 is present inside support cage 2806. Anchoring stem 2822 is present inside cage stem 2816. Device retention member 2824 is present inside cage stem 2816.


Distal anchors may attach bone segments to anchoring substrate 2820. Device retention members 2824 and 2818 may be translated longitudinally, together or relative to each other, to apply force to the anchors in proximal direction DP and inward radial direction −RD.


Device 2800 may be self-expanding. Device 2800 may be plastically deformable and be expanded by an outside force. One or more elements of device 2800 may be made from a unitary member such as a laser cut tube. One or more elements of device 2800 may be made individually and later assembled.



FIG. 29 shows illustrative bone fracture repair device 2900, which is in accordance with the principles of the invention. Device 2900 is shown inserted inside humerus BH. Humerus BH includes fractures F1 and F2, which separate bone segments P1 and P2, respectively, from bone segment P. Device 2900 may include support cage 2902. Device 2900 may include anchoring substrate 2904. Support cage 2902 and anchoring substrate 2906 are shown in an expanded state. Device 2900 may include central axis member 2924.


Anchor 2907 and 2908 may be present to anchor bone segments P1 and P2, respectively, to anchoring substrate 2904.


Device 2900 may include relative displacement actuator 2910. Actuator 2910 may effect relative displacement of support cage 2902, anchoring support 2904 and central member 2906. During delivery of device 2900 to intermedullary space IS, device 2900 may be in a contracted state (not shown). During deployment, device 2900 may be expanded. The expansion may be performed, for example, by differential movement, along device longitudinal axis LD, of proximal portion 2912 of support cage 2902 and proximal portion 2914 of anchoring substrate 2904. During deployment, anchor 2907 and 2908 may be inserted after expansion of device 2900.


Device 2900 may include relative displacement actuator 2910 for effecting the differential displacement. Actuator 2910 may include threaded support cage base 2916. Threaded support cage base 2916 may be longitudinally fixed to proximal end 2912 of support cage 2902. Threaded support cage base 2916 may include a first threaded longitudinal bore (not shown).


Actuator 2910 may include double threaded anchoring substrate base 2918. Double threaded substrate base 2918 may be fixed to proximal portion 2914 of anchoring substrate 2904. Double threaded substrate base 2918 may have outer threads 2920 that may be screwed into the first longitudinal threaded bore of support cage base 2916. Double threaded substrate base 2918 may include a second threaded longitudinal bore (not shown).


Actuator 2910 may include threaded central axis member base 2922. Threaded central axis member base 2922 may be fixed to the proximal end of central axis member 2906. Threaded central axis member base 2922 may have outer threads 2924 that may be screwed into the second threaded longitudinal bore in double threaded substrate base 2918.


One or more control instruments may be deployed by catheter to rotate one or more of cage base 2916, double threaded anchoring substrate base 2918 and threaded central axis member base 2922 to achieve desired displacement or displacements between the proximal portions of support cage 2902, anchoring substrate 2904 and central axis member 2906. The differential displacements may expand the device during deployment.


After deployment of device 2901, anchors 2907 and 2908 may be inserted through bone segments P1 and P2, respectively, into anchoring substrate 2904. After insertion of anchors 2907 and 2908, relative displacement actuator 2910 may be used to adjust the stress state of bone segments P1 and P2. For example, double threaded anchoring substrate base 2918 may be rotated such that it moves in proximal direction DP relative to support cage base 2916. This relative motion would draw bone segments P1 and P2, relative to support cage 2902, in proximal direction DP and in inward radial direction −RD.


After appropriate positioning of device 2900 and appropriate relative displacement of support cage 2902 and anchoring substrate 2904, a proximal anchor such as 1922 (shown in FIG. 19) may be inserted through femur BF and anchoring substrate 2904 to hold device 2900 in place.



FIG. 30 shows a cross-sectional view of device 2910 taken along lines 29-29 in FIG. 29. FIG. 29 shows threaded support cage base 2916 longitudinally fixed to proximal portion 2912 of support cage 2902, Double threaded anchoring substrate base 2918 is threaded into the first threaded bore of support cage base 2916. Double threaded anchoring substrate base 2918 is longitudinal fixed to proximal portion 2914 of anchoring substrate 2904. Threaded central axis member 2922 is threaded into the second threaded bore of double threaded anchoring substrate base 2918. Central axis member 2906 extends in distal direction (−DP) from threaded central axis member 2922.



FIG. 31 shows illustrative balloon-expandable fracture repair device 3100. Device 3100 may include outer structural member 3102. Outer structural member 3102 may include structural cage 3104, stem 3106 and device retention member 3108. Device 3100 may include anchoring member 3110. Anchoring member 3110 may include anchoring substrate 3112, anchoring member stem 3114 and device retention member 3116.


Structural cage 3104 and anchoring substrate 3112 may be positioned in a contracted state in an intramedullary space of a bone using device retention members 3108 and 3116, respectively. The device retention members may be used to position structural cage 3104 and substrate 3112 longitudinally relative to each other.


Balloon 3118 may be present inside anchoring substrate 3112. Catheter 3120 may provide appropriate gas pressure for inflation of anchoring substrate 3112.


Membrane 3130 may be present about outer structural member 3102. Membrane 3130 may substantially entirely cover device 3130. Membrane 3130 may be disposed on the exterior or interior of device 3100, or between described elements of device 3100.


Membrane 3130 may include elastic material. Membrane 3130 may include non-elastic material. Membrane 3130 may include woven polyester, EPTFE film, a PET balloon, a silicon film, a polyurethane film, any suitable material that may be produced in a film form, any suitable material that may inhibit tissue growth, any suitable biocompatible, biodegradable and/or bioabsorbable material, and any other suitable material.


Membrane 3130 may facilitate the removal of the device 100 by inhibiting bone growth into device 100. In some embodiments, membrane 3130 may inhibit ingrowth of tissue in interstitial spaces of device 3100.


In some embodiments, membrane 3130 may facilitate the delivery or recapture of material that may be used in connection with device 3100, such as bone cement.


Membrane 3130 may be structurally integrated into device 3100. Membrane 3130 may be configured to be used with device 3100 as an ancillary or accessory component. The component may be used as needed for fracture repair.


In some embodiments, membrane 3130 may be used to expand structural cage 3104. In some embodiments, membrane 3130 may be used to expand anchoring substrate 3112. In such embodiments, membrane 3130 may be detachable from structural cage 3104 and/or anchoring substrate 3112. Membrane 3130 may then remain implanted in the intramedullary space IS.


In some embodiments, membrane 3130 may be removable independently of other elements of device 3100.


Membrane 3130 may include an agent. The agent may be impregnated in membrane 3130. The agent may be present as a coating on membrane 3130. The agent may provide a bone growth promotion agent, a bone growth inhibition or prohibition agent, a drug eluting agent or any other suitable agent.



FIG. 32 shows a cross sectional view taken along lines 32-32 of device 3100. FIG. 32 shows catheter 3120 entering anchoring substrate 3112. Balloon 3118 may be filled from ports 3122 in catheter 3120. Anchoring substrate contour 3124 may be predetermined by its materials and construction (or both).



FIG. 33 shows illustrative anchoring member 3300. Anchoring member 3300 may be used in a device such as device 3100 (shown in FIG. 31) and may correspond to anchoring member 3110. Anchoring member 3300 may include distal ring 3302, anchoring substrate 3304, stem 3306 and device retention member 3308.


In some embodiments, a balloon such as 3118 (shown in FIG. 31) may be inserted inside anchoring member 3300 to expand anchoring member 200. In some embodiments, device 3300 may be self-expanding.


Collar 3302 has a substantially fixed radius and may not expand. Collar 3302 may include rings 3303. Rings 3303 may be arranged in a nested configuration in which rings 3303 are partially or substantially perpendicular to axis LD. Rings 3303 may be coaxial with axis LD. In such configurations, rings 3303 may facilitate coupling to a central axis member such as 124 (shown in FIG. 1) and/or a structural cage such as 105 (shown in FIG. 1).


When a balloon is used for expansion, the balloon may be situated a sufficient distal distance away from stem 3306 so that the radius of stem 3306 remains substantially the same during expansion of the balloon.


Anchoring substrate 3304 may include expansion band 3310. Expansion band 3310 includes expansion cells such as 3312, which may deform along directions CD and −CD under radially outward (direction RD) stress from the expanding balloon. Band 3310 has a number of expansion cells along its circumference. The number of expansion cells along the circumference of a band such as 3310 is referred as the cell density.


Groups of cells that are relatively expandable in response to a longitudinal compression may be considered to have a high “expansion ratio.” Groups of cells that are relatively inexpandable in response to the same longitudinal compression may be considered to have a low “expansion ratio.” Variations in cell density, cell shape, cell “leg” (material bordering the cell that separates the cell from other cells or material) (or “strut”) length, cell leg thickness and other suitable parameters may be used to vary the expansion ration.


Anchoring substrate 3304 may include expansion band 3314. Expansion band 3314 has a cell density that is greater than the cell density of band 3310. When subjected to outward radial force from the balloon, expansion band 3314 will thus expand in radial direction RD more than expansion band 3310 will expand. Expansion band 3316 has the same cell density as expansion band 3314. Expansion band 3318 has the greatest cell density and therefore may expand in radial direction RD more than the other expansion bands.


The longitudinal variation in cell density along longitudinal anchoring substrate 3340 may result in a radial expansion that varies. Cell density, band width (such as band 3316 width 3318) and band position along axis LD may be chosen to provide an expanded contour of anchoring substrate 3304 that conforms in a desired way to a support cage such as 105 (shown in FIG. 1) or an intramedullary space such as IS (shown in FIG. 1). Circumferential variations (in direction CD) in cell density may provide circumferentially varying expansion radii. Such variations may be used to provide an anchoring substrate that has a contour that corresponds to, or contours with, an asymmetric intramedullary cavity, such as at the end of a humerus.



FIG. 34 shows illustrative anchoring substrate 3402 for a fracture repair device in accordance with the principles of the invention. Anchoring substrate 3402 may be supported at distal end 3404 by flange 3406. Anchoring substrate 3402 may be supported at proximal end 3408 by flange 3410. Central axis member 3412 may be longitudinally fixed to flange 3406. Flange 3410 may be substantially free to translate with respect to central axis member 3412. This allows distance T between the flanges to decrease so that anchoring substrate 3402 can expand in radial direction RD.


Device 3400 may be self-expanding. Anchoring substrate 3402 may include braided mesh. In some embodiments, device 3400 may include multiple anchoring substrates.



FIG. 35 shows anchoring substrate 3414 in an expanded state between flanges 3406 and 3410. Flange 3410 has been moved distally up central axis member 3412. Anchoring substrate 3414 corresponds to anchoring substrate 3402 (shown in FIG. 34), but may have a longitudinally varying cell density and may therefore expand to a greater radius then can anchoring substrate 3402.


After anchors are attached to anchor substrate 3414, flange 3410 may be drawn proximally to reduce the diameter of the substrate and apply a tensile force to the attached anchor elements. During such diameter reduction, the shape of the cells in anchoring substrate 3414 may change. For example, the cells may, in the expanded state, be generally square. In the contracted (or relatively contracted) state, the cells may be diamond-shaped or trapezoidal. The shape change may increase the strength of the engagement between the anchoring substrate 3414. The shape change may effectively lock the anchor into anchoring substrate 3414.



FIG. 36 shows illustrative anchoring substrate 3600 for a fracture repair device in accordance with the principles of the invention. Anchoring substrate 3600 may be attached to a central axis member (not shown). Anchoring substrate 3600 may be welded, crimped, woven or otherwise attached to the central axis member along the length of the central axis member. For example, radially inner portions 3602 may be attached to the central axis member.


In some embodiments, anchoring substrate 3600 may be attached at its distal and proximal ends to a central member such as 124 (shown in FIG. 1) and along its length to a structural cage such as 105 (shown in FIG. 1). This type of attachment may to facilitate wrapping or folding through relative rotation between the cage and central member. In some embodiments, anchoring substrate 3600 may be present within a structural cage such as 105 (shown in FIG. 1), but may be unattached or uncoupled to the structural cage.


Anchoring substrate 3600 may have sufficient elasticity to retain folds 3603. Surfaces 3604 and radially outer portions 3606 may engage anchors that press bone segments against a support cage such as 105 (shown in FIG. 1). Anchoring substrate 3600 may include secondary folds 3608 to increase the availability of surfaces 3604 to receive anchors.


The central axis member may be rotated in direction −CD to draw the anchors inward in direction −RD approximately toward the central axis member. The central axis member may be drawn proximally to apply longitudinal force to the bone segments.



FIG. 37 shows illustrative anchoring substrate 3700 for a fracture repair device in accordance with the principles of the invention. Anchoring substrate 3700 may be constructed, attached to a central axis member and actuated as is anchoring substrate 3600 (shown in FIG. 36). Anchoring substrate 3700 may include primary folds 3702. Anchoring substrate 3700 may not include secondary folds such as 3608 in anchoring substrate 3600.


Some embodiments may include threadlike elements that are intertwined with anchoring substrate 3600 and/or a structural cage such as 105 (shown in FIG. 1). The threadlike elements may be connected to the central axis member to facilitate drawing portions of the anchoring substrate or structural cage toward the device axis. In some embodiments, the threadlike elements may be pulled through the central axis member by a delivery instrument.



FIG. 38 shows illustrative anchoring substrate 3800 for a fracture repair device in accordance with the principles of the invention. Anchoring substrate 3800 may be attached to a central axis member (not shown). Anchoring substrate 3800 may be welded, crimped or otherwise attached to the central axis member near a proximal end of the central axis member. For example, radially inner and proximal portions 3802 may be attached to the central axis member. Anchoring substrate may have sufficient elasticity to retain helical folds 3803. Folded surfaces 3804 may engage anchors that press bone segments against a support cage such as 105 (shown in FIG. 1).


Distal end 3808 of anchoring member 3800 may be fixed to a flange, such as 3406 (shown in FIG. 35). The central axis member may be free to rotate in direction −CD with respect to the flange. When the central axis member is so rotated, it may tighten helical folds 3803 and draw the anchors inward in direction −RD approximately toward the central axis member. The central axis member may be drawn proximally to apply longitudinal force to the bone segments.



FIG. 39 shows illustrative anchoring substrate 3900 for a fracture repair device in accordance with the principles of the invention. Anchoring substrate may include stacked disc-like folds 3902. Disc-like folds may expand and contract longitudinally and radially in an accordion-like fashion.



