The present invention provides embodiments of an automated device or apparatus for manufacturing a small quantity of smokable rods, for example, cigarettes. The apparatus utilizes a garniture for forming a cigarette rod. The apparatus can include a supply of wrapping paper, or web, for wrapping about a supply of tobacco filler. The tobacco filler can be in the form of a pre-formed cartridge of tobacco filler. A predetermined amount of the tobacco filler is delivered onto a predetermined length of the wrapping paper in the garniture region. The garniture can include a forming mechanism for forming the wrapping paper about the tobacco filler and a means for sealing the wrapping paper onto itself to thereby form a cigarette rod. The cigarette rod may be sealed while maintained in a stationary position in the garniture, or the wrapping paper and tobacco filler may be moved in the garniture for sealing the paper onto itself. The cigarette rod forming process can be initiated for forming a single, finite length cigarette rod and stopped when that rod is formed. The apparatus can include a means for cutting the cigarette rod into individual cigarettes. The apparatus provides for making a cigarette rod having a finite length (sufficient to make a predetermined number of cigarettes) formed in a discrete process separate from the process for cutting the cigarette rod into a plurality of cigarettes. The apparatus can include a means for orienting the individual cigarettes, and/or a means for moving the cigarettes from the cutting means. The small lot of cigarettes can thus be transferred to a tipping device where a mouth piece such as a filter, which may have air dilution capabilities, can be added to one end of each cigarette. The cigarettes having a mouth piece added from the tipping device can then be transferred to a packaging device for packaging the cigarettes for a consumer. The various embodiments of the present invention may include components and/or features described in co-pending U.S. patent application Ser. No. 11/143,889, U.S. patent application Ser. No. 11/375,700, and U.S. patent application Ser. No. 11/281,083, each of which is incorporated herein by reference in its entirety.
Referring to
The cigarette manufacturing apparatus 10 includes an operating platform, or base 14, which can be manufactured from a suitable material, such as metal (for example, stainless steel, brass, or aluminum), plastic (for example, polycarbonate, polymethylmethacrylate, acrylate/butadiene/styrene, or ABS type plastic, nylon, or other suitable polymeric material), composite material (for example, a graphite-based ceramic), or like material. Preferably, the base 14 is manufactured from aluminum.
The base 14 serves as a platform for positioning and operating the other components of the cigarette manufacturing apparatus 10. The base 14 preferably includes legs 15, as shown in
In embodiments of the present invention, various components of the cigarette manufacturing apparatus 10 can be covered with an aesthetically pleasing cover (not shown). For example, portions of the base 14 can be adapted to support an optional formed plastic cover of a desired design and color.
The wrapping material 12 employed as the outer wrapping material 12 of the smokable rods most preferably is provided from a supply roll or bobbin 22. Bobbins are often used to supply such types of wrapping materials 12 for the production of cigarette rods. The selection of exemplary types of bobbins 22, techniques for supporting those bobbins 22, and techniques for removing wrapping material 12 from bobbins 22 will be apparent to those skilled in the art of cigarette design and manufacture. See, for example, the types of bobbins and related technologies referenced in U.S. Pat. Application Nos. 2005/0076929 to Fitzgerald et al. and 2005/0115575 to Seymour et al., each of which is incorporated herein by reference.
In the embodiment in
In the embodiment in
The wrapping paper 12 can be pulled from the bobbin 22 onto the upper surface of the garniture 18. As shown in
Preferred wrapping materials 12 of the cigarettes 11 described herein encompass a wide range of compositions and properties. The selection of a particular wrapping material 12 will be readily apparent to those skilled in the art of cigarette design and manufacture. The most preferred cigarettes 11 have a single layer of wrapping material, paper, or web 12. Exemplary types of wrapping materials 12, wrapping material components, and treated wrapping materials are described in U.S. Pat. No. 6,779,530 to Kraker; U.S. Published Pat. Apps. 2005/0016556 to Ashcraft et al.; 2005/0076929 to Fitzgerald et al.; 2006/0021625 to Nyffeler; and U.S. patent application Ser. No. 11/251,632, filed Oct. 14, 2005 to Oglesby; each of which is incorporated herein by reference in its entirety.
In one aspect of the present invention, the cigarette manufacturing apparatus 10 includes providing a supply of tobacco filler 27 about which wrapping paper 12 is wrapped to form a cigarette rod. The tobacco 27, preferably in cut filler form, can be provided in a generally rod-shaped or cylindrical form. Tobacco 27 provided in such a form has been referred to as a “tobacco cartridge” 13. A representative tobacco cartridge 13 possesses a pre-portioned amount of tobacco filler 27 contained in a tubular casing, for example, a fine mesh type of casing, comprising a highly porous or air permeable material. The tobacco cartridge 13 form is adapted so as to maintain the configuration of the tobacco filler 27 so that the tobacco filler 27 can be wrapped inside wrapping paper 12 to form a cigarette rod. Generally, the tobacco filler cartridge 13 is not smokable until after being wrapped by the cigarette wrapping paper 12. Although the tobacco cartridge 13 casing material is not a cigarette wrapping material 12, it does not negatively affect the smoking characteristics of a cigarette 11 made from a cartridge 13 possessing such a porous casing. The tobacco cartridge casing provides a means by which the integrity of an appropriately proportioned amount of tobacco filler 27 having a particular packing density can be maintained for storage, collection, transport, and otherwise handling during the manufacture of cigarettes 11.
For equipment and methods of making tobacco filler cartridges 13, see, for example, U.S. Pat. No. 3,822,710 to Bramhill; U.S. Pat. No. 4,887,617 to Ruppert et al.; U.S. Pat. No. 5,018,536 to Liebich; U.S. Pat. No. 5,105,830 to Brackman et al.; U.S. Pat. No. 5,133,366 to Liebich; U.S. Pat. No. 5,141,000 to Ruppert et al.; U.S. Pat. No. 5,167,248 to Ruppert et al.; U.S. Pat. No. 5,197,495 to Ruppert et al.; U.S. Pat. No. 5,615,692 to Ruppert et al.; and U.S. Pat. No. 5,713,377 to Gerding et al., each of which is incorporated herein by reference. Representative tobacco filler cartridge assemblies and components have been commercially available in Canada, for example, by Rothmans, Benson & Hedges Inc. under the trade name “Belvedere.” Cartridges, devices, and methods described therein are expected to be useful with certain applications of the present invention. Other equipment and methods for manufacturing tobacco filler cartridges 13 will be apparent to those skilled in the art of cigarette design and manufacture. For example, a conventional cigarette manufacturing machine may be adapted to deposit tobacco filler 27 into a fine mesh casing to form a tobacco filler cartridge 13.
In an embodiment of the present invention, the manufactured cigarette rod comprises a finite length sufficient for making a plurality of cigarettes 11 from that rod. Conventional devices and methods are generally designed for making a tobacco filler cartridge 13 for an individual cigarette 11. Such conventional devices and methods can be suitably modified to make a tobacco filler cartridge 13 having a length sufficient for making a plurality of cigarettes 11 from a cigarette rod formed from such a cartridge 13. Accordingly, cigarette manufacturers can utilize conventional equipment and techniques to provide long tobacco cartridges 13 for use in an embodiment of the present invention without affecting the desirable characteristics of the tobacco filler 27 within the cartridges 13.
A long tobacco cartridge 13 useful in embodiments of the present invention has qualities and characteristics similar to a tobacco cartridge for making an individual cigarette 11. Such qualities and characteristics include, for example, the manners and methods of manufacturing the tobacco cartridge 13, the types and proportions of materials incorporated into the cartridge 13, diameter of the cartridge 13, and the overall nature of the cartridge 13. However, a tobacco cartridge 13 useful in embodiments of the present invention has a finite length for making a cigarette rod of sufficient length for making a plurality of cigarettes 11 therefrom. In addition, a tobacco cartridge 13 useful in embodiments of the present invention has sufficient integrity and resiliency so as to not be deformed or fall apart during handling and in the manufacture of cigarettes 11.
The tobacco filler cartridge 13 preferred for use for manufacturing cigarettes 11 in a cigarette manufacturing apparatus 10 of the present invention can be encased in a thin, highly porous, mesh wrap material. The thin mesh wrap material may be treated with formulations incorporating ethylcellulose, starch, alginate, or the like (for example, to affect properties such as flavor, burn rate, porosity). Representative manners and methods for treating such wrapping materials with additive materials are set forth in U.S. Pat. No. 6,779,530 to Kraker; U.S. Published Pat. Apps. 2005/0016556 to Ashcraft et al.; 2005/0076929 to Fitzgerald et al.; 2006/0021625 to Nyffeler; and U.S. patent application Ser. No. 11/251,632, filed Oct. 14, 2005 to Oglesby; each of which is incorporated herein by reference. Preferably, that mesh wrap material is so thin and highly meshed, or porous, that the tobacco material 27 within is visible. Thus, a cigarette manufacturer and/or a customer can visualize the nature, character, and form of the tobacco filler 27 through the mesh wrap material.
