A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
This disclosure relates to interference mitigation and coordination in wireless systems, such as e.g., wireless local area networks (WLANs) and cellular mobile radio systems such as GSM, WCDMA, WiMAX and LTE (long-term evolution) which deploy Picocell and or Femtocell architectures. At least some of the examples disclosed herein relate to a centralized RF spectrum sensing including interference measurement and mitigation method involving spectral sensing, communication over backbone or infrastructure network (including switch, controller, network management architecture), beam forming, MIMO, power control, MAC scheduling using a cross-layer approach all of which employed towards coordinated performance enhancement of cellular networks and WLAN networks, including enterprise and home networks in presence of interference.
Over the past decade, the wireless communications network technology has undergone tremendous evolution from voice communications-based cellular systems of the digital 2G cellular (e.g. GSM) to multi-service heterogeneous networks that can handle data and high speed multimedia in addition to voice applications (e.g. 3G cellular and beyond including WCDMA, HSPA, etc.), WiMAX, Wireless Local Area Networks (WLAN) and the future Long Term Evolution (LTE) or 4G cellular. These technologies were initially designed to serve a variety of wireless applications and coverage classes, ranging from WBAN (Wireless Body Area Networks) and WPAN (Wireless Personal Area Networks, e.g. Bluetooth), to WLAN (e.g. WiFi), WMAN (Wireless Metropolitan Area Networks such as WiMAX), all the way to WWAN (wireless wide area networks such as WCDMA and LTE).
As these new technologies evolve, the need for integration of various applications and services becomes increasingly necessary. For example today's WLAN is progressively integrated with the cellular third generation (3G) mobile communication system to improve the coverage and capacity. It is anticipated that in the near future a superposition of access networks of various architectures and topologies ranging from Pico-cellular systems (such as WPANS) to large cell sized or macro-cellular systems (such as WCDMA) covering a wide range of user applications and services. As the wireless networks evolve to support heterogeneous architectures with ubiquitous coverage, a high degree of adaptively and flexibility is required particularly in the radio access node (e.g. Access Point or Base Station).
To support large capacity and ubiquitous coverage in both indoor and outdoor environments and compensate for coverage holes, smaller cell architectures have been in introduced in the cellular networks. This includes Picocell and Femtocell architectures. A Picocell usually covers a small area, such as in-building, using a base station which is typically a low cost, small and simple device, This base station connects to the cellular base station controller or BSC that acts as a gateway to mobile switching center (MSC) and also supports handover between the Picocell base stations. Femtocells are based on a similar concept but have smaller coverage and are also known as access point bases stations as their coverage and functionality are similar to a small cellular base station, typically designed for use in a home or small business (similar to the role of access points in WLAN). A Femtocell infrastructure connects to the service provider's network via broadband (such as DSL or cable); current designs typically support 2 to 4 active mobile phones in residential locations, and 8 to 16 active mobile phones in enterprise environments. The Femtocell incorporates the functionality of a typical base station but extends it to other network node functionalities (such as gateways that connect to core network) to enable some form of self contained deployment. Femtocell architectures use the exiting unlicensed spectrum to communicate with the wireless access points (in which case require the so-called dual mode handsets) or support Femtocell-based deployment requires installation of a new access point that uses licensed spectrum (but does not need dual mode handsets).
In parallel to cellular systems, the WLAN standardization effort has undergone tremendous evolution from low rate data infrared-based communications in first generation WLANs to the high throughput OFDM radios with adaptive algorithms including MIMO. The radio channel agility and interference susceptibility along with the scarcity of wireless spectrum motivated a large body of work within the IEEE 802.11 standards to optimize the performance of WLANs. This effort, highly focused on optimization of physical (PHY) layer, resulted in a resulted in number of new methods for performance improvement of the wireless network. Among the above advancements in the PHY-based radio link techniques, various types of advanced channel coding schemes such as turbo-codes, low-density parity-check codes (LDPC) and other efficient coding schemes have been proposed for WLAN, with a very narrow margin to Shannon capacity. The combination of OFDM (orthogonal frequency division multiplexing) and MIMO (multiple input multiple output)-based multiple antenna systems in particular, has been suggested to improve the performance and throughput. Despite extending the coverage area MIMO performance is highly correlated with multipath propagation scenarios make the coverage are less predictable, while resulting in some coverage holes. Finally a control mechanism that can affect the performance of WLAN networks is the power control which is tightly coupled with both MAC and PHY layers.