FIG. 40 shows anchoring substrate 3900 in cross-section as viewed along lines 40-40 (shown in FIG. 39). When proximal end 3904 and distal end 3906 (e.g., at flange 3908) are displaced longitudinally toward each other, anchoring substrate 3900 may compress longitudinally and disc-like folds 3902 may expand in direction RD. When proximal end 3904 and distal end 3906 (e.g., at flange 3908) are displaced longitudinally away from each other, anchoring substrate 3900 may extend longitudinally and disc-like folds 3902 may contract in direction −RD.


The longitudinal extension may be used to deploy anchoring substrate in a radially compressed state. After deployment, anchoring substrate may be longitudinally compressed so that folds 3902 expand in radial direction RD. Anchors may then be engaged with folds 3902. Anchoring substrate 3900 may then be longitudinally extended to apply radially inward force to the anchors. Tension in direction DP may then be applied to the anchors by pulling proximal end 3904. Folds 3902 may be biased at angle B in direction −DP so that when end 3904 is pulled, fold axes Lf are pre-aligned with the anchors.


Proximal portion 3904 may be attached to a pull member (not shown) that may be similar to a portion of a central axis member such as 124 (as shown in FIG. 1B). Distal end 3906, at flange 3908, may be attached to a portion of the device that remains substantially longitudinally stationary when the pull device pulls on proximal portion 3904. For example, flange 3908 may be fixed to the distal end of a corresponding support cage such as 105 (shown in FIG. 1).



FIG. 41 shows illustrative support cage 4100 for a fracture repair device in accordance with the principles of the invention. Support cage 4100 may include hub 4102 and base ring 4104. Spiral support members 4106 extend between hub 4102 and base ring 4104. A central axis member (not shown) may extend along device axis LD. The central axis member may have a distal end that is longitudinally fixed to hub 4102. The central axis member may extend through base ring 4104. Base ring 4104 may be moved along the central axis member. When base ring 4104 is moved away from hub 4102, spiral support members 4106 may extend longitudinally and straighten. As spiral support members 4106 straighten, ring 4104 may rotate.


Longitudinal extension of support cage 4100 may configure support cage 4100 for deployment. Longitudinal compression of support cage 4100 may configure support cage 4100 for deployment and engagement with bone segment anchors. In some embodiments, support cage 4100 may be expanded and collapsed by application of an external rotational force.


In some embodiments, support cage 4100 may be self-expanding. In those embodiments, support cage 4100 may have a relaxed state that is longitudinally compressed. Support cage 4100 may be longitudinally extended for deployment. Support cage 4100 may then return to its relaxed state after deployment.



FIG. 42 shows illustrative hybrid support cage and anchoring substrate 4200. Hybrid cage/substrate 4200 may include support members 4202. Support members 4202 may support bone segments such as Pa, Ph and PB (shown in FIG. 1). Hybrid cage/substrate 4200 may include substrate members 4204 for engaging anchors such as 114 and 116 (shown in FIG. 1). Substrate members 4204 may be supported by support members 4202. Substrate members 4204 and 4202 may expand and contract radially as a single unit.


Hybrid cage/substrate 4200 may include stem 4206 and device retention member 4208. Support members 4202 may be integrated with substrate members 4204 in a single-layer structure. Substrate members 4204 may have features that are described herein in connection with anchoring substrates such as 112 (shown in FIG. 1). For example, the substrate members 4204 may be formed to facilitate anchor mating and retention. Hybrid cage/substrate 4200 may be used alone or in concert with layers of other hybrid cage/substrates like 4200 or with layers of other constructs such as devices previously described herein like central axis member 2502 (shown in FIG. 25), intermediate member 2507 (shown in FIG. 25), anchoring member 3300 (shown in FIG. 33) and outer member 2514 (shown in FIG. 25).



FIG. 43 shows illustrative fracture repair device 4300 in accordance with the principles of the invention. Device 4300 includes anchoring substrate 4302 and support cage 4304. Anchoring substrate 4302 is radially outside support cage 4304. Device 4300 may include distal hub 4306. Distal hub 4306 may provide support for proximal end 4308 of central axis member 4310. Proximal base 4312 may support proximal portions of anchoring substrate 4302 and support cage 4304. Central axis member 4310 may pass through proximal base 4312. Central axis member 4310 may support device retention member 4314.



FIG. 44 shows illustrative fracture repair device 4400 in accordance with the principles of the invention. Device 4400 may include structural cage 4402 and anchoring substrate 4404. Device 4400 may include bushing 4406 for sliding proximal portion 4408 of structural cage 4402 along central axis member 4410. Device 4400 may include bushing 4412 for sliding proximal portion 4414 of anchoring substrate 4404 along central axis member 4410. The bushings may support device retention members such as 1802 (shown in FIG. 18). The device retention members may be used to expand and contract device 4400. Spherical or sphere-like embodiments of device 440 may provide a high radial compression strength, and generate high radial compression forces, based on the shape.



FIG. 45 shows illustrative fracture repair device 4500 in accordance with the principles of the invention. Device 4500 may include a train of substantially spherical or sphere-like structural cages 4502, 4504 and 4506 inside outer structural cage 4508. Device 4500 may include as many cages as desired to make a train of a desired length. In some embodiments, an anchoring substrate like 4300 (shown in FIG. 43) may be present. The anchoring substrate may be present within or outside of structural cage 4508.


In some embodiments, the cages may be partially spherical. An anchoring substrate is present inside each of the structural cages. Device 4500 may include bushings 4510 and 4512 for positioning proximal end 4516 of outer structural cage 4508 and proximal end 4514 of the train, respectively, along central axis member 4518. Central axis member 4518 may be rigidly fixed at outer structural cage hub 4520. Structural cages 4502, 4504 and 4506, outer structural cage 4508 and the anchoring substrates may be expanded and collapsed by sliding bushings 4510 and 4512 along central axis member 4518.



FIG. 46 shows illustrative fracture repair device 4600 in accordance with the principles of the invention. Device 4600 is shown in long bone BL in a view that is similar to the view of device 4500 along lines 46-46 that is shown in FIG. 45. Device 4600 may include a train of substantially spherical structural cages 4602, 4604 and 4606 inside outer structural cage 4608. Device 4600 may transect fracture FL.


An anchoring substrate may be present inside each of structural cages 4602, 4604 and 4606. Device 4600 may include device retention member 4610. Device retention member 4610 may be configured to slide relative to central axis member 4612. Central axis member 4612 may terminate proximally at device recapture member 4614. Central axis member 4612 may terminate distally at outer structural cage hub 4616, to which central axis member 4612 may be rigidly fixed.


Structural cages 4602, 4604 and 4606, outer structural cage 4608 and the anchoring substrates may be expanded and collapsed by sliding device retention member 4610 relative to device recapture member 4614. Ratcheted bushings 4618 may be present to retain device 4600 in an expanded state. After device 4600 is expanded, anchors 4620, 4622 and 4624 may be inserted through bone segments BL1 and BL2 to engage the anchoring substrates.


A compressive traction may be applied to fracture FL by initially inserting anchors 4620 and 4622, drawing device 4600 in proximal direction DP relative to bone segment BL2, and subsequently inserting anchor 4624.



FIG. 47 shows illustrative fracture repair device 4700 in accordance with the principles of the invention. Device 47 is shown deployed in intramedullary space IS of long bone BL. Device 47 bridges across fracture FL. Device 47 may include structural cage 4702. Device 47 may include anchoring substrate 4704. Structural cage 4072 may be deployed in intramedullary space IS. Structural cage 4072 may provide radially outward support to bone segments BL1 and BL2. Anchoring substrate 4704 may be deployed within structural cage 4072.


Anchoring substrate 4704 may be engaged by anchors 4706, 4708, 4710 and 4712 to stabilize bone segments BL1 and BL2 against structural cage 4702. A compressive traction may be applied to fracture FL by initially inserting anchors 4706 and 4708, drawing device 4700 in proximal direction DP relative to bone segment BL2, and subsequently inserting anchors 4710 and 4712.


Device 4700 is shown with substantially open ends. In some embodiments, device 4700 may have ends that terminate at a hub or a base, such as are shown and described herein. Device 4700 may be used as shown or in conjunction with other devices that are shown and described herein.



FIG. 48 shows illustrative anchor 4800 that may be used with a fracture repair device in accordance with the principles of the invention. Anchor 4800 may include elongated member 4802, head 4804 and tabs 4806. Anchor 4800 may be deployed using torque, axial pressure or both. Elongated member 4802 may be inserted through a bone segment. Tabs 4806 may be elastically deformable so that when anchor 4800 is inserted through the bone segment, tabs 4806 lie substantially even with the outer surface of elongated member 4802.


End 4808 may pass through a cell in an anchoring substrate such as 112 (shown in FIG. 1). One or more of tabs 4806 may engage the anchoring substrate and prevent anchor 4800 from being disengaged from the anchoring substrate. Tabs 4806 may deflect to lie substantially even with the outer surface of elongated member 4802 when anchor 4800 penetrates the anchoring substrate.


In some embodiments, tabs 4806 may have a predeployment state in which tabs 4806 may lie substantially even with the outer surface of elongated member 4802. Tabs 4806 may be deployed after anchor 4800 is inserted through the bone and the anchoring substrate. Tabs 4806 may be deployed by inserting an actuator shaft (not shown) in the lumen of elongated member 4802. The actuator shaft may push tabs 4806 radially outward.


Tabs 4806 may include an extensions (not shown) that extend into the lumen of anchor 4800. The extensions may be extend away from the “plane” of the tabs. The extensions may facilitate the deployment of the tabs when the actuator shaft is driven down the lumen and contacts the extensions.


Elongated member 4802 may be constructed from tube stock. Tabs 4806 may be punched or laser cut from the tube. Head 4804 may be welded to elongated member 4802. Head 4804 may include driver receptacle 4804. The diameter of the tube stock may be selected to correspond to that of the anchoring substrate cells to maximize the interference (and between tabs 4806 and the anchoring substrate. Such selection may provide suitable retention of the anchors.



FIG. 49 shows illustrative anchor 4900 that may be used with a fracture repair device in accordance with the principles of the invention. Anchor 4900 may include elongated member 4902, head 4904 and thread segments 4906. Anchor 4900 may be deployed using torque, axial pressure or both. Elongated member 4902 may be inserted through a bone segment. Thread segments 4906 may be elastically deformable to ease insertion in the bone segment and engagement with the anchoring substrate. Parameters of thread segments 4906 may be selected for engagement with an anchoring substrate. The parameters may include minor diameter, major diameter, pitch and any other suitable parameters.


Thread segments 4906 may include circumferential faces 4908 and corresponding circumferential locking faces 4910. Circumferential locking faces 4910 may catch in the anchoring substrate and prevent anchor 4900 from unscrewing from the anchoring substrate.



FIG. 50 shows illustrative anchor 5000 that may be used with a fracture repair device in accordance with the principles of the invention. Anchor 5000 may include elongated member 5002, head 5004 and thread segments 5006. Thread segments 5006 may have some or all of the features of thread segments 4906 (shown in FIG. 49). For example, thread segments 5006 may include circumferential faces 5008 and corresponding circumferential locking faces 5010. Circumferential locking faces 5010 may catch in the anchoring substrate and prevent anchor 5000 from unscrewing from the anchoring substrate.


Anchor 5000 may be deployed using torque, axial pressure or both.


Anchor 5000 may include articulating catch 5012. Articulating catch 5012 may in a non-deployed state be present in lumen 5014 of elongated member 5002. Rod 5014 may be depressed in lumen 5014 and may push on leg 5018 of catch 5012. Leg 5018 may urge hinge 5020 out of port 5022 in elongated member 5002. Corresponding catch 5024 may be deployed in a similar fashion. Legs 5018 and 5026 may catch in the anchoring substrate after deployment of catches 5012 and 5024. Anchor 5000 may thus be locked to the anchoring substrate.



FIG. 51 shows illustrative anchor 5100 that may be used with a fracture repair device in accordance with the principles of the invention. Anchor 5100 may include spiral member 5102, head 5104 and notches 5106. Anchor 5100 may be deployed using torque, axial pressure or both.


Elongated member 5102 may be inserted through a bone segment. A pilot hole in the bone segment may have a diameter corresponding to diameter d of spiral member 5102. Spiral member 5102 may thus pass through the bone segment without substantial rotation. In some embodiments, an anchor access hole in the bone could be made for anchor 5100. The anchor access hole may have a diameter that is no smaller than diameter d′ of elongated member 5102 and is large enough to allow elongated member 5102 to be helically threaded thru the hole. Such an access hole may be smaller than a standard anchor hole.


Tip 5108 may then engage the anchoring substrate. Rotation of anchor 5100 may then drive anchor 5100 relatively deeper into the anchoring substrate. Notches 5106 may catch in the anchoring substrate and prevent anchor 5100 from rotating out of engagement with the anchoring substrate. End portion 5110 may be provided without notches so that anchor 5100 may be backed out of the anchoring substrate, if desired, before driving anchor 5100 into a locked relationship with the anchoring substrate.



FIG. 52 shows illustrative anchor 5200 that may be used with a fracture repair device in accordance with the principles of the invention. Anchor 5200 may include elongated member 5202, head 5204 and catch 5206. Catch 5206 may be supported by and rotatable about pin 5208. Catch 5206 may in a nondeployed state be present or partially present in slot 5210 in elongated member 5202. For example, catch 5206 may rotate in direction m such that tip 5212 rotates into slot 5210 and tip 5214 rotates into a position that extends beyond elongated member 5202.


In such a configuration, elongated member 5202 may be inserted through a bone segment. Tip 5214 may then traverse a portion of the anchoring substrate. After the traverse, tip 5214 may rotate in the −m direction such that anchor 5200 returns to the configuration shown in FIG. 52. The span of catch 5206 may exceed the diameter of a cell in the anchoring substrate. Anchor 5200 may thus be locked to the anchoring substrate.


In some embodiments, screw-actuator 5216 may be present in bore 5218 of elongated member 5202. Screw-actuator 5216 may be screwed into the bore. This action may reduce the effective length of anchor 5200 and, therefore tension the bone segment to the anchor substrate. In some embodiments, a tip (not shown) of screw-actuator 5216 may deflect tip 5212 out of slot 5210 to rotate catch 5206. Tip 5212 may be beveled to facilitate deflection by the tip of screw-actuator 5216.



FIG. 53 shows anchors 5200 deployed and locked into anchoring substrate 112 of device 100 (shown also in FIG. 1). Anchors 5200 thus fasten bone segments Pa and Ph to anchoring substrate 112.



FIG. 54 shows illustrative fracture repair device 5400 in accordance with the principles of the invention. Device 5400 is implanted in bone B. Wire 5402 passes through holes that are drilled through bone segment Pa, anchoring substrate 5404 and bone segment PB to form loop 5406. The ends of wire 5402 may be fastened to each other to secure bone portions Pa, Ph and PB to each other.