In an embodiment of the tobacco cartridge 13 that does not include a thin, porous outer material, the cartridge 13 preferably maintains a generally cylindrical shape. In such an embodiment, the tobacco 27 can be held together by, for example, binding agents and/or mechanical compression. The size and shape of the tobacco cartridge 13 is sufficient to allow it to be readily wrapped inside the wrapping paper 12, and to provide a finished cigarette 11 that exhibits desirable performance characteristics. As such, the tobacco filler 27 to be wrapped preferably is provided in a form of predetermined size and shape, and its overall size and shape preferably is maintained to a significant extent after being wrapped.
In the present invention, an embodiment of the tobacco filler cartridge 13 comprises a rod of tobacco filler 27 of finite length. For example, the length of a tobacco cartridge 13 for making 20 individual cigarettes 11 may be between about 70 cm and about 150 cm (approximately ¾-1.5 meters). To manufacture a lot of 20 cigarettes 11 each having a preferred length of 57 mm (without a filter), the tobacco cartridge 13 is at least approximately 114 cm in length. The actual length of the tobacco cartridge 13 may be slightly longer than the cumulative end-to-end length of the number of cigarettes 11 to be made. This allows for excess amounts of the cigarette rod and the tobacco cartridge 13 contained within to be trimmed off each end of the long cigarette rod. Preferably, the amount of any excess trimmed from the cigarette rod is kept to a minimum so as to produce each of the plurality of cigarettes 11 having essentially the same size, shape, and appearance.
In one illustrative embodiment, the tobacco filler cartridge 13 can be a length sufficient to provide a desired plurality of cigarettes 11 when the cigarette rod formed from the wrapped cartridge 13 is cut. In another embodiment, a number of tobacco cartridges 13 each having a length equivalent to the desired length of the tobacco portion of a finished cigarette 11 can be provided to the garniture 18 for wrapping within a predetermined length of wrapping paper 13 approximately equal to the cumulative end-to-end length of the number of cigarettes 11 to be made. In this manner, the cigarette rod formed by wrapping the number of individual tobacco cartridges 13 can be cut at locations corresponding to the ends of the individual tobacco cartridges 13 to form the desired plurality of cigarettes 11. Such an embodiment provides for ease of handling a pre-portioned amount of tobacco filler 27 and a quick way to manufacture a small quantity of cigarettes 11 from a cigarette rod having a finite length.
The tobacco filler cartridges 13 can be supplied in the cigarette making apparatus 10 in a removable tobacco cartridge hopper 17. Such a tobacco cartridge hopper 17 can be removably mounted on the base 14 adjacent the proximal end 25 of the garniture 18. The tobacco cartridge hopper 17 includes a vertical chamber configured to hold tobacco cartridges 13. It should be appreciated that, in other embodiments, the chamber may be angled rather than vertical, and/or may be wider at the top than at the bottom (for example, to hold more tobacco cartridges 13). In the illustrated embodiment of
The tobacco cartridge hopper 17 can be adapted to be capable of being maintained firmly in place relative to the base 14 during periods when cartridges 13 are being delivered to the garniture 18. Desired secure positioning of the removable tobacco cartridge hopper 17 within the base 14 can be accomplished by any suitable means. For example, the tobacco cartridge hopper 17 may be horizontally secured to the base 14 using, for example, a pin or key type of design, for example, one or more hopper locator pins 28. Preferably, two or more hopper locator pins 28 extend downwardly from the bottom of the tobacco cartridge hopper 17 and cooperate with a coordinating hole 29 located at a predetermined location in the upper surface of the base 14. The combination of the hopper locator pins 28 and base coordinating holes 29 provide for a convenient manner of positioning of the tobacco cartridge hopper 17 securely in a desired position relative to the base 14 such that the cartridges 13 can be accurately delivered to the garniture 18. In an alternative embodiment, the tobacco cartridge hopper 17 may be movable (not shown). For example, a movable tobacco cartridge hopper 17 may be placed directly over the garniture 18 and a tobacco cartridge 13 dispensed onto a length of wrapping paper 12 in the garniture 18 for forming a cigarette rod.
In the present invention, a tobacco filler cartridge 13 is the preferred means for providing a charge of tobacco filler 27 onto a finite length of wrapping paper 12 in the garniture 18 for forming a cigarette rod. In an alternative embodiment, tobacco filler 27 can be provided to the garniture 18 using other means. For example, loose tobacco filler 27 can be sprinkled or dropped onto wrapping paper 12 in the garniture 18, or otherwise applied to the wrapping paper 12 in a controlled manner. Appropriate means for providing tobacco filler 27 to the garniture 18 will be readily apparent to those skilled in the art of cigarette design and manufacture.
In one such alternative embodiment, the tobacco filler 27 can be supplied onto the wrapping paper 12 in the garniture 18 in loose form. In such an embodiment, the loose tobacco filler 27 can be supplied in various ways. For example, loose tobacco filler 27 can be provided in a removable hopper (not shown) that is positioned on the base 14 adjacent the proximal end 25 of the garniture 18. The loose tobacco filler hopper can be manufactured from any suitable metallic material, such as aluminum. The loose filler hopper can be held securely in position on the base 14 in a manner similar to how the tobacco cartridge hopper 17 can be held in position on the base 14. For example, the desired secure positioning of the removable loose filler hopper relative to the base 14 can be facilitated by placement of protruding pins on the bottom of the loose tobacco filler hopper and complementary mating holes in the top of the base 14. By use of the pin/hole arrangement or another suitable mechanism, the loose filler hopper can be appropriately aligned with the other components of the cigarette manufacturing apparatus 10. By aligning the loose filler hopper pins with the mating base holes, the loose filler hopper can be secured into position for proper delivery of tobacco filler 27 from within that hopper to the garniture 18.
In an embodiment, the loose filler hopper can include a semi-circular trough, or receptacle, in the bottom of the hopper into which a predetermined amount of tobacco filler 27 can be disposed. The tobacco filler 27 can be disposed in the hopper trough receptacle by gravity so as to arrange the loose filler 27 into a charge of tobacco 27, which can be rod-shaped. Alternatively, the loose tobacco filler 27 can be arranged into a charge of tobacco 27 in the receptacle by a suitable compression mechanism (not shown) attached to the loose filler hopper. Preferably, the receptacle is sized to contain a predetermined amount of tobacco filler 27 equivalent to the amount of tobacco filler 27 needed to make a cigarette rod of a particular length. For example, the receptacle can be sized to contain a sufficient amount of tobacco 27 to make a length of cigarette rod for cutting into 20 cigarettes 11. The size and shape of the receptacle, and the ability of the other components of the apparatus 10 to supply tobacco filler 27 to the receptacle, can be such that the receptacle can be readily filled with tobacco filler 27 in a complete, uniform, and reproducible manner. It is desirable to have sufficient tobacco filler 27 in the loose filler hopper above the receptacle to ensure supply of an adequate amount of tobacco filler 27 for a desired length of tobacco charge so as to provide for consistent supply of tobacco filler 27 to the wrapping paper 12 in the garniture 18. In operation, loose tobacco filler material 27 is placed in the loose filler hopper. The means 16 to deliver tobacco 27 to the garniture 18 can be utilized to move through the semi-circular receptacle in the bottom of the hopper to deliver the tobacco filler 27 in the receptacle from the hopper and onto the wrapping paper 12 in the garniture 18.
The tobacco filler 27 can be any type or blend. The tobacco filler 27 can have the form of cut filler 27 of a desirable particle size. Preferably, the tobacco filler 27 is substantially absent of tobacco dust or fines (extremely fine cut tobacco filler particles). When the loose tobacco filler 27 is handled and used to manufacture cigarettes 11 in accordance with the present invention, it is preferable that the various pieces of tobacco material that make up that tobacco filler 27 undergo an extremely low degree of breakage or degradation. Accordingly, embodiments of the cigarette-making apparatus 10 may be operated so as to cause an extremely low degree of degradation of the tobacco filler 27. The tobacco filler 27 can be made to specification, whether in the form of loose tobacco filler 27 or in a tobacco cartridge 13. The quality control (for example, as relates to amount of fines and control of breakage) of tobacco filler 27 can be facilitated and enhanced by the use of a tobacco cartridge 13 for delivering the tobacco filler 27 to the garniture 18. Therefore, embodiments in which a tobacco cartridge 13 is utilized are preferable.
In another aspect, the present invention includes a means to deliver tobacco filler 27 to the garniture 18. For example, the means to deliver tobacco filler 27 to the garniture 18 can be a tobacco filler delivery mechanism 16, which can be supported by the base 14 at the proximal end 25 of the cigarette manufacturing apparatus 10. The tobacco filler delivery mechanism 16 can be in the form of a solid rod or plunger configured to move the charge of tobacco filler 27 into position in the garniture 18. For example, the tobacco filler delivery mechanism 16 can be the length of the tobacco filler cartridge 13 and slidably connected to the base 14 in alignment with the tobacco cartridge 13 in the bottom of the tobacco filler cartridge hopper 17. When an operator moves the tobacco filler delivery mechanism 16 forward in the distal 26 direction, it pushes a charge of tobacco filler 27 in the form of a tobacco cartridge 13 from the hopper 17 onto the wrapping paper 12 in the garniture 18.
