Submitted herewith are two identical compact discs. The material on these compact discs is incorporated herein by reference. Each of these identical compact discs contains the following file: “Computer program listing appendix for 29325.017.txt”, created Sep. 1, 2011, size: 86 kilobytes.
One embodiment of the present invention comprises a metering device that is related to the Quadlogic ASIC-based family of meters (see U.S. Pat. No. 6,947,854, and U.S. Pat. App. Pub. No. 20060036388, the entire contents of which are incorporated herein by reference). Specifically, this embodiment (referred to herein for convenience as “Energy Guard”) is a multi-channel meter that preferably is capable of providing much of the functionality of the above-mentioned family of meters, and further provides the improvements, features, and components listed below.
Used in at least one embodiment, a MiniCloset is a 24-channel metering device that can measure electric usage for up to 24 single-phase customers, 12 two-phase customer, or 8 three-phase customers. Preferably connected to the MiniCloset are one or more Load Control Modules (LCMs), discussed below.
Energy Guard preferably comprises a MiniCloset meter head module and two LCMs mounted into a steel box. Relays that allow for an electricity customer to be remotely disconnected and reconnected, along with current transformers, also are mounted into the box. See
Upon installation, an electricity customer's electricity supply line is tapped off the main electric feeder, passed through the Energy Guard apparatus, and run directly to the customer's home. The construction and usage of the Energy Guard will be apparent to those skilled in the art upon review of the description below and related figures. Source code is supplied in the attached Appendix.
Energy Guard meters preferably are operable to provide:
(A) Remote Disconnect/Reconnect: The meter supports full duplex (bi-directional) communication via power line communication (“PLC”) and may be equipped with remotely operated relays (60 amp, 100 amp, or 200 amp) that allow for disconnect and reconnect of electric users remotely.
(B) Theft Prevention: The system is designed with three specific features to prevent theft. First, an Energy Guard apparatus preferably is installed on a utility pole above the medium-tension lines, making it difficult for customers to reach and tamper with. Second, because there are no additional signal wires with the system (i.e., all communication is via the power line), any severed communication wires are immediately detectable. That is, if a communication wire is cut, service is cut, which is readily apparent. A third theft prevention feature is that the meter may be used to measure the transformer energy in order to validate the measured totals of individual clients. Discrepancies can indicate theft of power.
(C) Tamper Detection: The Energy Guard preferably provides two modes of optical tamper detection. Each unit contains a light that reflects against a small mirror-like adhesive sticker. The absence of this reflective light indicates that the box has been opened. This detection will automatically disconnect all clients measured by that Energy Guard unit. In addition, if the Energy Guard enclosure is opened and ambient light enters, this will also automatically disconnect all clients measured by that Energy Guard unit. These two modes of tamper detection are continuously engaged and alternate multiple times per second for maximum security.
(D) Reverse Voltage Detection: In some cases, a utility company can disconnect power to an individual client and that client is able to obtain power via an alternative feed. If the utility were to reconnect power under these conditions, damage could occur to the metering equipment and/or the distribution system. Energy Guard preferably is able to detect this fault condition. The Energy Guard can detect any voltage that feeds back into the open disconnect through the lines that connect to the customers' premises. If voltage is detected, the firmware of the Energy Guard will automatically prevent the reconnection.
(E) Pre-Payment: Pre-payment for energy can be done via phone, electronic transaction, or in person. The amount of kWh purchased is transmitted to the meter and stored in its memory. The meter will count down, showing how much energy is still available before reaching zero and disconnecting. As long as the customer continues to purchase energy, there will be no interruption in service, and the utility company will have a daily activity report.
(F) Load Limiting: As an alternative to disconnection for nonpayment or part of a pre-payment system, Energy Guard meters can allow the utility to remotely limit the power delivered to a set level, disconnecting when that load is exceeded. If the customer exceeds that load and is disconnected, the customer can reset a button on the optional remote display unit to restore load as long as the connected load is less than the pre-set limit. Alternatively, clients can call an electric utility service line by telephone to have the service restored. This feature allows electric utilities to provide electricity for critical systems even, for example, in the case of a non-paying customer.