FIG. 55 shows illustrative fracture repair device 5500 in accordance with the principles of the invention. Device 5500 is shown deployed and locked in humerus BH. Support members 5502 generally conform to the contours of intramedullary space IS in bone BH. Anchoring substrate applies tension in direction Dp to anchors 5504 and 5506. Proximal anchor 5508 retains the tension.


Expanding cylindrical anchor 5510 is present coaxially about structural cage base 5512. Anchor 5510 may expand radially when compressed along axis LD. When anchor 5510 expands, circumferential blades 5514 extend radially into bone BH. Anchor 5510 may be compressed by longitudinally fixing distal end 5516 at a position on structural cage base 5512 and pushing distally on proximal end 5518. A detent (not shown) may be provided to prevent anchor 5510 from extending longitudinally. When locked in the compressed state, anchor 5510 cuts into bone BH and locks device 5500, or parts thereof, longitudinally. Anchor 5510 may be self-expanding when released from constraint. Anchor 5510 may be rotated during expansion to promote engagement with the bone.


Expanding cylindrical anchor 5522 is shown connected directly to anchoring substrate 5530. Anchor 5522 may be locked after a desired tension is obtained in device 5500. Expanding cylindrical anchor 5522 may have some or all of the features of expanding cylindrical anchor 5510.



FIG. 56A shows illustrative expanding anchor 5600 that may be used in accordance with the principles of the invention. Anchor 5600 may have some or all of the features of anchor 5510 (shown in FIG. 55). Anchor 5600 may be cut from a tube. Compression along axis LD causes articulation of living hinge 5604. The articulation causes blades 5602 to extend radially away from axis LD. Anchor 5600 may be self-expanding.



FIG. 56B shows a view of anchor 5600 from direction 56B-56B (shown in FIG. 56A). FIG. 56C shows a view of anchor 5600 from direction 56C-56C (shown in FIG. 56A).



FIG. 57A shows illustrative expanding helical anchor 5700 that may be used in accordance with the principles of the invention. Helical anchor 5700 may have some or all of the features of anchor 5510 (shown in FIG. 55). Anchor 5700 may be cut from a tube. Compression along axis LD causes articulation of living hinge 5704. The articulation causes blades 5702 to extend radially away from axis LD. Anchor 5700 may be self-expanding.



FIG. 57B shows a view of anchor 5700 from direction 57B-57B (shown in FIG. 57A). FIG. 57C shows a view of anchor 5700 from direction 57C-57C (shown in FIG. 56A).


When helical anchor 5700 is rotated relative to surrounding bone, it may move like a screw because of the helical form of blades 5702. When helical anchor 5700 is rotated compressed and rotated simultaneously, blades 5702 may carve out bone material while anchor 5700 is being engaged in the bone. Carving out the bone material may reduce hoop stress in the bone.



FIG. 58 shows illustrative bone fracture repair device 5800 in accordance with the principles of the invention in femur BF. Device 5800 includes structural cage 5802 and anchoring substrate 5804. Anchors 5806 fasten portions (individual bone segments not shown) of femur BF to anchoring substrate 5804. Structural cage 5800 may include cage base 5808 which may be configured to receive proximal anchor 5810. Proximal anchor 5810 may apply tension to central axis member 5812. Proximal anchor 5810 may apply tension to anchoring substrate 5804.


Device 5800 may be introduced at a site near point 5814 on bone BF so that device 5800 may be delivered in an orientation and at a position that is close to the desired deployed orientation and position.


Buttress plate 5816 may be present adjacent bone BF. Buttress plate 5816 may provide stability to anchors 5806 an 5814. Buttress plate 5816 may distribute forces from anchors 5806 and 5814 to different portions of bone BF. Buttress plate 5816 may accommodate as many anchors 5806 as appropriate to secure the fracture. Buttress plate 5816 may have specially constructed mating features to lock device 5800 at a desired angle with respect to buttress plate 5816.



FIG. 59 shows illustrative bone fracture repair device 5900 in accordance with the principles of the invention in humerus BH. In some embodiments, device 5900 may be completely delivered and deployed through a single access hole (not shown). Device 5900 includes structural cage 5902. Structural cage 5902 may provide outward radial and longitudinal support for bone segments P, P1 and P2.


Anchors may be delivered by steerable catheter into bone BH and through a cage base such as 108 (shown in FIG. 1). Tethers 5904 and 5906 may apply inward radial and proximal tension to bone segments P1 and P2, respectively. The tethers may be delivered into humerus BH through an access hole (not shown) that is proximal device 5900. Device 5900 may not include an anchoring substrate.


T-bar anchor 5908 may anchor tether 5904 to bone segment P1. T-bar anchor 5908 may have some or all of the features of anchor 5200 (shown in FIG. 52). Screw-type anchor 5910 may anchor tether 5906 to bone segment P2.


The tethers may be delivered through flared support tube 5912. Flared support tube 5912 may include one-way cleat 5914. The tethers may be drawn in proximal direction Pd to apply tension to the bone segments. One-way cleat 5914 may prevent release of the tension.



FIG. 60 shows illustrative bone fracture repair device 6000 in accordance with the principles of the invention in humerus BH. Device 6000 includes structural cage 6002. Structural cage 6002 may provide outward radial and longitudinal support for bone segments P, P1 and P2. Structural cage 6002 and anchoring substrate 6004. Anchors 6006, 6008 and 6010 may be delivered by steerable catheter through cage base 6012 and into the interior of anchoring substrate 6004. The anchors may then be inserted in bone segments P1 and P2. The steerable catheter may then be withdrawn. Anchoring substrate 6004 may then be drawn in proximal direction Dp using approaches shown and described herein or other suitable methods. Drawing anchoring substrate 6004 in direction Dp may compress bone segments P1 and P2 against bone segment P.



FIG. 61 shows illustrative bone fracture repair device 6100 in accordance with the principles of the invention in bone B. Device 6100 may be delivered to intramedullary space IS of bone B through access hole 6101 in radial styloid S.


Device 6100 may include structural cage 6102, anchoring substrate 6104 and central axis member 6106. Structural cage 6102 may include hub 6108, where support members 6110 rigidly join. Hub 6108 may support device retention member 6112.


Delivery sheath 6114 may provide access to intramedullary space through styloid S. Delivery instruments (not shown) may extend through delivery sheath 6114 and engage device retention member 6112 for positioning and deployment of device 6100.



FIG. 62 shows illustrative plate 6200 that may be used in connection with a bone fracture repair device in accordance with the principles of the invention. Plate 6200 includes a plurality of holes 6202 for passage of anchors.


Plate 6200 may support bone segments and a device such as 6300 (shown in FIG. 63) that is inside a bone. Plate 6200 may be used during an open surgical procedure on the outer surface of the bone. Plate 6200 may be stiff or flexible. The shape of late 6200 may be selected for the capture of some or all of the bone segments of the bone.



FIG. 63 shows illustrative bone fracture repair device 6300 in accordance with the principles of the invention. Device 6300 may be used in connection with a plate such as 6200 (shown in FIG. 62). Device 6300 may include structural cage 6302 and anchoring substrate 6304. Anchors such as spiral anchors 6306 may be passed through holes 6202 and bone segments PB and Pa. Anchors 6306 may have some or all of the features of anchors 5100 (shown in FIG. 51). Anchors 6306 may anchor in, and lock to, anchoring substrate 6304.



FIG. 64 shows device 4600 (shown in FIG. 46) deployed inside vertebra V. Device 4600 provides outward radial support. Device 4600 may be used in vertebra V without anchors.



FIG. 65 shows an illustrative scenario for providing access to proximal humerus PH. Introducing instrument 6502 may provide an access hole in proximal humerus PH. Device 6504 may be introduced, positioned, deployed and anchored near the end of proximal humerus PH. Imaging device 6506 may be provided to provide visual information about the location of anatomical features of proximal humerus PH and device 6504.



FIG. 66 shows an illustrative scenario for deploying illustrative bone fracture repair device 6600 in accordance with the principles of the invention in open fracture Fh of bone B. Device 6600 may include structural cage 6602, anchoring substrate 6604 and central axis member 6606. Device 6600 may be inserted into intramedullary space of bone B via fracture Fh. Device 6600 may be inserted in a contracted state. Device 6600 may be inserted in an expanded state.



FIG. 67 shows illustrative anchoring substrate 6700 that may be used with a fracture repair device in accordance with the principles of the invention. Anchoring substrate 6700 may include elongated portion 6702. Elongated portion 6702 may be terminated with end cap 6704. One or both of elongated portion 6702 and end cap 6704 may include holes 6706. Holes 6706 may be engaged with anchors to hold bone segments in place.


Anchoring substrate 6700 may be used for repairing bones having open fractures such as fracture Fh of bone B as shown in FIG. 66. Anchoring substrate 6700 may be expandable. Anchoring substrate may be non-expandable.


Apparatus and methods described herein are illustrative. Apparatus and methods of the invention may involve some or all of the features of the illustrative apparatus and/or some or all of the steps of the illustrative methods. The steps of the methods may be performed in an order other than the order shown and described herein. Some embodiments of the invention may omit steps shown and described in connection with the illustrative methods. Some embodiments of the invention may include steps that are not shown and described in connection with the illustrative methods.


Processes in accordance with the principles of the invention may include one or more features of the processes illustrated in FIG. 68. Some steps of the processes may be performed in an inpatient setting. Some steps of the processes may be performed in an outpatient setting.



FIG. 68 shows illustrative steps of process 6800 for repairing a fracture. Process 6800 may begin at step 6802. At step 6802, a caregiver may provisionally reduce the fracture. At step 6804, the caregiver may establish access to the intramedullary cavity in the fractured bone. At step 6806, the caregiver may insert a catheter into the fractured bone. At step 6808, the caregiver may confirm positioning of the catheter using fluoroscopy (or any other suitable imaging approach). At step 6810, the caregiver may deploy a structural support such as structural cage 105 (shown in FIG. 1). At step 6812, the caregiver may deploy an anchoring substrate such as anchoring substrate 112 (shown in FIG. 1). At step 6814, the caregiver may insert anchors into the bone segments and anchoring substrate. At step 6815, the caregiver may apply tension. The tension may be applied to one or more of an anchor, an anchoring substrate, a structural support or any of the apparatus shown and described herein using any of the approaches shown and described herein. At step 6816, the caregiver may confirm bone segment location using medical imaging. At step 6818, the caregiver may lock the insert devices in the intramedullary cavity. At step 6820, the inserted devices may be disengaged from the delivery system used to deliver the devices.


There are different combinations of implant sequences. Table 4 shows different illustrative sequences of treatment steps. Other treatment steps and different sequences may also be practiced in accordance with the principles of the invention.









TABLE 4







Illustrative fracture repair sequences.









Illustrative
Illustrative
Illustrative


sequence A
sequence B
sequence C





Reduce fracture
Anchor
Manipulate segments


Introduce device
Manipulate segments
Engage segments


Anchor segment to
Engage segments
Anchor


device


Tension assembly to
Tension segments
Provide tension to


finalize reduction

segments


Anchor assembly
Anchor or secure
Lock assembly



segments


Disengage from the
Disengage
Further appropriate


assembly

steps


Further appropriate
Further appropriate


steps
steps









There are numerous other steps that may be included. Different embodiments of the apparatus shown and described herein may be used in conjunction with different steps of process 6800, whether or not shown in FIG. 68 or Table 4. For example, bone cement may be applied, cancellous autograph may be inserted, topical or internal antibiotics may be administered and any other suitable therapies may be used.


Thus, apparatus and methods for fracture repair have been provided. Persons skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation. The present invention is limited only by the claims that follow.