In parallel to the information theory-related technologies applied to PHY-based resource allocation, MAC-based resource allocation strategies has also been improved using a handful of advanced networking techniques. In particular an important design aspect of modem WLANs is the support of quality of service or QoS in the MAC. This demand triggered a new generation of MAC protocols in the IEEE 802.11 standards. More specifically, the IEEE 802.11 MAC was initially designed for best effort services, lacked a built-in mechanism for support of the QoS required for real time services such as VoIP, HDTV, online gaming, etc. In order to provide a guaranteed QoS, a new generation of MAC termed IEEE 802.11.e was introduced (see Reference [1], which is incorporated herein by reference in its entirety). This new MAC employs a so called Hybrid Coordination Function (HFC) with two medium access mechanisms and four classes of user priorities that facilitate implementation of QoS-enabled MAC architecture.
The combination of the above technologies has enabled WLAN radios to achieve has exhausted the PHY and MAC performance enhancement tools while most of these solution cause significant increase in the power consumption of WLANs and cellular systems. In addition some of these methods have introduced significant cost and complexity to the devices. This exhaustion of performance enhancement tools resulted in the optimization paradigm shift to the scheduling and network management side. In this respect, IEEE 802 standards have initiated powerful network coordination methodologies by addressing radio resource allocation (802.11k) (see Reference [2], which is incorporated herein by reference in its entirety), and network management techniques (802.11k and 802.11v) to enhance the WLAN throughput and QoS issues. The 802.11v (see Reference [3], which is incorporated herein by reference in its entirety), in particular is targeted to address other enhancements such as RTLS (real time location services), power consumption and co-location interference.
It is interesting to note that despite the tremendous advancements in WLAN technology, the one area which is not addressed effectively is the interference mitigation methodologies. To this end, the main WLAN interference avoidance methodology is the traditional CSMA/CA (carrier sense multiple access with collision avoidance) which is a “listen-before-talk” strategy in WLAM MAC, that effectively avoids collisions in transmissions (or co-channel interference) at the price of sacrificing the throughput. Other techniques such as MIMO and local interference cancellation are also proposed, but they have limited enhancements while producing other draw-backs (such as complexity, power consumption and cost). On the other hand the MAC advancements in 802.11e to support quality of service and make the CSMA/CA more efficient did not take off due to, the implementation complexity and cost issues. At the same time however, the interference is rapidly becoming a growing problem in the WLAN and related technologies. The growing number of WLAN users, and the scarcity of spectrum on the one hand, and the demanding nature of emerging WLAN traffic (such as delay sensitive, high QoS real-time video and audio services) on the other hand, are the trends that are progressively increasing the interference level in unlicensed WLAN bands. Recently, many vendors and service providers have independently developed a hierarchy of protocols and technologies to address and mange the interference problem using some form of sensing and control mechanisms mainly residing in the WLAN switch and/or the access points. These approaches are non-standardized, and cannot be applied to a multi-vendor scenario. In addition many require costly devices and are not automated form the interference management standpoint (and hence requires IT personnel involvement). In many cases however, the emerging interference problems in WLANs are intermittent and by the time it attracts the IT personnel attention, it may not be present.
WLAN Network Architectures: Today's WLAN architectures have evolved to two major categories, distributed intelligence or centralized intelligence. In a distributed architecture, the intelligence is distributed across the network access points; hence the name “FAT AP”, resulting in more costly but capable access points. In addition, due to their complexity, theses APs are power hungry and as such, can significantly increase the power consumption of larger WLAN networks. A more popular architecture centralizes all the intelligence in one or a few WLAN controllers at the WLAN switch locations, while giving the APs the least intelligence, hence the name “THIN AP”. This architecture has historically been deployed by many vendors and network designers. However the next generation of WLANs architectures and traffic demands of highly dynamic 802.11n-based enterprise WLAN networks which, is less delay tolerant (due to support of the real-time high QoS services) while increasing wireless traffic loads by more than 10 times. A good example of this traffic need is the current trend in the adoption of IP phones (based on Voice or IP), to dramatically reduce the enterprise phone bill. However today's WLAN architectures cannot support voice at enterprise-wide scale. For example, in the popular THIN AP architecture there are usually multi-hops between the AP and the switch. As a result, time-sensitive information and traffic may stay in long queues before getting to the switch. Trying to address this problem, most recently some vendors try to put more intelligence back to the access point, Vendors differ in the level of complexity that is split between the AP and the controller, and in some cases, even regarding what constitutes real time. One of the main strategies of this new approach is to put all or a part of MAC functionalities in the AP, such that time sensitive traffic requirements can be addressed appropriately. Some vendors use an architecture wherein time sensitive part of MAC functionalities are performed at the AP (named FIT AP), while all other functionalities such as management and queuing/scheduling, authentication, association 802.11 frame translation, handover, etc., are handled at a WLAN controller/switch. Others suggest suggests putting even more intelligence in the AP (e.g. packet forwarding, QoS, etc.), leaving a small portion of backbone traffic load to the controller. While trying to address the real-time traffic demands, this approach puts the cost and complexity burden back to the access point. In addition there are two other reasons that makes the FIT AP approach costly and power hungry, and as such not attractive:
We anticipate that in the absence of some form of interference management, the interference level (including co-channel interference, adjacent channel interference, co-location interference, etc.) can reach to unmanageable levels that can seriously jeopardize the targeted network performance and coverage. Control of interference is also very important to the network designers and service providers as it determines the size and number of access points in the network, which in turn affects the overall network deployment costs and provision of QoS