(G) Monthly Consumption Limiting: Some customers benefit from subsidized rates and are given a maximum total consumption per month. The Energy Guard firmware is capable of shutting down power when a certain consumption level is reached. However, this type of program is best implemented when advanced notification to customers is provided. This can be achieved either with a display in the home whereby a message or series of messages notifies customers that their rate of consumption is approaching the projected consumption for the month. Alternatively (or in conjunction) timed service interruptions can be programmed so that as the limit is approaching, power is disconnected for periods of time with longer and longer increments to notify the residents. These planned interruptions in service act as a warning to customers that their limit is nearing so that they have time to alter their consumption patterns.
(H) Meter Validation: The integrated module of the system preferably is removable. This permits easy laboratory re-validation of meter accuracy in the event of client billing disputes.
(I) Operational Benefits for Utility: The Energy Guard has extensive onboard event logs and diagnostic functions, providing field technicians with a wealth of data for commissioning and trouble shooting the electrical and communication systems. Non billing parameters include: amps, volts, temperature, total harmonic distortion, frequency, instantaneous values of watts, vars and volt-amperes, V2 hrs, I2 hrs, power factor, and phase angle.
These features and others will be apparent to those skilled in the art after reviewing the attached descriptions, software code, and schematics.
In one aspect, the invention comprises a device for measuring electricity usage, comprising: means for remote disconnection via power line communication; means for detection of electricity theft; means for tamper detection; and means for reverse voltage detection.
In another aspect, the invention comprises an apparatus for multi-channel metering of electricity, comprising: (a) a meter head operable to measure electricity usage for a plurality of electricity consumer lines; (b) a transponder in communication with the meter head and operable to transmit data received from the meter head via power line communication to a remotely located computer, and to transmit data received via power line communication from the remotely located computer to the meter head; and (c) a load control module in communication with the meter head and operable to actuate connection and disconnection of each of a plurality of relays, each relay of the plurality of relays corresponding to one of the plurality of electricity consumer lines.
In various embodiments: (1) the apparatus further comprises a tamper detector in communication with the meter head; (2) the tamper detector comprises a light and a reflective surface, and the meter head is operable to instruct the load control module to disconnect all of the customer lines if the tamper detector provides notification that the light is not detected reflecting from the reflective surface; (3) the apparatus further comprises a box containing the meter head, the load control module, and the relays, and wherein the tamper detector comprises a detector of ambient light entering the box; (4) the apparatus further comprises a box containing the meter head, the load control module, and the relays, and wherein the box is installed on a utility pole; (5) the apparatus further comprises means for comparing transformer energy to total energy used by the consumer lines; (6) the apparatus further comprises means for detecting reverse voltage flow through the consumer lines; (7) the apparatus further comprises a computer readable memory in communication with the meter head and a counter in communication with the meter head, the counter corresponding to a customer line and operable to count down an amount of energy stored in the memory, and the meter head operable to send a disconnect signal to the load control module to disconnect the customer line when the counter reaches zero; (8) the apparatus further comprises a computer readable memory in communication with the meter head, the memory operable to store a load limit for a customer line, and the meter head operable to send a disconnect signal to the load control module to disconnect the customer line when the load limit is exceeded; (9) the apparatus further comprises a computer readable memory in communication with the meter head, the memory operable to store a usage limit for a customer line, and the meter head operable to send a disconnect signal to the load control module to disconnect the customer line when the usage limit is exceeded; (10) the transponder is operable to communicate with the remotely located computer over medium tension power lines; (11) the apparatus further comprises a display unit in communication with the meter head and operable to display data received from the meter head; (12) the display unit is operable to display information regarding a customer's energy consumption; (13) the display unit is operable to display warnings regarding a customer's energy usage or suspected theft of energy; and (14) the display unit is operable to transmit to said meter head information entered by a customer.
FIGS. 17 and 18A-B depict preferred acceptor module construction.
In one embodiment, an Energy Guard metering apparatus comprises a MiniCloset (that is, a metering apparatus operable to meter a plurality of customer lines); a Scan Transponder; one or more relays operable to disconnect service to selected customers; a Load Control Module; and optical tamper detection means.
The MiniCloset and Scan Transponder referred to herein are largely the same as described in U.S. Pat. No. 6,947,854. That is, although each has been improved over the years, the functionality and structure relevant to this description may be taken to be the same as described in that patent.
One aspect of the invention comprises taking existing multichannel metering functionality found in the MiniCloset and adding remote connect and disconnect via PLC. Providing such additional functionality required adding new hardware and software. The added hardware comprises a Load Control Module (LCM) and connect/disconnect relays. Also added was support circuitry to route signal traces to and from the main meter processor—the MiniCloset5 Meter Head. The software additions include code modules that communicate with the added hardware, as described in the tables below.