Claims
  • 1. A method for treating a fracture in a bone, the method comprising: inserting an anchoring substrate into an inner cavity of the bone;expanding the anchoring substrate inside the inner cavity and forming a screw-hole that is: sized to engage a threaded-member; andspaced apart from cortical bone;positioning a plate on an outer surface of the bone; andsecuring the anchoring substrate to an outside surface of a diaphysis segment of the bone by driving a first threaded member through the plate and into a proximal base of the anchoring substrate;driving a second threaded member from outside an epiphysis segment or metaphysis segment of the bone through the plate, into the inner cavity; andengaging the second threaded member with the screw-hole.
  • 2. The method of claim 1 wherein the engaging of the second threaded member with the screw-hole secures a position of the epiphysis or metaphysis segment of the bone relative to the diaphysis segment of the bone.
  • 3. The method of claim 1, wherein the screw-hole is a first screw hole, the method further comprising driving the second threaded member from outside the epiphysis segment or the metaphysis segment through the plate and engaging the first screw-hole and a second screw-hole.
  • 4. The method of claim 3, wherein the second screw-hole is spaced apart from cortical bone.
  • 5. The method of claim 3 wherein after engaging the second screw-hole, the second threaded member is: engaged with the first screw-hole at a first position along a shaft of the second threaded member; andengaged with the second screw-hole at a second position along the shaft.
  • 6. A method for repairing a fractured bone, the method comprising: inserting an anchoring substrate into an inner cavity of the bone;self-expanding the anchoring substrate inside the inner cavity;manipulating a central axis member to further expand the anchoring substrate;locking expansion of the anchoring substrate;driving a first screw through a first segment of the bone into the inner cavity;engaging the first screw with the anchoring substrate inside the inner cavity and thereby securing the first segment of the bone to the anchoring substrate;driving a second screw through a second segment of the bone into the inner cavity; andengaging the second screw with the anchoring substrate at an oblique angle to the first screw and thereby securing the second segment relative to the first segment.
  • 7. The method of claim 6 further comprising manipulating the central axis member to collapse the anchoring substrate.
  • 8. The method of claim 6 wherein the manipulating comprises moving the central axis member along a central longitudinal axis defined by the anchoring substrate.
  • 9. The method of claim 6 wherein the manipulating comprises applying tension to the anchoring substrate.
  • 10. The method of claim 6 wherein the anchoring substrate comprises a first expandable screw-hole and a second expandable screw-hole, the method further comprising: engaging the first screw with the first expandable screw-hole; andengaging the first screw with the second expandable screw-hole.
  • 11. The method of claim 6 wherein the anchoring substrate comprises a first expandable screw-hole and a second expandable screw-hole, the method further comprising: engaging the first screw with the first expandable screw-hole; andengaging the second screw with the second expandable screw-hole.
  • 12. The method of claim 6 wherein the manipulating comprises moving the central axis member relative to a proximal end of the anchoring substrate.
  • 13. The method of claim 6 wherein the locking fixes a length of the anchoring substrate inside the inner cavity.
  • 14. A method for treating a fracture in a bone, the method comprising: inserting a self-expanding anchoring substrate through an access hole in the bone and into an inner cavity of the bone;positioning a plate on an outer surface of the bone;fixing a position of the anchoring substrate relative to the bone by driving a proximal anchor through the plate and into a proximal base of the anchoring substrate such that: a central longitudinal axis of the anchoring substrate is at an oblique angle to a longitudinal axis of the plate; andthe anchoring substrate is locked in an expanded state;positioning the longitudinal axis of the plate substantially parallel to a longitudinal axis of the bone; anddriving the proximal anchor through the plate and into the proximal base such that the longitudinal axis of the anchoring substrate is at an oblique angle to the longitudinal axis of the bone.
  • 15. A method for treating a fracture of a bone, the method comprising: inserting a self-expanding anchoring substrate into an inner cavity of the bone; self-expanding the anchoring substrate inside the inner cavity to define a plurality of screw-holes;locking the anchoring substrate in an expanded state;securing a proximal end of the anchoring substrate to a first segment of the bone; andpositioning a second segment of the bone relative to the first segment by driving a screw through the second segment and engaging the screw, inside the inner cavity, with at least one of the plurality of screw-holes defined by the expanded anchoring substrate.
  • 16. The method of claim 15 further comprising compressing the first segment against the second segment by driving the screw further into the inner cavity and further through the at least one screw-hole; wherein the securing of the proximal end to the first segment resists tension applied to the anchoring substrate by the driving of the screw through the at least one screw-hole.
  • 17. The method of claim 15 wherein the securing of the proximal end to the first segment resists axial movement of the anchoring substrate along a central longitudinal axis defined by the anchoring substrate.
  • 18. The method of claim 15 wherein the securing of the proximal end to the first segment resists rotation of the anchoring substrate about a central longitudinal axis defined by the anchoring sub state.
  • 19. The method of claim 15 wherein the screw is a first screw and the at least one screw-hole is a first screw-hole, the method further comprising positioning a third bone segment relative to the second bone segment by driving a second screw through the third bone segment and engaging, inside the inner cavity, the second screw with a second screw-hole defined by the expanded anchoring substrate.
  • 20. The method of claim 19 wherein the securing of the proximal end to the first segment resists force applied to the anchoring substrate by the first screw and the second screw.
  • 21. The method of claim 15, wherein the screw is a first screw, the method further comprising securing the proximal end to the first bone segment by driving a second screw along an axis parallel to a longitudinal axis of the anchoring substrate and into a proximal hub of the anchoring substrate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/643,431, filed on Jul. 6, 2017, now U.S. Pat. No. 10,603,087, which is a continuation of U.S. patent application Ser. No. 13/892,476, filed on May 13, 2013, now U.S. Pat. No. 9,788,870, which is a continuation of U.S. patent application Ser. No. 13/625,680, filed on Sep. 24, 2012, now abandoned, which is a continuation of U.S. patent application Ser. No. 12/353,855, filed on Jan. 14, 2009, now U.S. Pat. No. 8,287,538, which is a nonprovisional of U.S. Provisional Applications No. 61/020,778, filed on Jan. 14, 2008, and 61/090,999, filed on Aug. 22, 2008, all of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (1104)
Number Name Date Kind
1344327 Wilson Jun 1920 A
1362513 Skinner Dec 1920 A
1493240 Bohn May 1924 A
1685380 Shultz Sep 1928 A
2137710 Anderson Nov 1938 A
2485531 Dzus Oct 1949 A
2493598 Rozek Jan 1950 A
2537070 Longfellow Jan 1951 A
2580821 Nicola Jan 1952 A
2612159 Collison Sep 1952 A
2627855 Price Feb 1953 A
2730101 Hoffman Jan 1956 A
2780223 Haggland Feb 1957 A
2898963 Courtot Aug 1959 A
3029811 Yost Apr 1962 A
3030951 Mandarino Apr 1962 A
3143915 Tendler Aug 1964 A
3143916 Rice Aug 1964 A
3146892 White Sep 1964 A
3181533 Heath May 1965 A
3386169 Scialom Jun 1968 A
3486500 Ball Dec 1969 A
3495586 Regenbogen Feb 1970 A
3517128 Hines Jun 1970 A
3561437 Orlich Feb 1971 A
3593342 Niebauer Jul 1971 A
3602218 Riordan Aug 1971 A
3623164 Bokros Nov 1971 A
3640280 Slanker Feb 1972 A
3702611 Fishbein Nov 1972 A
3710789 Ersek Jan 1973 A
3744488 Cox Jul 1973 A
3745590 Stubstad Jul 1973 A
3759257 Fischer Sep 1973 A
3760802 Fischer Sep 1973 A
3779239 Muller Dec 1973 A
3805775 Fischer Apr 1974 A
3828790 Curtiss Aug 1974 A
3835859 Di Gioia Sep 1974 A
3886600 Kahn Jun 1975 A
3909853 Lennox Oct 1975 A
3917249 Constantine Nov 1975 A
3946445 Bentley Mar 1976 A
3970075 Sindelar Jul 1976 A
3986504 Avila Oct 1976 A
3992726 Freeman Nov 1976 A
4036107 Constantine Jul 1977 A
4091806 Aginsky May 1978 A
4101985 Baumann Jul 1978 A
4124026 Berner Nov 1978 A
4156296 Johnson May 1979 A
4180871 Hamas Jan 1980 A
4190044 Wood Feb 1980 A
4193139 Walker Mar 1980 A
4194250 Walker Mar 1980 A
4203444 Bonnell May 1980 A
4204531 Aginsky May 1980 A
4213208 Marne Jul 1980 A
4227518 Aginsky Oct 1980 A
4229840 Gristina Oct 1980 A
4231121 Lewis Nov 1980 A
4262665 Roalstad Apr 1981 A
4273128 Lary Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275717 Bolesky Jun 1981 A
4293962 Fuson Oct 1981 A
4313434 Segal Feb 1982 A
4349922 Agee Sep 1982 A
4352212 Greene Oct 1982 A
4430991 Darnell Feb 1984 A
4438762 Kyle Mar 1984 A
4453539 Raftopoulos Jun 1984 A
4473070 Matthews Sep 1984 A
4485816 Krumme Dec 1984 A
4502554 Jones Mar 1985 A
4519100 Wills May 1985 A
4522200 Stednitz Jun 1985 A
4530114 Tepic Jul 1985 A
4548199 Agee Oct 1985 A
4572186 Gould Feb 1986 A
4573448 Kambin Mar 1986 A
4585000 Hershenson Apr 1986 A
4590930 Kurth May 1986 A
4601290 Effron Jul 1986 A
4608965 Anspach, Jr. Sep 1986 A
4611594 Grayhack Sep 1986 A
4619122 Simpson Oct 1986 A
4627434 Murray Dec 1986 A
4634445 Helal Jan 1987 A
4643177 Sheppard Feb 1987 A
4644951 Bays Feb 1987 A
4646738 Trott Mar 1987 A
4655203 Pertti Apr 1987 A
4660557 Collis, Jr. Apr 1987 A
4662371 Whipple May 1987 A
4665906 Jervis May 1987 A
4669237 Constantine Jun 1987 A
4674488 Nashef Jun 1987 A
4705027 Klaue Nov 1987 A
4721103 Freedland Jan 1988 A
4730608 Schlein Mar 1988 A
4731087 Sculco Mar 1988 A
4733654 Marino Mar 1988 A
4751922 DiPietropolo Jun 1988 A
4772261 Von Hoff Sep 1988 A
4777942 Frey Oct 1988 A
4782833 Einhorn Nov 1988 A
4788970 Karas Dec 1988 A
4790302 Colwill Dec 1988 A
4809793 Hailey Mar 1989 A
4820305 Harms Apr 1989 A
4865604 Rogozinski Sep 1989 A
4875474 Border Oct 1989 A
4886062 Wiktor Dec 1989 A
4914818 Hall Apr 1990 A
4920959 Witzel May 1990 A
4921478 Solano May 1990 A
4941466 Romano Jul 1990 A
4946459 Bradshaw Aug 1990 A
4954126 Wallsten Sep 1990 A
4955916 Carignan Sep 1990 A
4969888 Scholten Nov 1990 A
4973257 Lhotak Nov 1990 A
4978349 Frigg Dec 1990 A
4998539 Delsanti Mar 1991 A
5002546 Romano Mar 1991 A
5015255 Kuslich May 1991 A
5030201 Palestrant Jul 1991 A
5035714 Willert Jul 1991 A
5047055 Bao Sep 1991 A
5053036 Perren Oct 1991 A
5057103 Davis Oct 1991 A
5059193 Kuslich Oct 1991 A