In the illustrated embodiment in
The tobacco filler 27 can be delivered onto the wrapping paper 12 in the garniture 18 by alternative means in other configurations of the cigarette manufacturing apparatus 10. For example, in one embodiment (not shown), the loose tobacco filler hopper can be configured to be positioned above the garniture 18. That hopper can include a bottom having a slidable wall that can be slid sideways to allow a charge of tobacco filler 27 in the hopper receptacle to drop into position on a predetermined length of wrapping paper 12 in the garniture 18.
Embodiments of the present invention include a garniture 18 in which wrapping paper 12 is wrapped about the charge of tobacco filler 27. The wrapping paper 12 can be pulled from the bobbin 22 onto the upper surface of the garniture 18. As shown in the embodiment in
In another embodiment, the garniture 18 can include an endless, movable garniture belt (not shown) that can be actuated to move and deactuated to stop movement. The wrapping paper 12 can be routed from the bobbin 22 onto the upper surface of the garniture belt. As the garniture belt rotates, the wrapping paper 12, connected to the garniture belt, is moved into the desired position in the garniture 18 for receiving the charge of tobacco filler 27.
The garniture belt can be rotated by a garniture belt drive system (not shown), which can include a plurality of drive rollers rotatably attached to the bobbin support frame 20. A corresponding number of idler rollers are rotatably attached to the bobbin support frame 20 adjacent the drive rollers. The garniture belt is routed in serpentine fashion about the series of drive rollers and idler rollers, and is routed through a garniture belt opening in the base of the garniture 18. A motor (not shown) can be attached to the opposite side of the bobbin support frame 20 from the garniture belt. The motor is operably attached to at least one of the garniture belt drive rollers to power the drive roller. The garniture belt drive system is configured so that actuation of the motor causes movement of the garniture belt. The motor can be an electrical motor. The motor can include a variable speed control mechanism for moving the garniture belt at different desired speeds. In an alternative embodiment, the garniture belt can be operated manually with a rotary handle (not shown) engaged with the garniture belt.
In preferred embodiments, the cigarette rod forming process can be initiated for forming a single, finite length cigarette rod and stopped when that rod is formed. That is, the finite length of wrapping paper 12 delivered to the garniture 18 is maintained in a stationary position relative to other components of the cigarette manufacturing apparatus 10 while the cigarette rod is being formed. The cigarette rod may be sealed while maintained in a stationary position in the garniture 18, or the wrapping paper 12 and tobacco filler 27 may be moved in the garniture 18 for sealing the paper 12 onto itself. Once the cigarette rod is completely formed in the garniture 18, the cigarette rod can then be moved to the cutting device 19 for the next step of cutting the cigarette rod into individual cigarettes 11.
In an embodiment of a garniture 18, the wrapping paper 12 moved into the desired position in the garniture 18 remains stationary during the delivery of a charge of tobacco filler 27 onto the paper 12. To facilitate the secure positioning of the wrapping paper 12 in the garniture 18, the paper 12 can be held downward onto the upper surface of the garniture 18 base in an appropriate manner. For example, the paper 12 can be held downward onto the garniture 18 with a guide system (not shown). Such a guide system may include a series of rollers or arms attached to the garniture 18 positioned so as to exert downward pressure on the wrapping paper 12 in the garniture 18 and thereby hold the paper 12 in the desired position.
In another embodiment (not shown), the garniture 18 base may comprise a foraminous, or perforated, region, through which an air vacuum can apply negative air pressure to the wrapping paper 12 to hold the paper 12 downward in position against the garniture 18 base. The porous region of the garniture 18 can be adapted so as to be in communication with a suction (for example, as can be provided by appropriate connection to a vacuum source, such as a laboratory vacuum source). In addition to pulling the wrapping paper 12 downward, the negative air pressure applied to the bottom region of the garniture 18 can act to pull the tobacco filler material 27 downward, and hence facilitate to hold the desired amount of tobacco filler 27 in place on the wrapping paper 12 while the paper 12 is being wrapped about the tobacco filler 27. Suction can be provided to the wrapping paper 12 and tobacco filler 27 in the garniture 18, as well as to the formed cigarette rod after it is moved onto the cutting device platform 52. Applying suction to the cigarette rod on the cutting device platform 52 helps facilitate holding the cigarette rod in place for accurate cutting of the rod.
Once a length of the wrapping paper 12 is moved from the bobbin 22 to the desired position in the garniture 18, the charge of tobacco filler 27 is then delivered onto the wrapping paper 12. For example, as shown in the embodiment in
The garniture 18 can be suitably configured or modified for the tobacco filler 27 to be delivered to the wrapping paper 12 and wrapped in the wrapping paper 12 in alternative manners. For example, the garniture 18 can include an apron rolling mechanism (not shown) similar to those utilized in commercially available hand-held, single cigarette rolling devices. In such an embodiment, a pair of rollers each having a length at least the length of a cigarette rod to be formed can be arranged in side-by-side fashion along the longitudinal axis of the garniture 18. The pair of apron rollers can be configured so that the outer surfaces of the rollers are movable into and out of contact with each other. When the apron rollers are moved out of contact with each other, a space between the rollers is created for receiving a supply of the tobacco filler 27 between the rollers. An apron of solid material is in contact with the bottom of each of the rollers so as to form a means for receiving the tobacco filler 27 and maintaining the tobacco filler 27 in a cylindrical, or rod-shaped, form between and in contact with the outer surfaces of the two rollers. The tobacco filler 27 can be delivered into the roller receiving space by any suitable means. For example, loose tobacco filler 27 can be sprinkled into the roller receiving space. In an alternative embodiment, a tobacco filler cartridge 13 can be inserted into the space by the tobacco filler delivery mechanism 16 described in relation to
Once the tobacco filler 27 is placed in the receiving space between the rollers and onto the apron, the rollers can be moved into contact with each other and rolled. The rollers are preferably arranged so that when the rollers are rolled, one roller rolls in a clockwise direction and the other roller rolls in a counter-clockwise direction. In an embodiment in which the tobacco filler 27 delivered into the receiving space between the two rollers is in a loose form, rolling of the rollers causes the tobacco 27 to be formed together into a rod of tobacco filler 27. While the rollers are still in contact with each other, a length of the wrapping paper 12 sufficient to wrap about the length of the thusly formed rod of tobacco filler can be inserted into the nip between the two rollers. In one embodiment, the wrapping paper 12 can include an amount of pre-applied adhesive along one side of the length of the paper. The adhesive may be a self-adhering adhesive. When the wrapping paper 12 is in contact with the rollers, the rollers can be rolled so that the paper 12 is wrapped about the rod of tobacco filler 27. In this manner, a self-adhering adhesive will seal the edges of the wrapping paper 12 along the length of the rod of tobacco filler 27 to form a cigarette rod.
The garniture 18 includes a means 31 for forming the wrapping paper 12 about the charge of tobacco filler 27. Appropriate means for forming the wrapping paper 12 about the tobacco filler charge into a tubular cigarette rod will be readily apparent to those skilled in the art of cigarette design and manufacture. In the embodiment shown in
Movement of the forming mechanism 31 may be accomplished by an operator using a handle 34 that extends above the forming mechanism 31. The handle 34 may be connected to the forming mechanism 31 by means of screws or bolts combined with spacers, rivets, or by means of any other suitable connection mechanism. Using the handle 34, an operator can rotate the forming mechanism sleeve 31 downward to engage the wrapping paper 12 and tobacco filler charge (such as the tobacco filler cartridge 13), as well as move the sleeve 31 forward to wrap the paper 12 about the cartridge 13.
Once the wrapping paper 12 is wrapped and sealed about the tobacco rod, the forming mechanism sleeve 31 can be moved back into its original position. The cigarette rod thusly formed is allowed to rest on the upper surface of the garniture 18.
Forming the wrapping paper 12 about the tobacco filler charge creates one long rod from which a plurality of cigarettes 11 can be formed. The length of the cigarette rod depends on the desired length of individual cigarettes 11 and the number of cigarettes 11 to be formed from the cigarette rod. For example, the desired length of individual cigarettes 11 may be 35-75 mm, preferably 55-70 mm, (without a mouth end piece such as a filter added to the cigarette). A package of cigarettes 11 typically comprises 20 cigarettes 11. Making a lot of 20 cigarettes 11 at one time is desirable to provide an entire package of cigarettes 11. As an example, the length of a cigarette rod for making 20 individual cigarettes 11 of such lengths is between 70 cm and 150 cm (approximately ¾-1.5 meters). One preferred cigarette 11 length without a filter is 57 mm, and a cigarette rod for making 20 cigarettes 11 each having a length of 57 mm is approximately 114 cm in length. The actual length of the cigarette rod may be slightly longer than the cumulative end-to-end length of the number of cigarettes 11 to be made. This allows for excess amounts of the cigarette rod to be trimmed off each end of the long cigarette rod. Preferably, the amount of any excess trimmed from the cigarette rod is kept to a minimum so as to produce each of the plurality of cigarettes 11 from the rod having essentially the same size, shape, and appearance.