Scan Transponder 210 is the preferred data collector for the unit 140, may be located external to or inside the MiniCloset, and may be the main data collector for more than one MiniCloset at a time. The Scan Transponder 210 preferably: (a) verifies data (each communication preferably begins with clock and meter identity verification to ensure data integrity); (b) collects data (periodically it collects a data block from each meter unit, with each block containing previously collected meter readings, interval readings, and event logs); (c) stores data (preferably the data is stored in non-volatile memory for a specified period (e.g., 40 days)); and (d) reports data (either via PLC, telephone modem, RS-232 connection, or other means).
The slide plate 280 comprises a Minicloset meter head and a load control module 240 that provides the control signals to activate the relays. All of the electronics preferably is powered up by power supply 250. The back plate assembly 270 comprises multiple (e.g., 24) Current Transformers and relays—grouped, in this example, as three sets of 8 CTs and relays. Customer cables are wired through the CTs and connect to the circuit on customer premises 290. The remotely located Scan Transponder 210 accesses the Energy Guard meter head and bi-directionally communicates using power line carrier communication.
The signal flow shown in
In another embodiment, the implementation of Energy Guard takes advantage of the similarity of architecture of traditional circuit breaker panels, with the multichannel metering environment. In a circuit breaker panel, electricity is fed to the panel and distributed among various customer circuits via circuit breakers that provide the ability to connect or disconnect the customer circuits.
In the MiniCloset/Energy Guard, multiple current transformers measure the current in customer circuits and bring this data back to a central processing unit where the metering quantities are calculated. However, the MiniCloset/Energy Guard has several key differences with a circuit breaker panel. For example, whereas circuit breakers are found near customer premises, the Energy Guard typically is installed near the utility distribution transformer. The advantages offered by this alternate embodiment will be apparent to those skilled in the art. For example, this embodiment offers improved dimensions and overall size over the embodiments discussed above. Space is always a constraint when equipment additions are made to existing electrical installations. This version of the Energy Guard (“EG”), with preferred dimensions of 28″×22″×11″ provides a substantial advantage in situations where volumetric constraints exist.
The following description includes preferred construction details, detailed schematics, and software descriptions. As with the embodiments discussed above, this embodiment is operable to providing remote disconnect/connect operations, preventing theft, detecting tampering, detecting reverse voltage, performing pre-payment and limiting load, and performing meter validation.
Preferred EG Construction Details
In this embodiment, primary components of the EG are:
1. Energy Guard Base Assembly
2. Energy Guard Assembly
3. Energy Guard Metering Modules
4. Energy Guard Electronics
EG Base Assembly
The EG base comprises an enclosure bottom with screws and retaining washers as a locking mechanism for the top cover of EG, which is connected on one side by piano hinges. See
EG Assembly—Phase Bus Bars
Three aluminum phase bus bars are placed towards the center of the Energy Guard assembly and staggered. See
Neutral Bars
The EG preferably comprises 4 neutral bars that form a frame for EG assembly, thereby providing a path for the neutral current. This is shown in
Transition Bars
The transition bars complete the mechanical and electrical connection between the customer metering modules and the phase bus bars. See
Acceptor Module
An acceptor module preferably is made of plastic and mechanically accepts the metering modules that can be easily fitted in the EG assembly. Each EG has 4 acceptor modules that are stacked together and can accommodate either 12 two-phase or 8 three-phase metering modules. See
Customer Metering Modules
Preferred customer metering modules provide metrology required to measure the consumption for a single phase, two phase, or three phase customer. An individual module functions as a complete stand-alone meter that can be tested and evaluated as a separate metering unit. Each module preferably comprises an integrated current sensing and relay module and metrology electronics, and provides a connection between the customer circuit and the phase bus bars.
Electronics
The Control Module boxes preferably comprise various PCBs that work concurrently to collect metering data from the individual metering modules and communicate over power lines to transmit this data to a master device, such as a Scan Transponder (“ST”).
A Back Place Board 2510 shown in
The Control Module 2520 comprises a Power Board (PCB 210; see
Control Module 2520 also comprises a CPU Board (PCB 202; see
Finally, Control Module 2520 comprises a routing board (PCB 235; see
Each Customer Display Module (CDM) 2530 is installed at the customer's premises and can bidirectionally communicate with the EG installed at the distribution transformer serving the customer. Two-way PLC enables utility-customer communication over low voltage power lines and allows the utility to send regular information, warnings, special information about outages, etc. to the customer.