5059206 Winters Oct 1991 A
5062845 Kuslich Nov 1991 A
5066296 Chapman Nov 1991 A
5067957 Jervis Nov 1991 A
5071407 Termin Dec 1991 A
5084050 Draenert Jan 1992 A
5100423 Fearnot Mar 1992 A
5102413 Poddar Apr 1992 A
5108404 Scholten Apr 1992 A
5108435 Gustavson Apr 1992 A
5112333 Fixel May 1992 A
5113846 Hiltebrandt May 1992 A
5116335 Hannon May 1992 A
5122134 Borzone Jun 1992 A
5129906 Ross Jul 1992 A
5133767 Frey Jul 1992 A
5135527 Ender Aug 1992 A
5139497 Tilghman Aug 1992 A
5151103 Tepic Sep 1992 A
5169402 Elloy Dec 1992 A
5171284 Branemark Dec 1992 A
5174374 Hailey Dec 1992 A
5180382 Frigg Jan 1993 A
5190545 Corsi Mar 1993 A
5190546 Jervis Mar 1993 A
5190548 Davis Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197967 Wilson Mar 1993 A
5197971 Bonutti Mar 1993 A
5201741 Dulebohn Apr 1993 A
5203773 Green Apr 1993 A
5221261 Termin Jun 1993 A
5236431 Gogolewski Aug 1993 A
5242017 Hailey Sep 1993 A
5242461 Kortenbach Sep 1993 A
5250048 Gundolf Oct 1993 A
5263955 Baumgart Nov 1993 A
5269785 Bonutti Dec 1993 A
5275602 Shimizu Jan 1994 A
5275608 Forman Jan 1994 A
5281225 Vicenzi Jan 1994 A
5281226 Davydov Jan 1994 A
5286249 Thibodaux Feb 1994 A
5306310 Siebels Apr 1994 A
5307790 Byrne May 1994 A
5314486 Zang May 1994 A
5326205 Anspach, Jr. Jul 1994 A
5334184 Bimman Aug 1994 A
5358405 Imai Oct 1994 A
5370697 Baumgartner Dec 1994 A
5376097 Phillips Dec 1994 A
5376100 Lefebvre Dec 1994 A
5378239 Termin Jan 1995 A
5380328 Morgan Jan 1995 A
5397320 Essig Mar 1995 A
5401269 Karin Mar 1995 A
5415660 Campbell May 1995 A
5423823 Schmieding Jun 1995 A
5431671 Nallakrishnan Jul 1995 A
5437665 Munro Aug 1995 A
5437674 Worcel Aug 1995 A
5439464 Shapiro Aug 1995 A
5445639 Kuslich Aug 1995 A
5454365 Bonutti Oct 1995 A
5458599 Adobbati Oct 1995 A
5458648 Berman Oct 1995 A
5462547 Weigum Oct 1995 A
5467763 Mcmahon Nov 1995 A
D365634 Morgan Dec 1995 S
5474557 Mai Dec 1995 A
5480447 Skiba Jan 1996 A
5484439 Olson Jan 1996 A
5496277 Termin Mar 1996 A
5496330 Bates Mar 1996 A
5499981 Kordis Mar 1996 A
5501695 Anspach, Jr. Mar 1996 A
5505734 Caniggia Apr 1996 A
5509919 Young Apr 1996 A
5512037 Russell Apr 1996 A
5527316 Stone Jun 1996 A
5531792 Huene Jul 1996 A
5536267 Edwards Jul 1996 A
5540693 Fisher Jul 1996 A
5545162 Huebner Aug 1996 A
5549679 Kuslich Aug 1996 A
5554163 Shturman Sep 1996 A
5556408 Farhat Sep 1996 A
5571098 Domankevitz Nov 1996 A
5571189 Kuslich Nov 1996 A
5578035 Lin Nov 1996 A
5582577 Lund Dec 1996 A
5582618 Chin Dec 1996 A
5586983 Sanders Dec 1996 A
5586985 Putnam Dec 1996 A
5586990 Hahnen Dec 1996 A
5591169 Benoist Jan 1997 A
5591170 Spievack Jan 1997 A
5597378 Jervis Jan 1997 A
5601593 Freitag Feb 1997 A
5602935 Yoshida Feb 1997 A
5609635 Michelson Mar 1997 A
5620414 Campbell, Jr. Apr 1997 A
5620445 Brosnahan Apr 1997 A
5624440 Huebner Apr 1997 A
5624447 Myers Apr 1997 A
5626580 Brosnahan May 1997 A
5628747 Richelsoph May 1997 A
5645589 Li Jul 1997 A
5658280 Issa Aug 1997 A
5658283 Huebner Aug 1997 A
5660188 Groiso Aug 1997 A
5662649 Huebner Sep 1997 A
5667509 Westin Sep 1997 A
5674295 Ray Oct 1997 A
5676545 Jones Oct 1997 A
5676699 Gogolewski Oct 1997 A
5681310 Yuan Oct 1997 A
5683389 Orsak Nov 1997 A
5685826 Bonutti Nov 1997 A
5693011 Onik Dec 1997 A
5697981 Ison Dec 1997 A
5707374 Schmidt Jan 1998 A
5709697 Ratcliff Jan 1998 A
5713901 Tock Feb 1998 A
5718704 Medoff Feb 1998 A
5725541 Anspach, III Mar 1998 A
5728047 Edoga Mar 1998 A
5728098 Sherman Mar 1998 A
5730704 Avitall Mar 1998 A
5741266 Moran Apr 1998 A
5741282 Anspach, III Apr 1998 A
5758713 Daniel Jun 1998 A
5779703 Benoist Jul 1998 A
5792106 Mische Aug 1998 A
5810721 Mueller Sep 1998 A
5814044 Hooven Sep 1998 A
5817098 Albrektsson Oct 1998 A
5824095 Di Maio, Jr. Oct 1998 A
5827289 Reiley Oct 1998 A
5827312 Brown Oct 1998 A
D403069 Drewry Dec 1998 S
5853054 McGarian Dec 1998 A
5876399 Chia Mar 1999 A
5879352 Filoso Mar 1999 A
5879355 Ullmark Mar 1999 A
5885258 Sachdeva Mar 1999 A
5885282 Szabo Mar 1999 A
5888196 Bonutti Mar 1999 A
5891147 Moskovitz Apr 1999 A
5893850 Cachia Apr 1999 A
5897556 Drewry Apr 1999 A
5908423 Kashuba Jun 1999 A
5915036 Grunkin Jun 1999 A
5919195 Wilson Jul 1999 A
5925039 Landingham Jul 1999 A
5928239 Mirza Jul 1999 A
5935127 Border Aug 1999 A
5938699 Campbell Aug 1999 A
5941878 Medoff Aug 1999 A
5951467 Picha Sep 1999 A
5951556 Faccioli Sep 1999 A
5957884 Hooven Sep 1999 A
5964698 Fowler Oct 1999 A
5976134 Huebner Nov 1999 A
5980525 Bryant Nov 1999 A
5984932 Yoon Nov 1999 A
5984937 Morse Nov 1999 A
5997538 Asnis Dec 1999 A
6001099 Huebner Dec 1999 A
6015406 Goble Jan 2000 A
6019762 Cole Feb 2000 A
6019947 Kucherov Feb 2000 A
6022376 Assell Feb 2000 A
6030406 Davis Feb 2000 A
6033412 Losken Mar 2000 A
6045564 Walen Apr 2000 A
6048309 Flom Apr 2000 A
6053922 Krause Apr 2000 A
6056750 Lob May 2000 A
6068642 Johnson May 2000 A
6068648 Cole May 2000 A
6074392 Durham Jun 2000 A
6093162 Fairleigh Jul 2000 A
6096040 Esser Aug 2000 A
6113603 Medoff Sep 2000 A
6120472 Singer, Jr. Sep 2000 A
6120504 Brumback Sep 2000 A
6123704 Hajianpour Sep 2000 A
6126662 Carmichael Oct 2000 A
6127597 Beyar Oct 2000 A
6129762 Li Oct 2000 A
6142935 Flom Nov 2000 A
6143012 Gausepohl Nov 2000 A
6149651 Drewry Nov 2000 A
6149689 Grundei Nov 2000 A
6156069 Amstutz Dec 2000 A
6162223 Orsak Dec 2000 A
6162224 Huebner Dec 2000 A
6171309 Huebner Jan 2001 B1
6174312 Laminger Jan 2001 B1
6190414 Young Feb 2001 B1
6197027 Hajianpour Mar 2001 B1
6200330 Benderev Mar 2001 B1
6216573 Moutafis Apr 2001 B1
6221074 Cole Apr 2001 B1
6221102 Baker Apr 2001 B1
6224600 Protogirou May 2001 B1
6224604 Suddaby May 2001 B1
6231576 Frigg May 2001 B1
6235043 Reiley May 2001 B1
6238417 Cole May 2001 B1
6241734 Scribner Jun 2001 B1
6248110 Reiley Jun 2001 B1
6258096 Seki Jul 2001 B1
6261289 Levy Jul 2001 B1
6280474 Cassidy Aug 2001 B1
6296639 Truckai Oct 2001 B1
6299642 Chan Oct 2001 B1
6302915 Cooney, III Oct 2001 B1
6306141 Jervis Oct 2001 B1
6312467 Mcgee Nov 2001 B1
6319255 Grundei Nov 2001 B1
6322591 Ahrens Nov 2001 B1
6331166 Burbank Dec 2001 B1
6332885 Martella Dec 2001 B1
6332886 Green Dec 2001 B1
6337142 Harder Jan 2002 B2
6348053 Cachia Feb 2002 B1
6364909 Mcgee Apr 2002 B1
6365555 Moser Apr 2002 B1
6375666 Mische Apr 2002 B1
6375682 Fleischmann Apr 2002 B1
6383188 Kuslich May 2002 B2
6402753 Cole Jun 2002 B1
6411729 Grunkin Jun 2002 B1
6416517 Harder Jul 2002 B2
6423070 Zeppelin Jul 2002 B1
6440138 Reiley Aug 2002 B1
6447514 Stalcup Sep 2002 B1
6447515 Meldrum Sep 2002 B1
6447518 Krause Sep 2002 B1
6454810 Lob Sep 2002 B1
6468207 Fowler, Jr. Oct 2002 B1
6475789 Cech Nov 2002 B1
6488685 Manderson Dec 2002 B1
6491694 Orsak Dec 2002 B1
6511481 Von Hoffmann Jan 2003 B2
6517541 Sesic Feb 2003 B1
6527775 Warburton Mar 2003 B1
6533788 Orbay Mar 2003 B1
6540770 Tornier Apr 2003 B1
6544267 Cole Apr 2003 B1
6551321 Burkinshaw Apr 2003 B1
6554833 Levy Apr 2003 B2
6575878 Choy Jun 2003 B1
6575973 Shekalim Jun 2003 B1
6575978 Peterson Jun 2003 B2
6582467 Teitelbaum Jun 2003 B1
6585736 Hajianpour Jul 2003 B2
6585770 White Jul 2003 B1
6610839 Morin Aug 2003 B1
6613052 Kinnett Sep 2003 B1
6613054 Scribner Sep 2003 B2
6617110 Cech Sep 2003 B1
6632224 Cachia Oct 2003 B2
6641616 Grundei Nov 2003 B1
6645210 Manderson Nov 2003 B2
6648890 Culbert Nov 2003 B2
6652585 Lange Nov 2003 B2
6656187 Camino Dec 2003 B1
6656219 Wiktor Dec 2003 B1
6660009 Azar Dec 2003 B1
6660041 Grundei Dec 2003 B1
6676665 Foley Jan 2004 B2
6679886 Weikel Jan 2004 B2
6682565 Krishnan Jan 2004 B1
6685706 Padget Feb 2004 B2
6689138 Andre Feb 2004 B2
6692496 Wardlaw Feb 2004 B1
6701174 Krause Mar 2004 B1
6709433 Schoenefeld Mar 2004 B1
6711432 Krause Mar 2004 B1
6712073 Manderson Mar 2004 B2
6712858 Grundei Mar 2004 B1
6719761 Reiley Apr 2004 B1
6719793 Mcgee Apr 2004 B2
6740090 Cragg May 2004 B1
6746451 Middleton Jun 2004 B2
6749611 Venturini Jun 2004 B2
6755831 Putnam Jun 2004 B2
6755862 Keynan Jun 2004 B2
6761722 Cole Jul 2004 B2
6767350 Lob Jul 2004 B1
6775401 Hwang Aug 2004 B2
6780185 Frei Aug 2004 B2
6783530 Levy Aug 2004 B1
6783532 Steiner Aug 2004 B2
6783533 Green Aug 2004 B2
6793655 Orsak Sep 2004 B2
6793659 Putnam Sep 2004 B2
6811568 Minamikawa Nov 2004 B2
6827723 Carson Dec 2004 B2
6827743 Eisermann Dec 2004 B2
6849051 Sramek Feb 2005 B2
6852128 Lange Feb 2005 B2
6866665 Orbay Mar 2005 B2
6887243 Culbert May 2005 B2
6890333 Von Hoffmann May 2005 B2
6893444 Orbay May 2005 B2
6908465 Von Hoffmann Jun 2005 B2
6911046 Schulter Jun 2005 B2
6913605 Fletcher Jul 2005 B2
6923813 Phillips Aug 2005 B2
6923817 Carson Aug 2005 B2
6923828 Wiktor Aug 2005 B1
6926720 Castaneda Aug 2005 B2
6932086 Hajianpour Aug 2005 B1
6942666 Overaker Sep 2005 B2
6942668 Padget Sep 2005 B2
6949101 Mccleary Sep 2005 B2
6951561 Warren Oct 2005 B2
6953313 Tylosky Oct 2005 B2
6975894 Wehrli Dec 2005 B2
6981975 Michelson Jan 2006 B2
6984248 Hyde, Jr. Jan 2006 B2
6986771 Paul Jan 2006 B2
6989011 Paul Jan 2006 B2
6991656 Mears Jan 2006 B2
7008425 Phillips Mar 2006 B2
7008428 Cachia Mar 2006 B2
7008430 Dong Mar 2006 B2
7011662 Lechot Mar 2006 B2
7018332 Masson Mar 2006 B1
7018380 Cole Mar 2006 B2
7022069 Masson Apr 2006 B1
7025789 Chow Apr 2006 B2
7041104 Cole May 2006 B1
7041138 Lange May 2006 B2
7048542 Von Arx May 2006 B2
7052498 Levy May 2006 B2
7063701 Michelson Jun 2006 B2
7070601 Culbert Jul 2006 B2
7090676 Huebner Aug 2006 B2
7097646 Schantz Aug 2006 B2
7097648 Globerman Aug 2006 B1
7122033 Wood Oct 2006 B2
7122043 Greenhalgh Oct 2006 B2
7122052 Greenhalgh Oct 2006 B2
7131995 Biedermann Nov 2006 B2
7137987 Patterson Nov 2006 B2
7141054 Vandewalle Nov 2006 B2
7141067 Jones Nov 2006 B2
7147640 Huebner Dec 2006 B2
7153307 Scribner Dec 2006 B2
7153309 Huebner Dec 2006 B2
7160302 Warburton Jan 2007 B2
7160331 Cooney, III Jan 2007 B2
7172595 Goble Feb 2007 B1
7175625 Culbert Feb 2007 B2
7179024 Greenhalgh Feb 2007 B2
7189237 Huebner Mar 2007 B2
7189240 Dekel Mar 2007 B1
7195589 Masson Mar 2007 B1
7195633 Medoff Mar 2007 B2
7214227 Colleran May 2007 B2
7220282 Kuslich May 2007 B2
7229441 Trieu Jun 2007 B2
7235079 Jensen Jun 2007 B2
7237556 Smothers Jul 2007 B2
7255712 Steinberg Aug 2007 B1
7258692 Thelen Aug 2007 B2
7264622 Michelson Sep 2007 B2
7267678 Medoff Sep 2007 B2
7282053 Orbay Oct 2007 B2
7294130 Orbay Nov 2007 B2
7300449 Mische Nov 2007 B2
7306603 Boehm, Jr. Dec 2007 B2
7306683 Cheung Dec 2007 B2
7311711 Cole Dec 2007 B2
D560128 Diederich Jan 2008 S
7322938 Burbank Jan 2008 B2
7326249 Lange Feb 2008 B2
7329228 Burbank Feb 2008 B2
7341601 Eisermann Mar 2008 B2
7344539 Serhan Mar 2008 B2
7354453 McAfee Apr 2008 B2
7422360 Kozyuk Sep 2008 B2
7465318 Sennett Dec 2008 B2
7476226 Weikel Jan 2009 B2
7481815 Fernandez Jan 2009 B2
7485119 Thelen Feb 2009 B2
7488320 Middleton Feb 2009 B2
7488329 Thelen Feb 2009 B2
D589147 Colleran Mar 2009 S
7500977 Assell Mar 2009 B2
7507241 Levy Mar 2009 B2
7520879 Justis Apr 2009 B2
7527632 Houghton May 2009 B2
7547324 Cragg Jun 2009 B2
7563263 Orbay Jul 2009 B2
7569061 Colleran Aug 2009 B2
7578824 Justin Aug 2009 B2
7588575 Colleran Sep 2009 B2
7588577 Fencl Sep 2009 B2
7588588 Spitler Sep 2009 B2
7601152 Levy Oct 2009 B2
7611515 Wolford Nov 2009 B2
7621950 Globerman Nov 2009 B1
7632277 Woll Dec 2009 B2
7632310 Clifford Dec 2009 B2
7666226 Schaller Feb 2010 B2