The garniture 18 can include a means for sealing the wrapping paper 12 onto itself. In an embodiment of the present invention, a line of adhesive can be applied along a seam of the wrapping paper 12 while the paper 12 is being wrapped about the charge of tobacco filler 27. For example, as shown in the embodiment in
In another embodiment, the wrapping paper 12 wound around the bobbin 22 can have adhesive pre-applied such that the paper 12 does not stick to itself. For example, the pre-applied adhesive can be pressure-sensitive so that when pressure is applied to the paper 12 in the garniture 18, for example, by movement of the forming mechanism 31, the paper 12 seals to itself. In an alternative embodiment, the pre-applied adhesive can be activated by moisture. In this embodiment, the pre-applied adhesive can be moistened in the garniture 18 such that the contacting edges of the wrapping paper 12 will be sealed when contacted together. Other manners and methods for sealing the wrapping paper 12 about the charge of tobacco filler 27 will be apparent to those of skill in the art of cigarette design and manufacture. See also, Johnson, Development of Cigarette Components to Meet Industry Needs, 52nd JSRC (1998), which is incorporated herein by reference.
In an embodiment of the present invention, the wrapping paper 12 can include an additive material in addition to an adhesive for sealing the paper 12 to itself. For example, burn control additives (not shown) can be added to the paper 12 for forming low ignition propensity cigarettes 11. The burn control additive can be applied in bands placed at predetermined locations about the circumference of the wrapping paper 12. The bands can be placed a spaced-apart locations aligned transversely to the longitudinal axis of the paper 12. The burn control material can be applied prior to the paper 12 being placed on the bobbin 22. Alternatively, the burn control material can be applied to the wrapping paper 12 after it unwound from the bobbin 22 and before the charge of tobacco filler 27 is delivered to the paper 12 in the garniture 18. Various manners and methods of applying burn control additives to wrapping paper 18 will be apparent to those of skill in the art of cigarette design and manufacture.
Once formed, the cigarette rod can be moved forward from the garniture 18 into the cutting device 19 and cut into individual cigarettes 11. In an embodiment, the cigarette rod can be moved into the cutting device 19 directly from the garniture 18 by the tobacco filler delivery mechanism 16. The tobacco filler delivery mechanism 16 can be slidingly attached to one side of the base 14. The base 14 can include a groove that extends from the proximal end 25 of the base 14 where the tobacco filler delivery mechanism 16 is originally positioned to the distal end 26 of the garniture. The tobacco filler delivery mechanism 16 can thus slide from its original position to the distal end 26 of the garniture 18. In this manner, the tobacco filler delivery mechanism 16 can move the formed cigarette rod having a finite length from the garniture 18 into the cutting device 19. The tobacco filler delivery mechanism 16 may include a means for locking it in place adjacent the cutting device 19. In this way, when the leading end of the tobacco filler delivery mechanism 16 is positioned in contact with the trailing end of the cigarette rod and adjacent the cutting device 19, the delivery mechanism 16 can serve to hold the cigarette rod in place for cutting in the cutting device 19.
In another embodiment, the cigarette rod can be moved into the cutting device 19 directly from the garniture 18 by the forming mechanism 31. In such an embodiment, once the forming mechanism 31 has been moved longitudinally along the garniture 18 to form the wrapping paper 12 about the tobacco cartridge 13, the forming mechanism 31 can be returned to its original position at the proximal end 25 of the garniture 18 behind the cigarette rod just formed. The forming mechanism 31 can include a means for enclosing the proximal end 25 of the forming mechanism 31. For example, an end cap 37 can be rotatably attached to the trailing end of the forming mechanism 31. The end cap 37 can be held in an “up” position while the forming mechanism 31 is used to form the wrapping paper 12 about the tobacco cartridge 13. Once the cigarette rod is formed, the end cap 37 can be rotated downward to enclose the proximal end 25 of the forming mechanism 31. The forming mechanism 31 can then again be moved forward in the garniture 18, such that the end cap 37 contacts the trailing end of the formed cigarette. In this manner, the forming mechanism 31 can move the formed cigarette rod from the garniture 18 into the cutting device 19. When the end cap 37 of the forming mechanism 31 is positioned in contact with the trailing end of the cigarette rod and adjacent the cutting device 19, the forming mechanism 31 can serve to hold the cigarette rod in place for cutting in the cutting device 19.
The cutting device 19 located adjacent the garniture 18 is positioned for cutting the finite length cigarette rod into a plurality of cigarettes 11 after the cigarette rod is formed in the garniture 18 and transferred to the cutting device 19. The cutting device 19 can cut the cigarette rod in a manner perpendicular to the longitudinal axis of the rod to form the desired plurality of cigarettes 11.
It is desirable that the ends of individual cigarettes 11 be substantially perpendicular to the longitudinal axis of the cigarette rod. A perpendicular end of the cigarette rod, and of cigarettes 11 subsequently formed therefrom, is desirable for various reasons, including geometrical alignment with filter elements 62 (as shown in
Referring to
As shown in the embodiment in
In another embodiment, the cutting device 19 can include a sufficient number of cutting blades 38 to provide a desired number of individual cigarettes 11 from the cigarette rod and to trim off the leading and/or trailing end of the rod. For example, the cutting device 19 can include 21 cutting blades 38 in order to cut 20 cigarettes from a cigarette rod and to simultaneously trim the leading and trailing ends of the cigarette rod. In this way, a single pass of the cutting blades 38 can trim both ends of each of the 20 cigarettes produced.
Movement of the cutting blades 38, for example, rotation of the cutting blades 38, is preferably operated electronically. Movement of the cutting device 19 into position for cutting the cigarette rod into individual cigarettes 11 can be accomplished manually or electronically. Electronic operation of the cutting blades 38 and movement of the cutting device 19 into position can be actuated by a switch 41.
During an operation of the cutting device 19, the circular cutting blades 38 are rotated at a very high rate of speed (for example, 1200-2000 rpm) by the motor 40. The motor 40 can be started by activating the switch 41. The circular cutting blades 38 may be covered by a blade housing. The motor 40 also may be covered by an optional motor housing. A suitable motor 40 is an induction motor of at least the size of 25 W ( 1/30 HP), 115V P/N, 41K25A-AWU, available from Oriental Motor USA Corp. The motor 40 may need to have a larger capacity to operate a larger number of cutting blades 38, depending also, for example, on the size of the blades 38, gearing, speed of rotation, and motor efficiency. A representative cutting blade 38 may be constructed of tungsten carbide, and has a diameter of about 62 mm and a thickness of about 0.3 mm. The cutting device 19 can be moved downward from its “up” position and moved through the cigarette rod in a single downward motion. As a result, the cutting device 19 can cut the cigarette rod at desired predetermined locations to form a small lot of individual cigarettes 11. The type and design of motor, gears, cutting mechanism, and operation of a cutting device 19 useful in the present invention will be apparent to those of skill in the art of cigarette design and manufacture. For example, one motor useful in an embodiment of the present invention is described in co-pending U.S. patent application Ser. No. 11/281,083, filed Nov. 17, 2005, to Barnes et al., which is incorporated herein by reference.
In an alternative embodiment, the cutting device 19 can be mounted to the side and parallel to the longitudinal axis of the garniture 18 such that the cutting blades 38 cut the cigarette rod perpendicular to its longitudinal axis. The cutting device 19 can be positioned so as to pass through the cigarette rod at predetermined locations in order to cut the cigarette rod into individual cigarettes 11 of a desired length. Appropriate other cigarette rod cutting means will be readily apparent to those skilled in the art of cigarette design and manufacture.
In the embodiment shown in
An embodiment of a cigarette manufacturing apparatus 10 of the present invention can include a means for collecting and discarding debris that results from cutting the cigarette rod into individual cigarettes 11 and from trimming the ends of the rod. The cutting debris may be loose tobacco filler 27 and/or cut ends. For example, the cigarette manufacturing apparatus 10 can include a removable tray (not shown) located beneath the base 14 of the cutting device 19 that can collect tobacco particles and cigarette ends from the cutting process.
In use, once the cigarette rod formed in the garniture 18 is transferred to the cutting device 19, the leading end of the cigarette rod can be positioned against a cigarette rod stop 44. The cigarette rod stop 44 extends above the upper surface of the base 14 at its distal end 26. The cigarette rod stop 44 serves to stop movement of the cigarette rod as it is moved onto the cutting device platform 52 and to help hold the cigarette rod in the desired position while it is being cut.
In another aspect, a cigarette making apparatus 10 of the present invention can include a means 21 for orienting the plurality of cigarettes 11 cut from the tobacco rod into side-by-side alignment for packaging. The means 21 for orienting cigarettes can be configured to rotate the cigarettes 11 a particular amount, for example, between 30 and 120 degrees from the longitudinal axis of the cigarette rod and the cutting device 19. In a preferred embodiment, the means 21 for orienting the cigarettes 11 can rotate the cigarettes 11 approximately 90 degrees from the longitudinal axis of the cigarette rod. In the exemplary embodiment shown in
A cigarette making apparatus 10 of the present invention may include other means 21 for orienting the plurality of cigarettes 11 cut from the tobacco rod. Appropriate other means 21 for orienting the plurality of cigarettes 11 will be readily apparent to those skilled in the art of cigarette design and manufacture.