Each CDM 2530 comprises a selected combination of metering and power supply along with PLC circuitry on the same board (PCB 240; see
Hardware Implementation
In one embodiment, the Energy Guard implements Fast Fourier Transform (FFT) on the PLC communication signal both at the ST and the meter, and for metering purposes performs detailed harmonic analysis. This section discusses an implementation scheme of the Metering Modules, communication with Control Modules and PLC communication of the Control Module with a remotely located Scan Transponder.
The Control Module 2520 comprises power supply and PLC circuitry (PCB 210; see
The Metering Module may have two versions: 2-phase or 3-phase. The 2-phase version can be programmed by software to function as a single 2-phase meter or two 1-phase meters. The 2-phase version comprises a B2 meter (PCB 203 schematic shown in
The signal streams constituency is as follows:
B2: Two voltage, Two current, and No Power Line Carrier (PLC) Channel.
B3: Three voltage, Three current, and No PLC Channel.
D: Three voltage, Three current, and one PLC Channel.
Each stream has an associated circuit to effect analog amplification and anti-aliasing.
Specific to the D meter is the preferred implementation of:
Each metering and communication channel preferably comprises front-end analog circuitry followed by the signal processing. Unique to the analog circuitry is an anti-aliasing filter with fixed gain which provides first-order temperature tracking, hence eliminating the need to recalibrate meters when temperature drifts are encountered. This is discussed next, and then a preferred signal processing implementation is discussed.
Voltage and Current Analog Signal Chain
The analog front-end for voltage (current) channels comprises voltage (current) sensing elements and a programmable attenuator, followed by an anti-aliasing filter. The attenuator reduces the incoming signal level so that no clipping occurs after the anti-aliasing filter. The constant gain anti-aliasing filter restores the signal to full value at the input of the Analog to Digital Converter (ADC). For metering, the anti-aliasing filter cuts off frequencies above 5 kHz. The inputs are then fed into the ADC which is a part of the DSP. See
Whereas a typical implementation would include a Programmable Gain Amplifier (PGA) followed by a low gain anti-aliasing filter, the invention, in this embodiment, implements a programmable attenuator followed by a large fixed-gain filter. In addition, the implementation of both the anti-aliasing filters on a single chip is the same using the same Quad Op Amps along with 25 ppm resistors and NPO/COG capacitors. This unique implementation by pairing the anti-aliasing filters ensures that the phase drifts encountered in both voltage and current channels are exactly identical and hence accuracy of the power calculation (given by the product of V and I) is not compromised. This provides a means for both V and I channels to track temperature drifts up to first order without recalibrating the meter.
In contrast, using a PGA along with a low gain filter cannot track the phase shift in the V and I signals introduced due to temperature. This is because the phase shift introduced by PGA is a function of the gain.
Voltage, Current and PLC Digital Signal Chain
This embodiment preferably uses a PLL to lock the sampling of the signal streams to a multiple of the incoming A/C line frequency. In the embodiment discussed above, the sampling is at a rate asynchronous to the power line. In the D meter, there is a VCO at 90-100 MHz which is controlled by the DSP engine via two PWM modules. The VCO directly drives the system clock of the DSP chip (disabling the internal PLL), so the DSP becomes an integral part of the PLL. Locking the system clock of the DSP to the power line facilitates the alignment of the sampling to the waveform of the power line. The phase detector should function so as to respond only to the fundamental of the incoming 60 Hz wave and not to it harmonics.
A DSP BIOS or voluntary context switching code provides three stacks, each for background, PLC communications and serial communications. The small micro communicates with the DSP using a I2C driver. The MSP430F2002 integrated circuit measures the power supplies, tamper port, temperature and battery voltage. The tasks of the MSP430F2002 include:
i. maintain an RTC;
ii. measure the battery voltage;
iii. measure the temperature;
iv. measure the +U power supply;
v. reset the DSP on brown out;
vi. provide an additional watchdog circuit; and
vii. provide a 1-second reference to go into the DSP for a time reference to measure the 1-second reference against the system clock from the VCO.