7670339 Levy Mar 2010 B2
7670374 Schaller Mar 2010 B2
7670375 Schaller Mar 2010 B2
7682364 Reiley Mar 2010 B2
7695471 Cheung Apr 2010 B2
7695502 Orbay Apr 2010 B2
7704251 Huebner Apr 2010 B2
7708742 Scribner May 2010 B2
7713271 Warburton May 2010 B2
7717472 Johnson May 2010 B2
7722612 Sala May 2010 B2
7722626 Middleman May 2010 B2
7727264 Orbay Jun 2010 B2
7731720 Sand Jun 2010 B2
7749232 Salerni Jul 2010 B2
7758500 Boyd Jul 2010 B2
7785368 Schaller Aug 2010 B2
7806929 Brown Oct 2010 B2
7811291 Liu Oct 2010 B2
7828802 Levy Nov 2010 B2
7837612 Gill Nov 2010 B2
7842041 Liu Nov 2010 B2
7846162 Nelson Dec 2010 B2
7879038 Reiley Feb 2011 B2
7879103 Gertzman Feb 2011 B2
7905909 Orbay Mar 2011 B2
7909825 Saravia Mar 2011 B2
7909827 Reiley Mar 2011 B2
7909873 Tan-Malecki Mar 2011 B2
7914533 Nelson Mar 2011 B2
7931689 Hochschuler Apr 2011 B2
7942875 Nelson May 2011 B2
7959634 Sennett Jun 2011 B2
7959638 Osorio Jun 2011 B2
7959683 Semler Jun 2011 B2
7967827 Osorio Jun 2011 B2
7967865 Schaller Jun 2011 B2
7972340 Sand Jul 2011 B2
7988735 Yurek Aug 2011 B2
8007498 Mische Aug 2011 B2
RE42757 Kuslich Sep 2011 E
8012210 Lin Sep 2011 B2
8021365 Phan Sep 2011 B2
8021366 Phan Sep 2011 B2
8043334 Fisher Oct 2011 B2
8057544 Schaller Nov 2011 B2
8092536 Ahrens Jan 2012 B2
8105236 Malandain Jan 2012 B2
8109933 Truckai Feb 2012 B2
8114084 Betts Feb 2012 B2
8118952 Gall Feb 2012 B2
8128627 Justin Mar 2012 B2
8152737 Burbank Apr 2012 B2
8157804 Betts Apr 2012 B2
8177812 Sankaran May 2012 B2
8226719 Melsheimer Jul 2012 B2
8241335 Truckai Aug 2012 B2
8287538 Brenzel Oct 2012 B2
8287539 Nelson Oct 2012 B2
8287541 Nelson Oct 2012 B2
8317791 Phan Nov 2012 B2
8353911 Goldin Jan 2013 B2
8366717 Jordan Feb 2013 B1
8366773 Schaller Feb 2013 B2
8409211 Baroud Apr 2013 B2
8430879 Stoneburner Apr 2013 B2
8439917 Saravia May 2013 B2
8485798 Sheth Jul 2013 B2
8491591 Sebastian Jul 2013 B2
8496394 Schneider Jul 2013 B2
8496657 Bonutti Jul 2013 B2
8496658 Stoneburner Jul 2013 B2
8512398 Alkhatib Aug 2013 B2
8568413 Mazur Oct 2013 B2
8579537 Vanlandingham Nov 2013 B2
8597276 Vongphakdy Dec 2013 B2
8906022 Krinke Dec 2014 B2
8961518 Taylor Feb 2015 B2
9155574 Saravia Oct 2015 B2
9216023 Schaller Dec 2015 B2
9247970 Teisen Feb 2016 B2
9498370 Taylor Nov 2016 B2
9517093 Brenzel Dec 2016 B2
9636226 Hunt May 2017 B2
9730739 Taylor Aug 2017 B2
9770339 Greenhalgh Sep 2017 B2
9788870 Brenzel Oct 2017 B2
9848889 Taylor Dec 2017 B2
9968478 Taylor May 2018 B2
9987137 Hunt Jun 2018 B2
9993277 Krinke Jun 2018 B2
9999516 Hunt Jun 2018 B2
20010000186 Bramlet Apr 2001 A1
20010018588 Harder Aug 2001 A1
20010034526 Kuslich Oct 2001 A1
20010053912 Frigg Dec 2001 A1
20020013600 Scribner Jan 2002 A1
20020015517 Hwang Feb 2002 A1
20020029081 Scarborough Mar 2002 A1
20020032444 Mische Mar 2002 A1
20020055742 Lieberman May 2002 A1
20020055785 Harris May 2002 A1
20020065530 Mische May 2002 A1
20020068974 Kuslich Jun 2002 A1
20020111629 Phillips Aug 2002 A1
20020111690 Hyde Aug 2002 A1
20020120269 Lange Aug 2002 A1
20020120270 Trieu Aug 2002 A1
20020123750 Eisermann Sep 2002 A1
20020133153 Hyde Sep 2002 A1
20020133156 Cole Sep 2002 A1
20020133172 Lambrecht Sep 2002 A1
20020133175 Carson Sep 2002 A1
20020138149 Hyde Sep 2002 A1
20020143329 Serhan Oct 2002 A1
20020143333 Von Hoffmann Oct 2002 A1
20020143334 Hoffmann Oct 2002 A1
20020143335 Von Hoffmann Oct 2002 A1
20020147451 Mcgee Oct 2002 A1
20020147455 Carson Oct 2002 A1
20020165461 Hayzelden Nov 2002 A1
20020171208 Lechot Nov 2002 A1
20020173813 Peterson Nov 2002 A1
20020183758 Middleton Dec 2002 A1
20020191823 Wehrli Dec 2002 A1
20030040805 Minamikawa Feb 2003 A1
20030055373 Sramek Mar 2003 A1
20030055425 Hajianpour Mar 2003 A1
20030069582 Culbert Apr 2003 A1
20030069645 Ball Apr 2003 A1
20030074075 Thomas Apr 2003 A1
20030083660 Orbay May 2003 A1
20030083662 Middleton May 2003 A1
20030093076 Venturini May 2003 A1
20030097132 Padget May 2003 A1
20030097133 Green May 2003 A1
20030105461 Putnam Jun 2003 A1
20030109932 Keynan Jun 2003 A1
20030120273 Cole Jun 2003 A1
20030130660 Levy Jul 2003 A1
20030153918 Putnam Aug 2003 A1
20030187449 Mccleary Oct 2003 A1
20030216738 Azar Nov 2003 A1
20030220641 Thelen Nov 2003 A1
20030220644 Thelen Nov 2003 A1
20030220646 Thelen Nov 2003 A1
20030220698 Mears Nov 2003 A1
20030225407 Mark Dec 2003 A1
20030233096 Osorio Dec 2003 A1
20040024410 Olson Feb 2004 A1
20040039384 Boehm Feb 2004 A1
20040044413 Schulter Mar 2004 A1
20040049192 Shimizu Mar 2004 A1
20040078082 Lange Apr 2004 A1
20040087956 Weikel May 2004 A1
20040092946 Bagga May 2004 A1
20040102774 Trieu May 2004 A1
20040102777 Huebner May 2004 A1
20040102778 Huebner May 2004 A1
20040102788 Huebner May 2004 A1
20040106925 Culbert Jun 2004 A1
20040138665 Padget Jul 2004 A1
20040143264 Mcafee Jul 2004 A1
20040153080 Dong Aug 2004 A1
20040153114 Reiley Aug 2004 A1
20040153115 Reiley Aug 2004 A1
20040167528 Schantz Aug 2004 A1
20040167561 Boucher Aug 2004 A1
20040167625 Beyar Aug 2004 A1
20040181221 Huebner Sep 2004 A1
20040193163 Orbay Sep 2004 A1
20040193164 Orbay Sep 2004 A1
20040193165 Orbay Sep 2004 A1
20040193251 Rudnick Sep 2004 A1
20040193267 Jones Sep 2004 A1
20040208717 Greenhalgh Oct 2004 A1
20040214311 Levy Oct 2004 A1
20040220678 Chow Nov 2004 A1
20040230193 Cheung Nov 2004 A1
20040236327 Paul Nov 2004 A1
20040236328 Paul Nov 2004 A1
20040236339 Pepper Nov 2004 A1
20040249375 Agee Dec 2004 A1
20040260289 Padget Dec 2004 A1
20040260297 Padget Dec 2004 A1
20040267269 Middleton Dec 2004 A1
20050010231 Myers Jan 2005 A1
20050015129 Mische Jan 2005 A1
20050015154 Lindsey Jan 2005 A1
20050033366 Cole Feb 2005 A1
20050043733 Eisermann Feb 2005 A1
20050049708 Atkinson Mar 2005 A1
20050049710 O'Driscoll Mar 2005 A1
20050065522 Orbay Mar 2005 A1
20050065523 Orbay Mar 2005 A1
20050065524 Orbay Mar 2005 A1
20050065526 Drew Mar 2005 A1
20050070902 Medoff Mar 2005 A1
20050085813 Spitler Apr 2005 A1
20050085818 Huebner Apr 2005 A1
20050085824 Castaneda Apr 2005 A1
20050085921 Gupta Apr 2005 A1
20050113836 Lozier May 2005 A1
20050113892 Sproul May 2005 A1
20050113929 Cragg May 2005 A1
20050119749 Lange Jun 2005 A1
20050124972 Mische Jun 2005 A1
20050125066 McAfee Jun 2005 A1
20050131407 Sicvol Jun 2005 A1
20050142163 Hunter Jun 2005 A1
20050143734 Cachia Jun 2005 A1
20050143827 Globerman Jun 2005 A1
20050154331 Christie Jul 2005 A1
20050159749 Levy Jul 2005 A1
20050177172 Acker Aug 2005 A1
20050182399 Levine Aug 2005 A1
20050187627 Ralph Aug 2005 A1
20050192578 Horst Sep 2005 A1
20050197537 Bonadio Sep 2005 A1
20050209557 Carroll Sep 2005 A1
20050216000 Colleran Sep 2005 A1
20050216007 Woll Sep 2005 A1
20050216008 Zwirnmann Sep 2005 A1
20050228391 Levy Oct 2005 A1
20050234472 Huebner Oct 2005 A1
20050234498 Gronemeyer Oct 2005 A1
20050240188 Chow Oct 2005 A1
20050240190 Gall Oct 2005 A1
20050240193 Layne Oct 2005 A1
20050245928 Colleran Nov 2005 A1
20050251142 Hoffmann Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050267483 Middleton Dec 2005 A1
20050273138 To Dec 2005 A1
20050277936 Siravo Dec 2005 A1
20050277978 Greenhalgh Dec 2005 A1
20050283154 Orbay Dec 2005 A1
20050283159 Amara Dec 2005 A1
20050288676 Schnieders Dec 2005 A1
20050288795 Bagga Dec 2005 A1
20060002980 Ringeisen Jan 2006 A1
20060004362 Patterson Jan 2006 A1
20060004455 Leonard Jan 2006 A1
20060004462 Gupta Jan 2006 A1
20060009771 Orbay Jan 2006 A1
20060015123 Fencl Jan 2006 A1
20060036240 Colleran Feb 2006 A1
20060036244 Spitler Feb 2006 A1
20060047787 Agarwal Mar 2006 A1
20060052788 Thelen Mar 2006 A1
20060058621 Wehrli Mar 2006 A1
20060058826 Evans Mar 2006 A1
20060064005 Triano Mar 2006 A1
20060064106 Fernandez Mar 2006 A1
20060064164 Thelen Mar 2006 A1
20060064173 Guederian Mar 2006 A1
20060069392 Renzi Brivio Mar 2006 A1
20060079894 Colleran Apr 2006 A1
20060079905 Beyar Apr 2006 A1
20060085009 Truckai Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089647 Culbert Apr 2006 A1
20060089648 Masini Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 Mcluen May 2006 A1
20060100623 Pennig May 2006 A1
20060100631 Sullivan May 2006 A1
20060100706 Shadduck May 2006 A1
20060106390 Jensen May 2006 A1
20060106394 Colleran May 2006 A1
20060116773 Cooney Jun 2006 A1
20060122600 Cole Jun 2006 A1
20060122610 Culbert Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060142760 McDonnell Jun 2006 A1
20060142858 Colleran Jun 2006 A1
20060149281 Reiley Jul 2006 A1
20060149379 Kuslich Jul 2006 A1
20060155289 Windhager Jul 2006 A1
20060173454 Spitler Aug 2006 A1
20060178737 Furcht Aug 2006 A1
20060184192 Markworth Aug 2006 A1
20060187748 Kozyuk Aug 2006 A1
20060189994 Wolford Aug 2006 A1
20060195103 Padget Aug 2006 A1
20060200061 Warkentine Sep 2006 A1
20060200140 Lange Sep 2006 A1
20060200143 Warburton Sep 2006 A1
20060217726 Maxy Sep 2006 A1
20060217730 Termanini Sep 2006 A1
20060229602 Olsen Oct 2006 A1
20060235264 Vassallo Oct 2006 A1
20060241629 Krebs Oct 2006 A1
20060241630 Brunnett Oct 2006 A1
20060241671 Greenhalgh Oct 2006 A1
20060241776 Brown Oct 2006 A1
20060247637 Colleran Nov 2006 A1
20060264944 Cole Nov 2006 A1
20060264945 Edidin Nov 2006 A1
20060264950 Nelson Nov 2006 A1
20060264951 Nelson Nov 2006 A1
20060264952 Nelson Nov 2006 A1
20060271049 Zucherman Nov 2006 A1
20060271053 Schlapfer Nov 2006 A1
20060271061 Beyar Nov 2006 A1
20060271198 McAfee Nov 2006 A1
20060276797 Botimer Dec 2006 A1
20070012491 Vasta Jan 2007 A1
20070016188 Boehm, Jr. Jan 2007 A1
20070016198 Boehm, Jr. Jan 2007 A1
20070016199 Boehm, Jr. Jan 2007 A1
20070016211 Botimer Jan 2007 A1
20070016283 Greenhalgh Jan 2007 A1
20070016300 Kuslich Jan 2007 A1
20070027230 Beyar Feb 2007 A1
20070032567 Beyar Feb 2007 A1
20070032790 Aschmann Feb 2007 A1
20070043373 Sala Feb 2007 A1
20070049936 Colleran Mar 2007 A1
20070055379 Stone Mar 2007 A1
20070060941 Reiley Mar 2007 A1
20070066480 Moser Mar 2007 A1
20070073342 Stone Mar 2007 A1
20070073401 Pointillart Mar 2007 A1
20070093899 Dutoit Apr 2007 A1
20070100285 Griffin May 2007 A1
20070112427 Christy May 2007 A1
20070118132 Culbert May 2007 A1
20070123876 Czartoski May 2007 A1
20070123877 Goldin May 2007 A1
20070123886 Meyer May 2007 A1
20070123936 Goldin May 2007 A1
20070123995 Thelen May 2007 A1
20070129746 Mische Jun 2007 A1
20070142919 Cooney Jun 2007 A1
20070173745 Diederich Jul 2007 A1
20070173835 Medoff Jul 2007 A1
20070173838 Li Jul 2007 A1
20070173839 Running Jul 2007 A1
20070173843 Matityahu Jul 2007 A1
20070173939 Kim Jul 2007 A1
20070179505 Culbert Aug 2007 A1
20070198043 Cox Aug 2007 A1
20070213727 Bottlang Sep 2007 A1
20070219634 Greenhalgh Sep 2007 A1
20070225568 Colleran Sep 2007 A1
20070225721 Thelen Sep 2007 A1
20070225726 Dye Sep 2007 A1
20070225810 Colleran Sep 2007 A1
20070233076 Trieu Oct 2007 A1
20070233091 Naifeh Oct 2007 A1
20070233105 Nelson Oct 2007 A1
20070244485 Greenhalgh Oct 2007 A1
20070255287 Rabiner Nov 2007 A1
20070270855 Partin Nov 2007 A1
20070276392 Beyar Nov 2007 A1
20070276405 Huebner Nov 2007 A1
20070282443 Globerman Dec 2007 A1
20070283849 Edidin Dec 2007 A1
20070288097 Hurowitz Dec 2007 A1
20080009868 Gotfried Jan 2008 A1
20080009874 Meridew Jan 2008 A1
20080009875 Sankaran Jan 2008 A1
20080009877 Sankaran Jan 2008 A1
20080012317 Johnson Jan 2008 A1
20080015601 Castro Jan 2008 A1