In another aspect, a cigarette making apparatus 10 of the present invention can include a means 49 for moving the cigarettes 11 from the cutting device 19 to a tipping and/or packaging device. The means 49 for moving the cigarettes 11 from the cutting device 19 to another device for finishing the manufacture of a small quantity of cigarettes 11 can be in the form of a gravity feed mechanism, conveyor mechanism, tray that can be moved manually or automatically, and/or other suitable mechanism for transferring cigarettes 11 from one location to another during manufacture. In the embodiment shown in
Various other means for transferring the plurality of aligned cigarettes 11 to a tipping and/or packaging device will be readily apparent to those skilled in the art of cigarette design and manufacture. For example, the cigarettes 11 can be turned 90 degrees on a turning drum (as described below) and then collected such as by tilting the cutting device platform 52 and transferring the cigarettes 11 via a cigarette hopper to the tipping device. Alternatively, the formed and cut cigarettes 11 can be transferred to the tipping device by a conveyor mechanism. Preferably, each of the cigarettes 11 that has been cut from the cigarette rod can be moved to the cigarette tray 53 simultaneously. The cigarettes 11 are preferably moved to the hopper in a “no-touch” or “hands-free” manner.
As shown in
Referring to
The cigarette tray 53 can be adapted to be removable from the base 14. Thus, a cigarette tray 53 loaded with cigarettes 11 cut from a cigarette rod formed from the wrapping paper 12 having been wrapped about tobacco filler 27 can be removed from the base as a holder of the cigarettes 11 for transferring the cigarettes 11 to a tipping device and/or a packaging device.
The cigarette tray 53 can be adapted to be capable of being maintained firmly in place relative to the base 14 during periods when finished cigarettes 11 are being off-loaded from the cutting device platform 52 to the cigarette tray 53. A cigarette tray retaining wall 55 can extend upward from the edge of the cutting device platform 52 for holding the tray 53 in position adjacent the cutting device support members 42. Desired secure positioning of the removable cigarette tray 53 within the base 14 can be accomplished by any suitable means. For example, the cigarette tray 53 may be laterally secured to the base 14 using, for example, a pin or key type of design, for example, a key stock (not shown), whereby an upwardly extending protrusion located at a predetermined position in the base 14 cooperates with an alignment slot 56 located at a predetermined location in the bottom face of the cigarette tray 53. The key stock provides for a convenient manner of positioning of a cigarette tray 53 securely in a desired position relative to the base 14.
The key stock can be a longitudinal protrusion with a square cross-section that extends from the side of the cutting device platform 52 to the cigarette tray retaining wall 55. That is, the key stock is designed to align with each of a series of mating slots 56 located at pre-determined locations on the bottom face of the cigarette tray 53 (see
In addition, as shown in
The cigarette tray 53 may include at least one optional coordinating slot 57 on its bottom face at a predetermined location that is a distance apart from the location of the alignment slots 56. The coordinating slot 57 can be used to provide for a desired positioning of the cigarette tray 53 within one or more other devices, such as, for example, an apparatus designed to transfer cigarettes from the tray 53 to a container. A representative device for transferring cigarettes from the cigarette tray 53 to a container for consumer packaging is described below with reference to
The cigarette tray 53 includes a raised region 58 on the front thereof. The raised region 58 facilitates capture and control of one end of the cigarettes 11 within a series of preferably semi-cylindrical grooves, or cavities 59, on the cigarette tray 53. In this way, desired positioning of the cigarettes 11 on the cigarette tray 53 is promoted.
Referring to
In operation, a cigarette tray 53 is placed on the base 14 adjacent the cutting device platform 52. Alignment of the grooves 54 in the tray 53 with the cutting device cigarette support members 42 is facilitated by fitting the mating alignment slot 56 located on the bottom face of the cigarette tray 53 with the key stock protruding from the upper face of the base 14. The cutting device cigarette support members 42 are turned to move the cigarettes 11 substantially perpendicularly from the longitudinal axis of the cutting device 19 so as to orient the cigarettes 11 for transferring to the cigarette tray 53. The cigarette ejector rods 50 are moved toward the cigarettes 11 on the cutting device cigarette support members 42 and used to push the cigarettes 11 onto the grooves 54 of the cigarette tray 53. Preferably, movement of the cigarette ejector rods 50 is performed manually by the operator. As such, a predetermined number of cigarettes 11 are provided on the cigarette tray 53. This completes a single manufacturing operation cycle for one lot of cigarettes 11 (for example, five, ten, or twenty cigarettes).
Embodiments of a cigarette 11 provided by a cigarette making apparatus 10 of the present invention can include a mouth piece at one end of the cigarette 11. Alternatively, a cigarette 11 provided by the cigarette making apparatus 10 may be assembled without a mouth piece. In embodiments of a cigarette 11 having a mouth end piece, the mouth end piece can vary. Preferred mouth end pieces have the form of filter elements 62, as shown in
Representative filter element 62 components, designs, and assemblies are described in Browne, The Design of Cigarettes, 3rd Ed. (1990); Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) 1999; U.S. Pat. No. 2,881,770 to Touey; U.S. Pat. No. 3,101,723 to Seligman et al.; U.S. Pat. No. 3,217,715 to Berger et al.; U.S. Pat. No. 3,236,244 to Irby et al.; U.S. Pat. No. 3,347,247 to Lloyd; U.S. Pat. No. 3,370,595 to Davis et al.; U.S. Pat. No. 3,648,711 to Berger et al.; U.S. Pat. No. 3,957,563 to Sexstone; U.S. Pat. No. 3,972,335 to Tigglebeck et al.; U.S. Pat. No. 4,174,720 to Hall; U.S. Pat. No. 4,201,234 to Neukomm; U.S. Pat. No. 4,223,597 to Lebert; U.S. Pat. No. 4,508,525 to Berger; U.S. Pat. No. 4,807,809 to Pryor et al.; U.S. Pat. No. 4,903,714 to Barnes et al.; U.S. Pat. No. 4,920,990 to Lawrence et al.; U.S. Pat. No. 5,012,829 to Thesing et al.; U.S. Pat. No. 5,025,814 to Raker; U.S. Pat. No. 5,074,320 to Jones, Jr. et al.; U.S. Pat. No. 5,076,295 to Saintsing et al.; U.S. Pat. No. 5,101,839 to Jakob et al.; U.S. Pat. No. 5,105,834 to Saintsing et al.; U.S. Pat. No. 5,105,838 to White et al.; U.S. Pat. No. 5,137,034 to Perfetti et al.; U.S. Pat. No. 5,271,419 to Arzonico et al.; U.S. Pat. No. 5,360,023 to Blakley et al; U.S. Pat. No. 5,396,909 to Gentry et al.; U.S. Pat. No. 5,360,023 to Blakley et al.; U.S. Pat. No. 5,568,819 to Gentry et al.; U.S. Pat. No. 5,622,190 to Arterbery et al.; U.S. Pat. No. 5,718,250 to Banerjee et al.; U.S. Pat. No. 6,530,377 to Lesser et al.; U.S. Pat. No. 6,537,186 to Veluz; U.S. Pat. No. 6,584,979 to Xue et al.; U.S. Pat. No. 6,595,218 to Koller et al.; U.S. Pat. No. 6,615,842 to Cerami et al.; and U.S. Pat. No. 6,631,722 to MacAdam et al.; U.S. Pat. No. 6,656,412 to Ercelebi et al.; U.S. Pat. No. 6,761,174 to Jupe et al.; U.S. Pat. No. 6,779,528 to Xue et al.; U.S. Pat. No. 6,789,547 to Paine III; U.S. Pat. No. 6,805,174 to Smith et al.; U.S. Pat. No. 6,814,786 to Zhuang et al.; U.S. Pat. No. 6,848,450 to Lilly, Jr. et al.; U.S. Pat. No. 6,907,885 to Xue et al.; and U.S. Pat. No. 6,913,784 to Xue et al.; U.S. Patent Application Pub. Nos. 2002/0014453 to Lilly, Jr. et al.; 2003/0154993 to Paine et al.; 2004/0107973 to Atwell; 2004/0194792 to Zhuang et al.; 2004/0226569 to Yang et al.; 2004/0237984 to Figlar et al.; 2005/0133051 to Luan et al.; 2005/0049128 to Buhl et al.; 2005/0066984 to Crooks et al.; 2005/0282693 to Garthaffner et al.; 2006/0025292 to Hicks et al.; 2004/0261807 to Dube et al.; 2005/0066983 to Clark et al.; 2005/0133051 to Luan et al.; 2005/0133052 to Fournier et al.; and 2006/0021624 to Gonterman et al.; European Pat. Application 579410 to White; PCT WO 02/37990 to Bereman; and U.S. patent application Ser. No. 11/226,932, filed Sep. 14, 2005, to Coleman et al.
The plug wrap 64 used to construct the mouth end piece can vary. Plug wrap papers 64 are available from Schweitzer-Mauduit International as Porowrap Plug Wrap 17-M1, 33-M1, 45-M1, 65-M9, 95-M9, 150-M4, 260-M4, and 260-M4T; and from Olsany Facility (OP Paprina) of the Czech Republic (Trierenberg Holding) as Ref. No. 646.
The tipping material 65 used to construct the mouth end piece and attach the mouth end piece to the remainder of the smoking article can vary. Typical tipping materials 65 are papers exhibiting relatively high opacities. Typical tipping materials 65 also are treated with so-called “lip release” agents, such as nitrocellulose. Representative tipping papers 65 and overwrap materials that are used in accordance with the present invention typically have basis weights of about 25 g/m2 to about 60 g/m2, and often of about 30 g/m2 to about 40 g/m2. Representative tipping papers 65 are available as Tervakoski Nos. 3124, TK 652, A362, and A360.