In one aspect of this invention, the performance enhancement and interference mitigation in wireless networks such as WLANs, and Picocell and Femtocell architectures in cellular networks is addressed by introducing a new centralized surveillance apparatus and/or node concept. The intention is to address the root-cause of interference problem in a costly cost and power efficient way. In addition to the performance enhancement of Picocell and Femtocell deployed in the licensed bands, some aspects of the apparatus introduced herein, are particularly targeted at the unlicensed band-based networks such as Picocells and Femtocells implemented in the WLAN bands and the WLAN system in general. In some embodiments this apparatus enables enhancing and complementing the IEEE 802.11 standards (such as 802.11g, 802.11n, 802.11k and 802.11v) by extending their capabilities towards powerful global algorithms including interference mitigation strategies (both uncoordinated and coordinated co-channel and adjacent channel interferences), thought usage of a dedicated node termed interference controller node or ICN. In one aspect of this invention, the task of the ICN is to continuously scan the environment and report the interference to a centralized network facility such as switch/controller, the network management server and/or access point. In some embodiments other problematic events such as coverage holes and/or rouge APs are communicated to a centralized network facility such as switch/controller, the network management server and/or access point. In some embodiments, the centralized network control mechanisms (such as switch, controller and network management system) in turn use this information in coordination with cells towards optimized algorithms including but not limited to the interference that performs global (or inter-cell) optimizations and/or the local (or intra-cell) optimizations. This information is primarily used to address the interference problem using coordinated inter-cell and intra-cell interference mitigation algorithms. In some embodiments, RF environment footprint is captured in real-time, which enables the APs, controllers, and/or switches to use much more powerful performance enhancement techniques, based on intra-cell coordinated algorithms residing in their access points, controllers or switches. On another embodiment, the real time RF environment footprint is captured, and the ICN node itself performs all or a part of the coordination required for implementation of the global or local performance enhancement algorithms.
The invention described herein, is detailed with reference to the following figures. The attached drawings are provided for purposes of illustration only and only depict examples or typical embodiments of the invention. It should be noted that the illustrated regions are just examples and regions can take any shape. Also, it should be noted although illustrations are shown in 2D; in general, the zones are three dimensional. It also should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
In one aspect of this invention, a new node concept defined as the ICN or interference controller node that can be incorporated to the WLAN and/or Picocellular and Femtocellular architectures in cellular systems is introduced. In some embodiments, this node acts as the “eyes” and “ears” of the Controller, Switch, Network Management System and/or Access Points (or excusive combination of the above) and provides them with useful real time information about the RF spectrum and/or channel conditions of different cells. In one embodiment, the location of interfering and/or interfered (victim) nodes are determined and communicated back to the Controller, Switch, Network Management System and/or Access Points (or excusive combination of the above). In some embodiments a simple, yet effective interference coordination and interference mitigation approach, based on a directional RF spectrum sensing mechanism, that can be used with different WLAN architectures as a complementary technology, and does not have the current technological drawbacks is introduced. In one aspect of this invention, targeted applications include all of the WLAN applications as well as the Picocell and Femtocell architectures that use licensed or unlicensed bands for their wireless communications. Some embodiments are based on the centralized RF management concept enabling switch/appliance AP-level visibility, without putting the burden of spectral monitoring to the AP. One aspect of this invention is to provide the switch and APs, including smart APs with real time knowledge of its service area including the RF interference characteristics, such that a number of centralized interference mitigation and coordination methodologies can be used by the network. In some embodiments, using a single dedicated node termed Interference Controller Node or ICN1, the switch (and the AP) obtains all the information needed to handle the real-time RF management, as well as implementing powerful inter-AP optimization algorithms. This is achieved by the ICN's careful examination and monitoring the radio channels in each AP's coverage area for WLAN and non-WLAN interferences, as well as other disturbances (such as Rouge AP), coverage holes, etc. Some embodiments use an ultra sensitive radio with narrow beam steering, so that the ICN gathers an accurate real-time RF image of the network and communicates it directly to the switch or controller utility (and/or intelligent APs). In some embodiments, client performance related parameters such as packet error rates are monitored and communicate to the infrastructure. One aspect of this invention uses the knowledge of interference location, statistics, etc. available to the L2 and L3, to significantly empower the network management and switch visibility enabling strategies for performance enhancements, and reduction in power consumption at a lower cost. It is noted that, this is achieved by minimal traffic burden on the network and only using a central node (rather than a collection of access points, or RF sensors) or a collection of central node for the whole network. Consequently, unlike portable RF sensor technologies which require IT involvement, one aspect of this invention provides an automated, centralized, and dynamic interference mitigation and coordination platform, and at the same time, avoids the cost and complexity of RF sensing per access point. It is important to note that in some embodiments, while listening wirelessly, the ICN communication with the switch (or APs) and management system is predominately over the wired distribution system (DS) (hence, avoiding introduction of traffic load and interference in the wireless LAN network). 1Note that each ICN can be associated with a group of APs connected to the same switch, but there may be more than one ICN connected to the switch.