20080019970 Gorman Jan 2008 A1
20080021474 Bonutti Jan 2008 A1
20080039854 Rabiner Feb 2008 A1
20080041629 Aronstam Feb 2008 A1
20080053575 Cheung Mar 2008 A1
20080058804 Lechot Mar 2008 A1
20080058934 Malandain Mar 2008 A1
20080065072 Spitler Mar 2008 A1
20080065073 Perriello Mar 2008 A1
20080065074 Yeung Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080071356 Greenhalgh Mar 2008 A1
20080077117 Miller Mar 2008 A1
20080077172 Miller Mar 2008 A1
20080077174 Mische Mar 2008 A1
20080086133 Kuslich Apr 2008 A1
20080097332 Greenhalgh Apr 2008 A1
20080103501 Ralph May 2008 A1
20080103519 Bonutti May 2008 A1
20080108996 Padget May 2008 A1
20080114364 Goldin May 2008 A1
20080119886 Greenhalgh May 2008 A1
20080125784 Rabiner May 2008 A1
20080125805 Mische May 2008 A1
20080132896 Bowen Jun 2008 A1
20080133017 Beyar Jun 2008 A1
20080140078 Nelson Jun 2008 A1
20080140130 Chan Jun 2008 A1
20080149115 Hauck Jun 2008 A1
20080161805 Saravia Jul 2008 A1
20080161825 Greenhalgh Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080177261 McMinn Jul 2008 A1
20080183171 Elghazaly Jul 2008 A1
20080183211 Lamborne Jul 2008 A1
20080194868 Kozyuk Aug 2008 A1
20080195104 Sidebotham Aug 2008 A1
20080195105 Sidebotham Aug 2008 A1
20080200915 Globerman Aug 2008 A1
20080200951 McAfee Aug 2008 A1
20080208202 Williams Aug 2008 A1
20080208230 Chin Aug 2008 A1
20080208261 Medoff Aug 2008 A1
20080208320 Tan-Malecki Aug 2008 A1
20080212405 Globerman Sep 2008 A1
20080221685 Altarac Sep 2008 A9
20080228192 Beyar Sep 2008 A1
20080249436 Darr Oct 2008 A1
20080255560 Myers Oct 2008 A1
20080262495 Coati Oct 2008 A1
20080269742 Levy Oct 2008 A1
20080269745 Justin Oct 2008 A1
20080269746 Justin Oct 2008 A1
20080269747 Justin Oct 2008 A1
20080269748 Justin Oct 2008 A1
20080269749 Shalaby Oct 2008 A1
20080269750 Justin Oct 2008 A1
20080269776 Justin Oct 2008 A1
20080275448 Sackett Nov 2008 A1
20080275449 Sackett Nov 2008 A1
20080287950 Frigg Nov 2008 A1
20080287951 Stoneburner Nov 2008 A1
20080288003 Mckinley Nov 2008 A1
20080294163 Chou Nov 2008 A1
20080294166 Goldin Nov 2008 A1
20080294167 Schumacher Nov 2008 A1
20080294169 Scott Nov 2008 A1
20080294205 Greenhalgh Nov 2008 A1
20080319444 Osorio Dec 2008 A9
20090005782 Chirico Jan 2009 A1
20090012522 Lob Jan 2009 A1
20090012564 Chirico Jan 2009 A1
20090018542 Saravia Jan 2009 A1
20090018656 Clifford Jan 2009 A1
20090018666 Grundei Jan 2009 A1
20090024204 Greenhalgh Jan 2009 A1
20090030468 Sennett Jan 2009 A1
20090048620 Weiss Feb 2009 A1
20090048629 Rabiner Feb 2009 A1
20090048672 Essenmacher Feb 2009 A1
20090054900 Rabiner Feb 2009 A1
20090069851 Gillard Mar 2009 A1
20090076517 Reiley Mar 2009 A1
20090088752 Metzinger Apr 2009 A1
20090088806 Leyden Apr 2009 A1
20090104586 Cardoso Apr 2009 A1
20090112196 Rabiner Apr 2009 A1
20090112330 Grundei Apr 2009 A1
20090125028 Teisen May 2009 A1
20090131952 Schumacher May 2009 A1
20090131990 Tipirneni May 2009 A1
20090131992 Greenhalgh May 2009 A1
20090138015 Conner May 2009 A1
20090143781 Mische Jun 2009 A1
20090143827 Levy Jun 2009 A1
20090149890 Martin Jun 2009 A1
20090149956 Greenhalgh Jun 2009 A1
20090157080 Warburton Jun 2009 A1
20090163918 Levy Jun 2009 A1
20090177206 Lozier Jul 2009 A1
20090177239 Castro Jul 2009 A1
20090177241 Bleich Jul 2009 A1
20090204216 Biedermann Aug 2009 A1
20090216232 Buford, III Aug 2009 A1
20090228007 Justin Sep 2009 A1
20090228008 Justin Sep 2009 A1
20090275995 Truckai Nov 2009 A1
20090281628 Oglaza Nov 2009 A1
20090292323 Chirico Nov 2009 A1
20090318926 Christie Dec 2009 A1
20090318981 Kang Dec 2009 A1
20100023010 Nelson Jan 2010 A1
20100082066 Biyani Apr 2010 A1
20100087821 Trip Apr 2010 A1
20100094292 Parrott Apr 2010 A1
20100094347 Nelson Apr 2010 A1
20100100184 Krueger Apr 2010 A1
20100114110 Taft May 2010 A1
20100114181 Lob May 2010 A1
20100131019 Lob May 2010 A1
20100137862 Diao Jun 2010 A1
20100137863 Munro Jun 2010 A1
20100145397 Overes Jun 2010 A1
20100161061 Hunt Jun 2010 A1
20100217325 Hochschuler Aug 2010 A1
20100222884 Greenhalgh Sep 2010 A1
20100241120 Bledsoe Sep 2010 A1
20100241123 Middleton Sep 2010 A1
20100241176 Lob Sep 2010 A1
20100249785 Betts Sep 2010 A1
20100256638 Tyber Oct 2010 A1
20100286481 Sharp Nov 2010 A1
20100286692 Greenhalgh Nov 2010 A1
20110004308 Marino Jan 2011 A1
20110077650 Braun Mar 2011 A1
20110077651 Lozier Mar 2011 A1
20110087227 Mazur Apr 2011 A1
20110118740 Rabiner May 2011 A1
20110137313 Jensen Jun 2011 A1
20110144645 Saravia Jun 2011 A1
20110178520 Taylor Jul 2011 A1
20110190832 Taylor Aug 2011 A1
20110218585 Krinke Sep 2011 A1
20110218626 Krinke Sep 2011 A1
20110282346 Pham Nov 2011 A1
20110295255 Roberts Dec 2011 A1
20110306975 Kaikkonen Dec 2011 A1
20110307021 Anderson Dec 2011 A1
20110307072 Anderson Dec 2011 A1
20110313537 Anderson Dec 2011 A1
20120029633 Anderson Feb 2012 A1
20120065638 Moore Mar 2012 A1
20120152872 Didehvar Jun 2012 A1
20120179161 Rains Jul 2012 A1
20120209273 Zaretzka Aug 2012 A1
20120226362 Mische Sep 2012 A1
20120232533 Veldman Sep 2012 A1
20120239038 Saravia Sep 2012 A1
20120253410 Taylor Oct 2012 A1
20120316648 Lambrecht Dec 2012 A1
20130006245 Stoneburner Jan 2013 A1
20130012942 Nelson Jan 2013 A1
20130116693 Nelson May 2013 A1
20130165935 Griffiths Jun 2013 A1
20130204390 Podolsky Aug 2013 A1
20130231665 Saravia Sep 2013 A1
20130231746 Ginn Sep 2013 A1
20130267953 Brenzel Oct 2013 A1
20140031823 Mazur Jan 2014 A1
20140058390 Taylor Feb 2014 A1
20140074093 Nelson Mar 2014 A9
20140114368 Lin Apr 2014 A1
20140214045 Felder Jul 2014 A1
20140277139 Vrionis Sep 2014 A1
20140277570 Behnam Sep 2014 A1
20140288656 Kuslich Sep 2014 A1
20150012096 Krinke Jan 2015 A1
20150141996 Taylor May 2015 A1
20150164514 Wlodarski Jun 2015 A1
20150196358 Goshayeshgar Jul 2015 A1
20160030099 Greenhalgh Feb 2016 A1
20160128703 Wlodarski May 2016 A1
20160128836 Rabiner May 2016 A1
20170303977 Brenzel Oct 2017 A1
20170319344 Hunt Nov 2017 A1
20170319353 Greenhalgh Nov 2017 A1
20170325857 Taylor Nov 2017 A1
20170333102 Peterson Nov 2017 A1
20170360570 Berndt Dec 2017 A1
20180064540 Hunt Mar 2018 A1
20180085230 Hunt Mar 2018 A1
20180193153 Brenzel Jul 2018 A1
20180199972 Krinke Jul 2018 A1
20190021746 Wlodarski Jan 2019 A1
Foreign Referenced Citations (413)
Number Date Country
2008232900 Oct 2008 AU
2007210 Nov 1990 CA
2452508 Jan 2003 CA
2609175 Dec 2005 CA
2608693 Nov 2006 CA
2669737 May 2008 CA
2670263 May 2008 CA
2670438 May 2008 CA
2678911 Sep 2008 CA
2685046 Nov 2008 CA
2727453 Dec 2009 CA
2738478 Apr 2010 CA
2537171 Dec 2010 CA
2326199 Jun 1999 CN
1530079 Sep 2004 CN
1533260 Sep 2004 CN
2699849 May 2005 CN
1909848 Feb 2007 CN
100379388 Apr 2008 CN
101208053 Jun 2008 CN
101404946 Apr 2009 CN
101636119 Jan 2010 CN
923085 Feb 1955 DE
3146065 May 1983 DE
3234875 Mar 1984 DE
8528770 Dec 1985 DE
8800197 Jun 1988 DE
3922044 Feb 1991 DE
4217236 Nov 1993 DE
202006017194 Jan 2007 DE
102006016213 Oct 2007 DE
0145166 Jun 1985 EP
0148077 Jul 1985 EP
0253526 Jan 1988 EP
0263292 Apr 1988 EP
0275871 Jul 1988 EP
0328883 Aug 1989 EP
0355035 Feb 1990 EP
0381462 Aug 1990 EP
0396519 Nov 1990 EP
0401650 Dec 1990 EP
0409769 Jan 1991 EP
0420542 Apr 1991 EP
0440371 Aug 1991 EP
0442137 Aug 1991 EP
0475077 Mar 1992 EP
0487669 Jun 1992 EP
0491211 Jun 1992 EP
0508710 Oct 1992 EP
0525352 Feb 1993 EP
0611560 Aug 1994 EP
0745352 Dec 1996 EP
0546162 Sep 1997 EP
0807419 Nov 1997 EP
0819413 Jan 1998 EP
0931513 Jul 1999 EP
1099412 May 2001 EP
1132051 Sep 2001 EP
0941037 Oct 2001 EP
0674495 Nov 2001 EP
1155661 Nov 2001 EP
1203569 May 2002 EP
0900065 Jun 2002 EP
1277442 Jan 2003 EP
1300122 Apr 2003 EP
1348384 Oct 2003 EP
1354562 Oct 2003 EP
1372496 Jan 2004 EP
1391186 Feb 2004 EP
1098600 Mar 2004 EP
1396231 Mar 2004 EP
1410765 Apr 2004 EP
1442718 Aug 2004 EP
1442729 Aug 2004 EP
1454592 Sep 2004 EP
1459686 Sep 2004 EP
1225838 Dec 2004 EP
1484077 Dec 2004 EP
1079752 Jan 2005 EP
1495729 Jan 2005 EP
1148825 Mar 2005 EP
1148850 Apr 2005 EP
1522268 Apr 2005 EP
1227765 May 2005 EP
1535579 Jun 2005 EP
1563795 Aug 2005 EP
1406548 Sep 2005 EP
1582159 Oct 2005 EP
1582160 Oct 2005 EP
1582161 Oct 2005 EP
1582162 Oct 2005 EP
1582163 Oct 2005 EP
1582164 Oct 2005 EP
1634548 Mar 2006 EP
1639953 Mar 2006 EP
1669035 Jun 2006 EP
1073371 Aug 2006 EP
1700572 Sep 2006 EP
1702572 Sep 2006 EP
1714618 Oct 2006 EP
1787593 May 2007 EP
1808143 Jul 2007 EP
1815813 Aug 2007 EP
1820462 Aug 2007 EP
1011464 Jan 2008 EP
1905367 Apr 2008 EP
1905392 Apr 2008 EP
1915959 Apr 2008 EP
1920721 May 2008 EP
1923019 May 2008 EP
1972308 Sep 2008 EP
1982664 Oct 2008 EP
1987785 Nov 2008 EP
2014261 Jan 2009 EP
2025292 Feb 2009 EP
1459689 Apr 2009 EP
3300676 Apr 2018 EP
2251888 May 2006 ES
2653006 Apr 1991 FR
2686788 Aug 1993 FR
2781360 Jan 2000 FR
2861576 May 2005 FR
2173565 Oct 1986 GB
2268068 Jan 1994 GB
2274993 Aug 1994 GB
H01310664 Dec 1989 JP
2000287983 Oct 2000 JP
2001506524 May 2001 JP
2001509040 Jul 2001 JP
2003513698 Apr 2003 JP
2004081681 Mar 2004 JP
2004535249 Nov 2004 JP
2007125386 May 2007 JP
2008500140 Jan 2008 JP
2008503275 Feb 2008 JP
2008540037 Nov 2008 JP
2009160399 Jul 2009 JP
2009542422 Dec 2009 JP
2010510040 Apr 2010 JP
2010510041 Apr 2010 JP
2010510042 Apr 2010 JP
2010522046 Jul 2010 JP
2010524642 Jul 2010 JP
2011523889 Aug 2011 JP
2012504027 Feb 2012 JP
2012518511 Aug 2012 JP
2004104359 Feb 2005 RU
8904150 May 1989 WO
8907056 Aug 1989 WO
9003764 Apr 1990 WO
9011726 Oct 1990 WO
9102493 Mar 1991 WO
9106260 May 1991 WO
9106265 May 1991 WO
9111962 Aug 1991 WO
9119461 Dec 1991 WO
9424938 Nov 1994 WO
9427507 Dec 1994 WO
9428824 Dec 1994 WO
9514433 Jun 1995 WO
9520362 Aug 1995 WO
9531159 Nov 1995 WO
9600716 Jan 1996 WO
9602202 Feb 1996 WO
9602203 Feb 1996 WO
9605783 Feb 1996 WO
9606041 Feb 1996 WO
9607161 Mar 1996 WO
9616607 Jun 1996 WO
9617557 Jun 1996 WO
9618354 Jun 1996 WO
9625118 Aug 1996 WO
9640476 Dec 1996 WO
9703611 Feb 1997 WO
9718775 May 1997 WO
9742602 Nov 1997 WO
9742912 Nov 1997 WO
9747251 Dec 1997 WO
9801077 Jan 1998 WO
9805261 Feb 1998 WO
9807392 Feb 1998 WO
9819616 May 1998 WO
9824380 Jun 1998 WO
9826725 Jun 1998 WO
9838918 Sep 1998 WO
9846169 Oct 1998 WO
9856301 Dec 1998 WO
9922661 May 1999 WO
9922662 May 1999 WO
9937219 Jul 1999 WO
9947055 Sep 1999 WO
9951149 Oct 1999 WO
9953843 Oct 1999 WO
9955248 Nov 1999 WO
9962416 Dec 1999 WO
0006037 Feb 2000 WO
0009024 Feb 2000 WO
0012036 Mar 2000 WO
0013596 Mar 2000 WO
0021455 Apr 2000 WO
0025681 May 2000 WO
0028906 May 2000 WO
0030551 Jun 2000 WO
0030569 Jun 2000 WO
0038586 Jul 2000 WO
0042954 Jul 2000 WO
0044319 Aug 2000 WO
0044321 Aug 2000 WO
0044946 Aug 2000 WO
0045712 Aug 2000 WO
0045714 Aug 2000 WO
0045715 Aug 2000 WO
0045722 Aug 2000 WO
0047119 Aug 2000 WO
0048534 Aug 2000 WO
0071038 Nov 2000 WO
0076414 Dec 2000 WO
0108571 Feb 2001 WO
0128443 Apr 2001 WO
0134045 May 2001 WO
0149193 Jul 2001 WO
0154598 Aug 2001 WO
0160268 Aug 2001 WO
0176493 Oct 2001 WO
0176514 Oct 2001 WO
0178015 Oct 2001 WO
0180751 Nov 2001 WO
0185042 Nov 2001 WO
0213700 Feb 2002 WO
0213716 Feb 2002 WO
0217794 Mar 2002 WO
0224088 Mar 2002 WO
0234107 May 2002 WO
0234148 May 2002 WO
0237935 May 2002 WO
0245606 Jun 2002 WO
0249517 Jun 2002 WO
02058575 Aug 2002 WO
02067824 Sep 2002 WO
02078555 Oct 2002 WO
02089683 Nov 2002 WO
02096306 Dec 2002 WO
03007830 Jan 2003 WO