Cigarettes 11 manufactured in accordance with the present invention can be air diluted, or ventilated. The amount or degree of air dilution or ventilation can vary. Frequently, the amount of air dilution for an air diluted cigarette 11 is greater than about 10 percent, often is greater than about 20 percent, generally is greater than about 30 percent, and sometimes is greater than about 40 percent. Typically, the upper level for air dilution does not exceed about 80 percent, and often is less than about 70 percent. As used herein, the term “air dilution” is the ratio (expressed as a percentage) of the volume of air drawn through the air dilution means to the total volume of air and smoke drawn through the cigarette 11 and exiting the mouth end of the cigarette 11. One manner or method for providing air-diluted, filtered cigarettes 11 involves the use of pre-perforated tipping material 65. For example, the mouth end region of the cigarette 11 can be circumscribed by at least one ring of perforations through the tipping material 65, and a porous plug wrap 64 is employed in order to conveniently provide a means for introducing air dilution to the cigarette 11. A ring of air dilution perforations can extend around the cigarette 11 perpendicular to the longitudinal axis of that cigarette 11, and those perforations are positioned at least about 10 mm, frequently at least about 13 mm, and sometimes at least about 15 mm, from the extreme mouth end of the cigarette. See, also, for example, U.S. Pat. App. Nos. 2005/0066980 to Crooks et al. and 2005/0103355 to Holmes.
In an embodiment of the present invention, the cigarettes 11 cut from the cigarette rod can be transferred to a tipping device (not shown) for adding a mouth piece end, such as a filter element. In the tipping device, the cigarettes 11 can have a filter element tip 62 attached in various ways. For example, in an embodiment in which one cigarette 11 is made at a time, a filter element 62 can be aligned with the cigarette 11, and tipping material 65 can be employed to connect the filter element 62 and the cigarette 11 together. In an embodiment in which two cigarettes 11 are made at the same time, a filter element 62 can be aligned at each end of the cigarette rod having the length of two cigarettes 11, and tipping material 65 can be employed to connect the filter element 62 at each end to the cigarette rod. The two cigarette-length rod can then be sub-divided into two filtered cigarettes 11. Representative equipment for feeding (for example, trays, hoppers, wheels, and the like), aligning, tipping, or otherwise connecting, subdividing, turning, conveying, separating, and collecting (for example, using trays, belts, hoppers, and the like) components of cigarettes 11 using tipping devices will be apparent to those skilled in the art of cigarette design and manufacture. See, for example, the types of devices and combination techniques set forth in U.S. Pat. No. 3,308,600 to Erdmann et al.; U.S. Pat. No. 4,280,187 to Reuland et al.; U.S. Pat. No. 4,281,670 to Heitmann et al.; and U.S. Pat. No. 6,229,115 to Vos et al.; and U.S. Pat. Publication No. 2005/0194014 to Read, Jr. Representative tipping devices are available as MAX, MAX S or MAX 80 from Hauni Maschinenbau AG of Hamburg, Germany. In embodiments of the present invention, filter elements 62 can most preferably be connected to cigarette rods using equipment such as is available as Lab MAX from Hauni Maschinenbau AG and LKF-01 Laboratory Multi Filter Maker from Heinrich Burghart GmbH.
In a preferred embodiment, the lighting end 66 of the manufactured cigarette 11 preferably is configured such that the cut tobacco filler 27 (for example, the tobacco filler 27 in a tobacco cartridge 13) extends only to the end of the wrapping paper 12 in an assembled cigarette 11. In a preferred embodiment of the cigarette 11, the tobacco filler 27 abuts the filter element 62. Alternatively, the tobacco filler 27 may be separated from the filter element 62 by a space that is preferably less than 1 mm.
An embodiment of a cigarette making apparatus 10 of the present invention can include a means for packaging the plurality of cigarettes 11 cut from a cigarette rod. Once the aligned cigarettes 11 are positioned in alignment in the cigarette tray 53, the tray 53 can be transported to a packaging device.
Referring to
The bottom frame 68 supports an upper platform 69. The upper platform 69 is suspended above the base 68 by left and right side walls 70. In a representative embodiment, the clearance between the upper face of the bottom frame 68 and the lower surface of the upper platform 69 is about 3 cm. A representative upper platform 69 may be manufactured from any suitable material, but preferably is manufactured from aluminum.
The upper platform 69 includes an upwardly extending ejection rod-supporting cross-member 71 that extends thereacross. Extending generally horizontally forward from the cross-member 71 is a plurality of ejection rods 72. In the embodiment shown, the package-filling device 67 includes 20 forwardly-extending ejection rods 72, each with a substantially circular cross-section. A representative ejection rod 72 has a length of about 7.2 cm and a diameter of about 4 mm and can be manufactured from steel. The package-filling device 67 preferably is adapted such that in a region forward of the ejection rods, there is a positioning platform region 73 for a cigarette tray 53 filled with 20 cigarettes 11. It is preferred that the cigarettes 11 within the cigarette tray 53 are positioned on their sides (that is, the longitudinal axis of each cigarette 11 is parallel to, or substantially parallel to, the horizontal plane, and aligned with the longitudinal axis of the package-filling device 67). The central portion of the positioning platform region 73 includes a broad space 74 open to the structures below, as is explained hereafter.
Below the front portion of the cigarette tray positioning platform region 73 are an inwardly sloping left panel 75 and an inwardly sloping right panel 76 that define the sides of an open center region 74. Representative sloping panels 75, 76 can be manufactured from sheets of highly polished stainless steel. A representative open center region 74 is generally rectangular with a width of about 8 cm and a length of about 9 cm.
The upper face of the bottom frame 68 includes a broad groove 77, channel, or other means for providing for controlled movement of a carriage 78 from the back of the base 68 to the front of the package-filling device 67. A representative groove 77 can have a vertical depth of about 4 mm to about 6 mm, a width of about 9 cm, and a length such that the groove 77 extends to within about 1 cm of the front end of the device 67. The arrangement of the carriage 78 and groove 77 preferably are such that the carriage 78 is easily movable within the groove 77. Typically, selection of the respective shapes and dimensions of the carriage 78 and the groove 77 define the arrangement of the carriage 78 in the groove 77. For example, the sides of the carriage 78 and the sides of the groove 77 may be designed so as to cooperate in a tongue-in-groove type of arrangement.
The carriage 78 includes an upwardly extending handle 79, such that the carriage 78 can be moved back and forth. Within a recess 80 in the upper face of the carriage 78 is positioned a cigarette package 81 in an open position. A representative package 81 can include a bottom component 82 for holding 20 cigarettes 11 (not shown), and a top cover 83 that is designed to close over the bottom component 82. A representative recess 80 can have a vertical depth of about 4 mm to about 6 mm; and a representative recess 80 having a length of about 19 cm and a width of about 9 cm can readily accommodate a package with a bottom component 82 having outer dimensions of about 8.2 cm wide, about 8.9 cm long and about 18 mm high (such dimensions being measured when the box is in a closed or sealed configuration).
In operation, the package-filling device 67 can be positioned firmly in place on a table, bench, counter, or the like. Alternatively, the package-filling device 67 can be permanently affixed to components of a work station. Optionally, a pre-cut inner package wrapping paper, foil/paper laminate or paper-lined foil (not shown) can be placed into the package 81. A typical foil sheet may have a width that approximates the width of the inner portion of the package, and a length of about 16 cm. A forming block (not shown) having stamp face dimensions approximating those of the inner bottom face area 82 of the package 81 can be used to push the foil into the box 81. In this manner, the foil can be creased within the bottom portion 82 of the box. The forming block then is removed from the box 81 so as to provide the box 81 having a type of inner liner positioned therein. In addition, the foil may be of such a length that tabs extend from both of bottom front and back of the package 81.
A backstop 84 located at the front of the carriage 78 assists in maintaining the package 81 in place during operation of the package-filling device 67. On the top face of the backstop 84 is positioned a slot 85. The slot 85 can be designed such that inner package wrapping paper or paper-lined foil extending from the front bottom 82 of the package 81 can be fed into the slot 85 in order that the foil is positioned out of the way when the cigarette package 81 is filled with cigarettes 11.
Referring to
In the representative device 67 for filling a cigarette package with manufactured cigarettes 11 described with reference to
Referring to
The package 81 includes a generally rectilinear top cover 83 that opens about a hinge that extends along the back side of the box. The cigarettes 11 are contained in the bottom component 82 of the box. The bottom component 82 also holds a foil front flap 86 and a foil back flap 87 that can close over the cigarettes 11, or that can be opened to expose the cigarettes 11 (as is shown). Representative types of shoulder box packages 81 have been commercially available, and the selection thereof is a matter of choice. If desired, the shoulder box and associated wrapping materials can be embossed, printed with indicia, or the like. If desired, the package 81 of cigarettes 11 can be wrapped in a plastic or other film (for example, a clear polypropylene film).