It is important to emphasize that although examples of the algorithms and standards mentioned herein are based on the WLAN, the apparatus and network architectures and methodologies introduced herein can be applied to Picocells and Femotcells as part of the cellular system architectures.
In addition to the capability of enabling switch/controller with detailed knowledge of its environment, in some embodiments, the ICN is capable of locally supporting the processing and signaling required for coordinated intra-cell interference management, and communicates directly over the DS to the APs and network management platforms (For example when the switch has limited capabilities or is only accessible though multiple hops which could delay its access to real-time information).
Achievable Enhancements and Features of the invention: The following categorizes some of the advantages of some aspects of this invention from different views of performance and network deployment:
Enabler of Global Coordination Schemes resulting in significant improvement in the throughput and QoS: In some embodiments, the centralized RF scanning technology therein can communicate a number of useful parameters to the switch/controller over the distribution system, enabling implementation of different inter-cell coordinated algorithms. Examples of such enhancement include:
ICN Extension of 802.11v Assisting Greener WLAN Solutions to Interference Problem: In one aspect of the invention, to enhance communication of the real-time RF management information, the recent emerging Wireless Network Management standard, IEEE 802.11v is supported by the ICN. Among its many benefits the 802.11v protocols facilitates extensive communication of the client specific RF management parameters to the switch and the (enterprise) management system for a more accurate and adaptive network control and management. Examples of these communications facilitated by an 802.11v enabled ICN include:
Example Scenarios: The following gives examples of different network scenarios that can benefit from the apparatus in this invention:
(a) Scalable Solution that can be Incorporated to a Variety of Enterprise Network Deployment Scenarios: In one aspect of the invention the solution therein can complement different standardize deployment scenario ranging from stand-alone architectures with FAT AP's to centralized architectures with THIN APs, as well as semi-distributed architectures supported by the new FIT AP concept (also known as Intelligent APs). In some embodiments, this communication enables the access points and switch in coordination with network management application to deploy a number of performance enhancement and interference mitigation algorithms such as power control, MAC parameter adjustment, load balancing, beam forming, MIMO, etc. which can be performed locally (per access point) or globally (per network), (for example see Reference [4], which is incorporated herein by reference in its entirety or see Reference [5], which is incorporated herein by reference in its entirety).
The following highlights some example scenarios:
(b) Scalable Solution that can be Incorporated to Home WLAN Network Deployment Scenarios:
It will be recognized that while certain aspects of the invention are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the invention disclosed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Each of the following references is incorporated herein by reference in its entirety.
[1] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements (IEEE 802.11e standard).
[2] Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Radio Resource Measurement of Wireless LANs (802.11k), Supplement to 802.11-2007.
[3] IEEE 802.11v./D6.01, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Wireless Network Management (IEEE 802.11v standard draft).
[4] Saied Safavi, Application No. 61/224,830 titled “Centralized cross-layer method and apparatus for interference mitigation in a wireless network,” filed on Jul. 10, 2009.
[5] Saied Safavi, Application No. 61/252,008 titled “Method and apparatus for centralized and coordinated interference mitigation in a WLAN network,” filed Oct. 15, 2009.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/293,434 filed Jan. 8, 2010 and entitled “AN APPARATUS BASED ON CENTRALIZED RF SPECTRUM MONITORING, ENABLING INTERFERENCE MITIGATION AND COORDINATION IN A WIRELESS NETWORK”, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61293434 | Jan 2010 | US |