D Meter PLC Communication Signal Chain
A typical installation consists of multiple EGs and STs communicating over the power lines. The D meter communicates bi-directionally with a remotely located Scan Transponder through the distribution transformer. To enable this, this embodiment uses a 10-25 kHz band for PLC communication. The PLC signal is sampled at about 240 kHz (212*60), synchronous with line voltage, following which a Finite Impulse Response (FIR) filter is applied to decimate the data. Preferred FIR specifications are given below:
10-25 kHz Band
See
After the decimation is done to 60 kHz (211*30), a 2048-point FFT is then performed on the decimated data. The data rate is thus determined to be 30 baud depending on the choice of FIR filters. Every FFT yields two bits approximately every 66 msec when using FIR in the 10-25 kHz band to communicate through distribution transformers.
To circumvent the problem of communicating in the presence of line noise, this embodiment preferably implements a unique technique for robust and reliable communication. This is done by injecting PLC signals at frequencies that are half odd harmonics of the line frequency (60 Hz). This is discussed below, for an embodiment using a typical noise spectrum found on AC lines in the range 12-12.2 kHz.
When traversing through transformers, both STs and D meters preferably perform FFT on the PLC and data signals every 30 Hz in a 10-25 kHZ range. Because the Phase Lock Loops (PLLs) implemented in both the ST and the D meter are locked to the line, the data frames are synchronized to the line frequency (60 Hz) as well. However, the data frames can shift in phase due to:
1. various transformer configurations that can exist in the path between the ST and meter (delta-Wye, etc.); and
2. a shift in phase due to the fact that STs are locked on a particular phase, whereas single and polyphase meters can be powered up by other phases.
The signal to noise ratio (SNR) is maximized when the meter data frame and ST data frames are aligned close to perfection. From a meter's standpoint, this requires receiving PLC signal from all possible STs that it can “hear,” decoding the signal, checking for SNR by aligning data frames, and then responding to the ST that is yielding maximum SNR.
In addition, because the data frames are available every 30 Hz on a 60 Hz line, there are two possibilities corresponding to the 2 possible phases obtained by dividing 60 Hz by 2. Hence, there are 24 ways that meter data frames can be misaligned with ST data frames.
In each frame of the ST, there are an odd integral number of cycles of the carrier frequency. Since the preferred modulation scheme is Frequency Shift Keying (FSK), if there are n cycles for transmitting bit 1, bit 0 is transmitted using n+2 cycles of the carrier frequency. It becomes vital for the meter to recognize its own 2 cycles of 60 Hz in order to be able to decode its data bits which are available every 1/30th of a second.
If the D meter decodes signals with misaligned data frames, there is energy that spills over into the adjacent (half-odd separated) frequencies. If the signal level that falls into the “adjacent” frequency bin is less than the noise floor, the signal can be decoded correctly. However, if the spill-over is more than the noise floor, the ability to distinguish between 1 and 0 decreases, and hence the overall SNR drops, resulting in an error in decoding. In conclusion:
a. If the frames are misaligned, smearing of data bits occurs and the SNR degrades.
b. In the event that the frequency changes and there are misaligned data frames, there is a substantial amount of energy that spills over into the adjacent FFT bins, hence interfering with the other STs in the system that communicate using frequencies in that specific bins.
Once the clock shift is determined corresponding to the highest SNR, the meter then locks until a significant change in SNR ratio is encountered by the meter, in which case the process repeats.
Implementation of Metering in D and B Meter Using FFT
Whereas versions of the B meter and the D meter perform metering, the D meter also is responsible for collecting the metering information from the various B meters via PCB 234. Each data stream in the meters has an associated circuit to effect analog amplification and anti-aliasing. Each of the analog front end sections has a programmable attenuator that is controlled by the higher level code. The data stream is sampled at 60 kHz (210*60) and then an FIR filter is applied to decimate the data stream to ˜15 kHz (28*60). Preferred filter specifications are shown in the table below and
Since only the data up to 3 kHz is of interest, praferably a 3-12 kHz rolloff on the decimating FIR is used with ˜15 KHZ sample rate. The frequencies from 0-3 kHz or 12-15 kHz are mapped into 0-3 kHZ. A real FFTs is performed to yield 2 streams of data which can be further decomposed into 4 streams of data: Real and Imaginary Voltage and Real and Imaginary Current. This is achieved by adding and subtracting positive and negative mirror frequencies for the real and imaginary parts, respectively. Since the aliased signal in the 12-15 kHZ range falls below 80 dB, the accuracy is achieved using the above-discussed FIR filter. Alternatively, a 256-point complex FFT can be performed on every phase of the decimated data stream. This yields 2 pairs of data streams: a real part, which is the voltage, and an imaginary part, which is the current. This approach requires a 256 complex FFT every 16.667 milliseconds.