Other representative types of cigarette packages suitable for use with the present invention includes those of the types set forth in U.S. Pat. No. 4,294,353 to Focke et al.; U.S. Pat. No. 4,534,463 to Bouchard; U.S. Pat. No. 4,852,734 to Allen et al.; and U.S. Pat. No. 5,139,140 to Burrows et al.; U.S. Pat. App. Pub. Nos. 2004/0217023 to Fagg et al. and 2004/0256253 to Henson et al.; and German Pat. App. DE 10238906 to Marx.
A small lot of cigarettes 11 can be manufactured in accordance with the present invention as described above during a relatively short time period. For example, for a lot of cigarettes 11 numbering approximately 20, an appropriate amount of tobacco filler 27 is selected, blended—if multiple tobacco types are selected—and loaded into the cigarette-making apparatus 10. A sufficient amount of the tobacco filler 27 for making a length of cigarette rod for cutting into 20 cigarettes 11 is delivered onto wrapping paper 12 in the garniture 18. The wrapping paper 12 is formed about the tobacco filler 27 to form a cigarette rod of predetermined length. The cigarette rod is then moved to the cutting device 19 and cut into 20 cigarettes 11. The cigarettes 11 can be moved to a tipping device where mouth piece ends can be added to the cigarettes 11. The cigarettes 11 can then be packaged for the consumer. All of the foregoing, can be carried out in less than about three minutes, and preferably can be carried out in less than about two minutes.
Tobacco materials useful within cigarettes 11 of the present invention may vary significantly. Tobacco materials can be derived from various types of tobacco, such as flue-cured tobacco, burley tobacco, Oriental tobacco or Maryland tobacco, dark tobacco, dark-fired tobacco and Rustica tobaccos, as well as other rare or specialty tobaccos, or blends thereof. Descriptions of various types of tobaccos, growing practices, harvesting practices and curing practices are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Most preferably, the tobaccos used with the present invention are those that have been appropriately cured and aged.
Tobacco materials for cigarette manufacture can be used in a “single strain” form. That is, the tobacco material used to manufacture the cigarette 11 is composed of one type of tobacco (for example, all of the tobacco filler is a flue-cured tobacco). Typically, tobacco materials for cigarette manufacture are used in a so-called “blended” form. For example, certain popular tobacco blends, commonly referred to as “American blends,” comprise mixtures of flue-cured tobacco, burley tobacco, and Oriental tobacco. Such blends, in many cases, contain tobacco materials that have a processed form, such as processed tobacco stems (for example, cut-rolled or cut-puffed stems), volume expanded tobacco (for example, puffed tobacco, such as dry ice expanded tobacco (DIET), preferably in cut filler form). Tobacco materials also can have the form of reconstituted tobaccos (for example, reconstituted tobaccos manufactured using paper-making type or cast sheet type processes). The precise amount of each type of tobacco within a tobacco blend used for the manufacture of a particular cigarette brand varies from brand to brand. See, for example, Tobacco Encyclopedia, Voges (Ed.) p. 44-45 (1984), Browne, The Design of Cigarettes, 3rd Ed., p. 43 (1990) and Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) p. 346 (1999). Other representative tobacco types and types of tobacco blends also are set forth in U.S. Pat. No. 4,836,224 to Lawson et al.; U.S. Pat. No. 4,924,888 to Perfetti et al.; U.S. Pat. No. 5,056,537 to Brown et al.; U.S. Pat. No. 5,220,930 to Gentry; and U.S. Pat. No. 5,360,023 to Blakley et al.; U.S. Pat. App. Pub. Nos. 2002/0000235 to Shafer et al.; 2004/0084056 to Lawson et al.; 2004/0255965 to Perfetti et al; 2004/0261807 to Dube et al.; and 2005/0066986 to Nestor et al; PCT Application Pub. No. WO 2002/37990; and Bombick et al., Fund. Appl. Toxicol., 39, p. 11-17 (1997).
Tobacco materials employed for manufacture of cigarettes 11 in accordance with the present invention typically have forms, and are used in manners, that are traditional for the manufacture of smoking articles, such as cigarettes 11. The tobacco normally is used in cut filler form (for example, shreds or strands of tobacco filler cut into widths of about 1/20 inch to about 1/60 inch, often about 1/25 inch to about 1/50 inch, frequently about 1/30 inch to about 1/45 inch, and in lengths of about ¼ inch to about 3 inches). One preferred form of cut filler 27 has a cut width of about 40 cuts per inch. Tobacco cut filler 27 is used in a loose form, that is, as a mixture of pieces of tobacco filler.
The amount of tobacco filler 27 normally used within the cigarette 11 of the present invention preferably ranges from about 0.6 g to about 1 g per individual cigarette 11. The tobacco filler 27 normally is employed so as to fill each cigarette 11 at a packing density of about 100 mg/cm3 to about 300 mg/cm3, and preferably about 150 mg/cm3 to about 275 mg/cm3.
If desired, the tobacco materials of the tobacco rod can also include other components. Other components may include casing materials (for example, sugars, glycerin, cocoa and licorice) and top dressing materials (for example, flavoring materials, such as menthol). The selection of particular casing and top dressing components is dependent upon factors such as the sensory characteristics that are desired, and the selection of those components will readily be apparent to those skilled in the art of cigarette design and manufacture. See, Gutcho, Tobacco Flavoring Substances and Methods, Noyes Data Corp. (1972) and Leffingwell et al., Tobacco Flavoring for Smoking Products (1972).
It is desirable that the moisture content of the tobacco filler 27 be sufficiently high so that the tobacco filler 27 does not undergo an undesirable degree of degradation during handling and processing associated with cigarette manufacture in accordance with the present invention. It also is desirable that the moisture content of the tobacco filler not be so high that the tobacco filler would exhibit undesirable clumping during handling and processing associated with cigarette manufacture in accordance with the present invention. Preferably, cigarettes 11 are manufactured using tobacco filler 27 having a moisture content of about 12 weight percent to about 13 weight percent. Tobacco filler 27 most preferably is purchased immediately prior to use, and stored and handled in a manner such that moisture is not lost. For example, in embodiments in which tobacco filler 27 is supplied to the garniture 18 in loose form, the tobacco filler 27 can be stored in sealed plastic bags, in sealed metal drums, or the like. Typically, for normal situations of tobacco filler handling, tobacco filler 27 can be shipped, handled, and stored in sealed containers or plastic bags in amounts of about 5 kilograms.
Tobacco filler 27 can be provided using techniques familiar in the art of tobacco blend formulation and preparation. Tobacco filler 27 can be provided using blending drums, air transport devices, or other suitable means that provides adequate physical mixing of pieces of tobacco filler material. It is highly desirable that the tobacco filler 27, whether as single strain or blended form, have the form of a consistent mixture in terms of distribution of particle size, density of components, and composition of components.
In an embodiment of the cigarette manufacturing apparatus 10, and components thereof, described with reference to
The embodiments of the cigarette manufacturing apparatus 10 shown in
Referring to
The dimensions of a representative cigarette 11 can vary. Cigarettes 11 may be substantially rod shaped, with, or example, diameters of about 7.5 mm (for example, circumferences of about 22.5 mm to about 25 mm), and total lengths of about 80 mm to about 100 mm. The filter element 62 includes filter material 63, for example, plasticized cellulose acetate tow, and is circumscribed by a plug wrap 64. The length of the filter element 62 can also vary. Typical filter elements 62 can have lengths of about 20 mm to about 40 mm, preferably about 25-35 mm, and most preferably about 25-30 mm. In one preferred embodiment, the length of the filter element 62 is about 27 mm and the length of the tobacco rod is about 56 mm. Preferably the tipping paper 65 circumscribes the entire filter element 62 and extends along about 4 mm of the length of the tobacco rod in the region adjacent to the filter element 62.
Cigarettes 11 manufactured in accordance with the present invention can be air diluted, or ventilated. The amount or degree of air dilution or ventilation can vary. Frequently, the amount of air dilution for an air diluted cigarette 11 can be greater than about 10 to 40 percent, and often does not exceed about 70 to 80 percent. Such cigarettes 11 can include pre-perforated tipping material 65 and a porous plug wrap 64 for introducing air dilution to the cigarette 11. A ring of air dilution perforations can extend around the cigarette 11 perpendicular to the longitudinal axis of that cigarette 11, and those perforations can be positioned at least about 10 to 15 mm from the extreme mouth end of the cigarette 11.
Embodiments of the present invention provide tobacco filler 27 wrapped inside a wrapping paper 12 in a controlled manner. As a result, a cigarette manufacturing apparatus 10 according to the present invention provides consistently-formed, uniformly-made cigarettes 11. Manufacturing a lot, for example, a lot of 20 cigarettes 11 in a retail setting, for example, in which each cigarette 11 has substantially the same density overcomes the disadvantage of producing cigarettes 11 individually, whereby individual cigarettes 11 may have non-uniformly packed tobacco rods of varying densities.