03013336 Feb 2003 WO
03030760 Apr 2003 WO
03043488 May 2003 WO
03045257 Jun 2003 WO
03047440 Jun 2003 WO
03068090 Aug 2003 WO
2004008949 Jan 2004 WO
2004017817 Mar 2004 WO
2004021904 Mar 2004 WO
2004030549 Apr 2004 WO
2004039271 May 2004 WO
2004064603 Aug 2004 WO
2004078220 Sep 2004 WO
2004078221 Sep 2004 WO
2004086934 Oct 2004 WO
2004092431 Oct 2004 WO
2004093633 Nov 2004 WO
2004098453 Nov 2004 WO
2004103209 Dec 2004 WO
2004110292 Dec 2004 WO
2004110300 Dec 2004 WO
2004112661 Dec 2004 WO
2005000159 Jan 2005 WO
2005020830 Mar 2005 WO
2005020833 Mar 2005 WO
2005023085 Mar 2005 WO
2005032326 Apr 2005 WO
2005032340 Apr 2005 WO
2005039651 May 2005 WO
2005041799 May 2005 WO
2005044122 May 2005 WO
2005048856 Jun 2005 WO
2005051971 Jun 2005 WO
2005055874 Jun 2005 WO
2005070314 Aug 2005 WO
2005092223 Oct 2005 WO
2005094693 Oct 2005 WO
2005094705 Oct 2005 WO
2005094706 Oct 2005 WO
2005096975 Oct 2005 WO
2005102196 Nov 2005 WO
2005107415 Nov 2005 WO
2005112804 Dec 2005 WO
2005122931 Dec 2005 WO
2005122932 Dec 2005 WO
2005123171 Dec 2005 WO
2006011152 Feb 2006 WO
2006020530 Feb 2006 WO
2006023793 Mar 2006 WO
2006026323 Mar 2006 WO
2006026397 Mar 2006 WO
2006034396 Mar 2006 WO
2006034436 Mar 2006 WO
2006041460 Apr 2006 WO
2006042188 Apr 2006 WO
2006042189 Apr 2006 WO
2006042334 Apr 2006 WO
2006051547 May 2006 WO
2006055448 May 2006 WO
2006063083 Jun 2006 WO
2006066228 Jun 2006 WO
2006068682 Jun 2006 WO
2006089929 Aug 2006 WO
2006090379 Aug 2006 WO
2006108067 Oct 2006 WO
2006113800 Oct 2006 WO
2006116760 Nov 2006 WO
2006116761 Nov 2006 WO
2006124764 Nov 2006 WO
2006124937 Nov 2006 WO
2006127904 Nov 2006 WO
2007002933 Jan 2007 WO
2007008177 Jan 2007 WO
2007009107 Jan 2007 WO
2007009123 Jan 2007 WO
2007011353 Jan 2007 WO
2007011994 Jan 2007 WO
2007012046 Jan 2007 WO
2007025236 Mar 2007 WO
2007036815 Apr 2007 WO
2007040949 Apr 2007 WO
2007041665 Apr 2007 WO
2007053960 May 2007 WO
2007058943 May 2007 WO
2007059243 May 2007 WO
2007059246 May 2007 WO
2007059259 May 2007 WO
2007065137 Jun 2007 WO
2007069251 Jun 2007 WO
2007073488 Jun 2007 WO
2007076308 Jul 2007 WO
2007076374 Jul 2007 WO
2007076376 Jul 2007 WO
2007076377 Jul 2007 WO
2007078692 Jul 2007 WO
2007079237 Jul 2007 WO
2007082151 Jul 2007 WO
2007084239 Jul 2007 WO
2007092813 Aug 2007 WO
2007092841 Aug 2007 WO
2007114982 Oct 2007 WO
2007115108 Oct 2007 WO
2007117571 Oct 2007 WO
2007120539 Oct 2007 WO
2007124130 Nov 2007 WO
2007127255 Nov 2007 WO
2007127260 Nov 2007 WO
2007131002 Nov 2007 WO
2007134134 Nov 2007 WO
2007145824 Dec 2007 WO
2008004229 Jan 2008 WO
2008006117 Jan 2008 WO
2008016910 Feb 2008 WO
2008019397 Feb 2008 WO
2008035849 Mar 2008 WO
2008037454 Apr 2008 WO
2008043254 Apr 2008 WO
2008058960 May 2008 WO
2008059027 May 2008 WO
2008060277 May 2008 WO
2008063265 May 2008 WO
2008064346 May 2008 WO
2008064347 May 2008 WO
2008064350 May 2008 WO
2008076330 Jun 2008 WO
2008076357 Jun 2008 WO
2008094407 Aug 2008 WO
2008109566 Sep 2008 WO
2008112308 Sep 2008 WO
2008112875 Sep 2008 WO
2008112912 Sep 2008 WO
2008116170 Sep 2008 WO
2008116175 Sep 2008 WO
2008118945 Oct 2008 WO
2008121608 Oct 2008 WO
2008121613 Oct 2008 WO
2008132728 Nov 2008 WO
2008134287 Nov 2008 WO
2008134758 Nov 2008 WO
2008139456 Nov 2008 WO
2008144709 Nov 2008 WO
2009006622 Jan 2009 WO
2009007331 Jan 2009 WO
2009009772 Jan 2009 WO
2009010412 Jan 2009 WO
2009012347 Jan 2009 WO
2009026070 Feb 2009 WO
2009027325 Mar 2009 WO
2009039430 Mar 2009 WO
2009045751 Apr 2009 WO
2009059227 May 2009 WO
2009067568 May 2009 WO
2009072125 Jun 2009 WO
2009076086 Jun 2009 WO
2009088376 Jul 2009 WO
2009094478 Jul 2009 WO
2009132333 Oct 2009 WO
2009143374 Nov 2009 WO
2009143496 Nov 2009 WO
2009146457 Dec 2009 WO
2009152270 Dec 2009 WO
2009152272 Dec 2009 WO
2009152273 Dec 2009 WO
2010017990 Feb 2010 WO
2010035156 Apr 2010 WO
2010037038 Apr 2010 WO
2010056895 May 2010 WO
2010062379 Jun 2010 WO
2010065855 Jun 2010 WO
2010091242 Aug 2010 WO
Non-Patent Literature Citations (56)
Entry
U.S. Patent and Trademark Office Action in U.S. Appl. No. 15/689,914, dated Sep. 4, 2019.
United States Patent Office Action in U.S. Appl. No. 12/353,855, dated Jan. 31, 2012.
U.S. Pat. No. 7,063,700, Jun. 2006, Michelson (withdrawn).
U.S. Pat. No. 7,201,752, Apr. 2007, Huebner et al. (withdrawn).
Van Lenthe, G. Harry, et al., “Quantification of Bone Structural Parameters and Mechanical Competence at the Distal Radius,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Written Opinion for International Application No. PCT/US14/69907, dated Jun. 4, 2015.
“Advanced Core Decompression System—Surgical Technique,” Wright, 2010, Arlington, Tennessee.
“Medtronic-Abdominal Stent Graft System, Instructions for Use,” Medtronic, Inc., Minneapolis-Minnesota, 2008.
“OptiMesh 1500E-Percutaneous Interbody Fusion Surgical Technique,” Spineology Inc., Feb. 2010, Saint Paul, Minnesota.
App No. PCT/US09/30971 International Search Report, dated Mar. 6, 2009.
App No. PCT/US09/30971 Written Opinion of the International Searching Authority, dated Mar. 6, 2009.
App No. PCT/US2011/021735 International Search Report, dated May 25, 2011.
App No. PCT/US2011/021735 Written Opinion of the International Searching Authority, dated May 25, 2011.
App No. PCT/US2011/027597 Written Opinion of the International Searching Authority, dated Jul. 6, 2011.
App No. PCT/US2011/027602 International Search Report, dated Jul. 5, 2011.
App No. PCT/US2011/027602 Written Opinion of the International Searching Authority, dated Jul. 5, 2011.
App No. PCT/US2011/21074 International Search Report, dated May 23, 2011.
App No. PCT/US2011/21074 Written Opinion of the International Searching Authority, dated May 23, 2011.
App No. PCT/US2012/028145 International Search Report, dated Sep. 13, 2012.
App No. PCT/US2012/028145 Written Opinion of the International Searching Authority, dated Sep. 13, 2012.
App No. PCT/US2017/012322 International Search Report, dated Feb. 15, 2018.
App No. PCT/US2017/012322 Written Opinion of the International Searching Authority, dated Feb. 15, 2018.
App No. PCT/US2017/18857 International Search Report, dated Jul. 10, 2017.
App No. PCT/US2017/18857 Written Opinion of the International Searching Authority, dated Jul. 10, 2017.
App No. PCT/US2018/13208 International Search Report, dated Apr. 25, 2018.
App No. PCT/US2018/13208 Written Opinion of the International Searching Authority, dated Apr. 25, 2018.
App No. PCT/US2018/40834 International Search Report, dated Jan. 22, 2019.
App No. PCT/US2018/40834 Written Opinion of the International Searching Authority, dated Jan. 22, 2019.
Arora, Rohit, et al., “A Representative Case of Osteoporotic Distal Radius Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Australian Examination Report in Application No. 2018201309, dated Apr. 11, 2019.
Australian Official Action in Australian Patent Application No. 2009205429, dated Sep. 13, 2013.
Barnes, C. Lowry, et al., “Advanced Core Decompression System,” Wright, 2008, Arlington, Tennessee.
Bogoch, Earl R., et al., “The Osteoporosis Needs of Patients with Wrist Fractures,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Corti, G., et al., “Acute Vertebral Body Compression Fracture Treated with OptiMesh-Indications, Applications and First Clinical Results,” Eurospine, 2005, Uster-Zürich Switzerland.
Downing, Martin R., et al., “Assessment of Inducible Fracture Micromotion in Distal Radial Fractures Using Radiostereometry,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
European Patent Office, Supplementary Partial European Search Report for European Application No. 09702261, dated Sep. 22, 2015.
Figl, Markus, et al., “Volar Fixed-Angle Plate Osteosynthesis of Unstable Distal Radius Fractures: 12 Months Results,” Springer, New York, New York, Feb. 19, 2009.
Firoozabadi, Reza, et al., “Qualitative and Quantitative Assessment of Bone Fragility and Fracture Healing Using Conventional Radiography and Advanced Imaging Technologies-Focus on Wrist Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Goldhan, Jorg, et al., “What Counts: Outcome Assessment After Distal Radius Fractures in Aged Patients,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Higgins, Thomas F., et al., “A Biomechanical Analysis of Fixation of Intra-Articular Distal Radial Fractures with Calcium-Phosphate Bone Cement,” The Journal of Bone and Joint Surgery, 84:1579-1586, Needham, Massachusetts, Sep. 2002.
Hoang-Kim, Amy, et al., “Wrist Fractures in Osteoporotic Patients,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Ilyas, Asif M., “Intramedullary Fixation of Distal Radius Fractures,” Elsevier, Inc. on behalf of the American Society for Surgery of the Hand, New York, New York, Feb. 2009.
International Search Report for International Application No. PCT/US14/69907, dated Jun. 4, 2015.
International Search Report for International Patent Application No. PCT/US2011/027597, dated Jul. 6, 2011.
Japanese Patent Office Action in Japanese App No. 2010-542429, dated Apr. 16, 2013.
Jupiter, Jesse B., et al., “Operative Management of Distal Radial Fractures with 2.4-Millimeter Locking Plates. A Multicenter Prospective Case Series,” The Journal of Bone and Joint Surgery, 91: 55-65, doi:10.2106-JBJS.G.01498, Needham, Massachusetts, Jan. 1, 2009.
Keast-Butler, Oliver, et al., “Biology Versus Mechanics in the Treatment of Distal Radial Fractures,” The Journal of Orthopedic Trauma, 22: S91-S95, Philadelphia, Pennsylvania, Sep. 2008.
Kettler, Mark, et al., “Do We Need to Include Osteoporosis in Today's Classification of Distal Radius Fractures?” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Mudgal, Chaitanya S., et al., “Plate Fixation of Osteoporotic Fractures of the Distal Radius,” The Journal of Orthopedic Trauma, 22: S106-S115, 2008, Philadelphia, Pennsylvania, Sep. 2008.
Parkinson, Ian H., et al., “Whole Bone Geometry and Bone Quality in Distal Forearm Fracture,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
Photograph, OrthopaedicLIST, 2010, Wilmington, North Carolina.
Putnam, Matthew D., et al., “Distal Radial Metaphyseal Forces in an Extrinsic Grip Model: Implications for Post fracture Rehabilitation,” American Society for Surgery of the Hand, 25A: 469-475,May 2000.
Rozenthal, Tamara D., et al., “Functional Outcome and Complications After Volar Plating for Dorsally Displaced, Unstable Fractures of the Distal Radius,” The Journal of Hand Surgery, 31A: 359-365, Mar. 2006.
Stoeckel et al., “Self-Expanding Nitinol Stents-Material and Design Considerations,” Nitinol Devices & Components, Fremont, California, 2003.
Suhm, Norbert, et al., “Injectable Bone Cement Augmentation for the Treatment of Distal Radius Fractures: A Review,” The Journal of Orthopedic Trauma, vol. 22, No. 8, Supplement, Philadelphia, Pennsylvania, Sep. 2008.
U.S. Official Action in U.S. Appl. No. 13/043,190, filed Oct. 8, 2013.
Related Publications (1)
Number Date Country
20200367947 A1 Nov 2020 US
Provisional Applications (2)
Number Date Country
61090999 Aug 2008 US
61020778 Jan 2008 US
Continuations (4)
Number Date Country
Parent 15643431 Jul 2017 US
Child 16773328 US
Parent 13892476 May 2013 US
Child 15643431 US
Parent 13625680 Sep 2012 US
Child 13892476 US
Parent 12353855 Jan 2009 US
Child 13625680 US