Preferably, cigarettes 11 are manufactured such that substantially all of the cigarettes 11 within a lot are of consistent quality. It is preferred that cigarettes 11 of a particular lot are comparable to one another in terms of appearance, size, shape, component materials, weight, tobacco filler particle size distribution, tobacco rod firmness, smoking properties, puff count, smoke yield, and the like. Preferred cigarettes 11 within a lot each incorporate tobacco filler 27 from a comparable source, and the weight of tobacco filler 27 within each cigarette 11 differs by not more that 10 percent, more preferably by not more than about 5 percent, and most preferably by not more than about 2.5 percent. In a preferred cigarette-making operation using each of the above-described devices, an operator never touches the wrapping paper 12 directly with his/her hands. This preferred mode of operation prevents moisture, skin oils, or other materials on the operator's hands from soiling or marring the aesthetic appearance of the wrapping paper 12.
Preferably, each cigarette 11 is uniformly filled with tobacco filler 27. That is, it is preferred that each cigarette 11 of the present invention (i) include a sufficient amount of tobacco filler 27, (ii) not contain tobacco fines that fall from the cigarette 11, (iii) not include what can be characterized as a “loose end,” (iv) have good integrity throughout, and (v) not include low density or void regions.
A cigarette 11 made utilizing a cigarette manufacturing apparatus 10 according to the present invention preferably exhibits good firmness and good integrity. Specifically, when measured at 76° F. and 60 percent relative humidity using a Cigarette Firmness Tester Model No. CFTA supplied by Fairchild Industries, Winston-Salem, N.C., typical rods of 24.5 mm circumference and made by a conventional high-speed cigarette-making machine yield firmness values of about 2 to about 7 units. See, e.g., U.S. Pat. No. 4,962,773 to White et al. at col. 5, lines 10-24. Cigarettes 11 manufactured in accordance with the present invention preferably are less firm than comparable cigarettes (in terms of comparable component materials, sizes, formats and weights) that are manufactured using conventional automated cigarette manufacturing techniques, such as the type of cigarette-manufacturing machine available as “Protos” from Hauni-Werke Korber & Co. KG. In alternative embodiments, cigarettes 11 manufactured in accordance with the present invention may be firmer than comparable cigarettes 11 manufactured using a “Protos”-type of cigarette-manufacturing machine, depending on the way the cigarettes 11 are manufactured.
Preferred cigarettes 11 of the present invention exhibit desirable resistance to draw. For example, an exemplary cigarette 11 exhibits a pressure drop of between about 50 and about 200 mm water pressure drop at 17.5 cc/sec. air flow. Preferred cigarettes 11 exhibit pressure drop values of between about 70 mm and about 180, more preferably between about 80 mm to about 150 mm, water pressure drop at 17.5 cc/sec. air flow. Typically, pressure drop values of cigarettes 11 are measured using a “Filtrona Filter Test Station” (CTS Series) available from Filtrona Instruments and Automation Ltd.
Other embodiments of a cigarette manufacturing apparatus 10 according to the present invention may include alternative configurations of the tobacco filler delivery mechanism 16, tobacco supply, garniture 18, cigarette rod forming mechanism 31, cutting device 19, means for orienting cigarettes 21, and means for moving cigarettes 49 from the cutting device.
The present invention can include a method for manufacturing a small lot of cigarettes 11 utilizing the various embodiments of a cigarette manufacturing apparatus 10 described herein. In one illustrative method, at least one charge of tobacco filler 27 can be delivered from a supply of tobacco filler 27 onto a predetermined length of wrapping paper 12 in the garniture 18. The wrapping paper 12 can be formed about the charge of tobacco filler 27 by the forming mechanism 31 in the garniture 18. In an embodiment of such a method, the wrapping paper 12 can be sealed onto itself with an adhesive in the garniture 18 to thereby form a cigarette rod. The cigarette rod may be sealed while maintained in a stationary position in the garniture 18, or the wrapping paper 12 and tobacco filler 27 may be moved in the garniture 18 for sealing the paper 12 onto itself. The cigarette rod forming process can be initiated for forming a single, finite length cigarette rod and stopped when that rod is formed. The method thus provides for making a cigarette rod having a finite length (sufficient to make a predetermined number of cigarettes 11) formed in a discrete process separate from the process for cutting the cigarette rod into a plurality of cigarettes 11.
The cigarette rod formed in the garniture 18 can be to moved to the cutting device 19, and the cigarette rod can be cut into a plurality of individual cigarettes 11. In an embodiment, the steps of delivering a charge of tobacco filler 27 from the supply of tobacco filler 27 onto a wrapping paper 12 in the garniture 18, forming the wrapping paper 12 about the charge of tobacco filler 27, moving the cigarette rod formed therefrom to the cutting device 19, and cutting the cigarette rod into individual cigarettes 11 can be repeated to form a desired plurality of cigarettes 11.
In another aspect, the invention includes a method for manufacturing a small lot of cigarettes 11 in which a selection of tobacco 27 appropriate for use in cigarettes 11 is provided. A customer is allowed to select a tobacco 27 or blend of several tobaccos 27. The selected tobacco 27 or blend of tobaccos 27 is substantially simultaneously assembled into a plurality of cigarettes 11. At least some of the plurality of cigarettes 11 is then provided to the customer. The method may further include packaging the plurality of cigarettes 11.
In an alternative embodiment of the method, the step allowing a customer to select a tobacco 27 or blend of several tobaccos 27 includes allowing a customer to select a plurality of tobaccos 27 or a plurality of tobacco blends 27. Assembling the selected tobacco 27 or blend of tobaccos 27 into a plurality of cigarettes 11 can include assembling a plurality of cigarettes 11 wherein one or more of the plurality of cigarettes 11 includes a different tobacco 27 and/or blend than other(s) in the plurality of cigarettes 11. In another alternative embodiment of the method, the selected tobacco 27 or blend of tobaccos 27 is provided in the form of tobacco cartridges 13 that may be assembled into cigarettes 11 using, for example, a cigarette making apparatus 10 such as is described with reference to
A cigarette manufacturing apparatus 10 and method of the present invention may be incorporated within a tobacco specialty retail shop or store. That is, at least one such apparatus 10 may be on prominent display within the premises of in a retail establishment specializing in high quality or premium tobacco products. Such a shop or store may have a name that corresponds to the brand name of tobacco products available for sale within that shop or store. The shop or store preferably includes an inviting atmosphere, comfortable lounge areas or appropriate places to sit and enjoy the smoking of tobacco products, a high quality air handling or air conditioning system, and locations to purchase tobacco products. A customer within such a shop or store can talk with a tobacconist about the cigarettes 11 that are manufactured in that retail establishment. The packaging, filter materials 63, cigarette paper materials 12, tobacco components (including the selection of tobacco types and grade, tobacco blends, and casing and top dressing components) can be high quality in terms of sensory properties and appearance. Locating a cigarette making device within such a shop or store allows the customer within such an establishment to experience the manufacture of cigarettes 11, and enjoy cigarettes 11 that are freshly made in his/her presence. For example, that customer can smell the aroma of different tobaccos 27 within the store, and can view the manufacture of cigarettes 11 expressly for him/her. In this environment, using multi-sensory inputs (for example, sight and smell), the customer can make an informed decision on his/her selection of different tobaccos 27 and/or tobacco blends to be loaded into the cigarette making apparatus 10 to manufacture cigarettes in his/her presence. Thus, the devices and methods embodied in the present invention may be utilized in a retail setting that provides a customer with an aesthetic experience and an individually selected product.
An example of a cigarette manufacturing device having some components and operational characteristics similar to the cigarette manufacturing apparatus 10 according to the present invention is employed to manufacture cigarettes for commercial sale in the tobacco retail store located at the establishment operating as Marshall McGearty Tobacco Lounge at 1553 North Milwaukee Avenue, Chicago, Ill. That device can be employed to manufacture cigarettes 11 using the tobacco blends incorporated into those brand styles identified as The Standard, Karmelita, Oriental Rose, Malawi Kings, Cutlass, Samsun Straights, Virginia, Four Corners, The Empress, The Earl, North Star, Aegeans, and Muse within Marshall McGearty brand cigarettes by Marshall McGearty Tobacco Artisans.
A cigarette manufacturing apparatus 10 according to the present invention, and materials utilized in relation thereto, can be suitably modified and/or adapted to incorporate other types of cigarette rod forming components, or to operate using other types of mechanisms. For example, the apparatus 10 can be designed to incorporate suitably modified components, or to operate using the cigarette rod formation mechanisms, of the types set forth in U.S. Pat. No. 1,956,838 to Steurart; U.S. Pat. No. 2,242,000 to Kurst; U.S. Pat. No. 2,302,926 to White; U.S. Pat. No. 2,376,103 to Wahl; U.S. Pat. No. 2,404,242 to Moss; U.S. Pat. No. 2,415,910 to Roes; U.S. Pat. No. 2,427,957 to Getts; U.S. Pat. No. 2,436,015 to Morris; U.S. Pat. No. 2,437,615 to Rutherford; U.S. Pat. No. 2,868,209 to Marcotte; U.S. Pat. No. 3,011,498 to Armelin; and U.S. Pat. No. 4,832,056 to Bryant et al.; each of which is incorporated herein by reference.
Although the present invention has been described with reference to particular embodiments, it should be recognized that these embodiments are merely illustrative of the principles of the present invention. Those of ordinary skill in the art will appreciate that an apparatus and methods for manufacturing cigarettes of the present invention may be constructed and implemented in other ways and embodiments. Accordingly, the description herein should not be read as limiting the present invention, as other embodiments also fall within the scope of the present invention.