The results of performing either FFT are the voltage and current shown in
The real and imaginary parts of the harmonic content of any kth cycle are given by
Vmk=Re(Vmk)+iIm(Vmk); m=1 . . . M
Imk=Re(Imk)+iIm(Imk); k=1 . . . n
The imaginary part of voltage is the measure of lack of synchronization between the PLL and the line frequency. In order to calculate metering quantities, the calculations are done in the time domain. In the time domain, the FFT functionality offers the flexibility to calculate metering quantities either using only the fundamental or including the harmonics. Using the complex form of voltage and current obtained from the FFT, the metering quantities are calculated as:
P=Vmk*Imk*
W=Re(P)=Re(Vmk)*Re(Imk)+Im(Imk)*Im(Vmk)
Var=Im(P)=Re(Imk)*Im(Vmk)−Re(Vmk)*Im(Imk)
PowerFactor=W/P
However, in the above formulas, when the harmonics are included (Vmk & Imk; m=1 . . . M, k=1 . . . n), all metering quantities include the effects of harmonics. On the other hand, when only the fundamental is used (V1k & I1k), all calculated quantities represent only the 60 Hz contribution. As an example, we show the calculations when only the fundamental is used to perform calculations. Only V1 and I1 are used from all FFT data frames. The following quantities are calculated for a given set of N frames and a line frequency fline:
The displacement power factor is given by:
where W and VA include only the fundamentals and
for N cycles.
This flexibility to either include or exclude the harmonics when calculating metering quantities translates to a significant improvement over the capabilities offered by the above-described embodiment. Yet another feature offered by this embodiment is the calculation of Total Harmonic Distortion (THD). The THD is the measurement of the harmonic distortion present, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental. For the nth cycle, this is evaluated as:
Vmn(Imn) is the mth harmonic from the nth cycle obtained from the FFT, where
Vm,n2=Re(Vm,n)2+Im(Vm,n)2 & Im,n2=Re(Im,n)2+Im(Im,n)2
Customer Display Module
The customer display module is installed at the customer premises, communicates with Energy Guard near the transformer, and comprises: PCB 240, power supply and PLC circuitry (see
While certain specific embodiments of the invention have been described herein for illustrative purposes, the invention is not limited to the specific details, representative devices, and illustrative examples shown and described herein. Various modifications may be made without departing from the spirit or scope of the invention defined by the appended claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 12/541,852 (now U.S. Pat. No. 8,090,549), filed Aug. 14, 2009, which is a continuation of U.S. patent application Ser. No. 11/600,234 (now U.S. Pat. No. 7,596,459), filed Nov. 14, 2006, which claims the benefit of U.S. Provisional Patent Application No. 60/737,580, filed Nov. 15, 2005, U.S. Provisional Patent Application No. 60/739,375, filed Nov. 23, 2005, and U.S. Provisional Application No. 60/813,901, filed Jun. 15, 2006, and is a continuation-in-part of U.S. patent application Ser. No. 11/431,849, filed May 9, 2006, now U.S. Pat. No. 7,539,581 which is a divisional of U.S. patent application Ser. No. 11/030,417, filed Jan. 6, 2005 (now U.S. Pat. No. 7,054,770), which is a divisional of U.S. patent application Ser. No. 09/795,838, filed Feb. 28, 2001 (now U.S. Pat. No. 6,947,854). The entire contents of each of those applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3857027 | Carlson et al. | Dec 1974 | A |
3922492 | Lumsden | Nov 1975 | A |
3973240 | Fong | Aug 1976 | A |
4004097 | Spaulding | Jan 1977 | A |
4218655 | Johnston et al. | Aug 1980 | A |
4240030 | Bateman et al. | Dec 1980 | A |
4347575 | Gurr et al. | Aug 1982 | A |
4668934 | Shuey | May 1987 | A |
4700188 | James | Oct 1987 | A |
4727315 | Jones | Feb 1988 | A |
4783748 | Swarztrauber et al. | Nov 1988 | A |
4847782 | Brown, Jr. et al. | Jul 1989 | A |
4908769 | Vaughan et al. | Mar 1990 | A |
5182744 | Askew et al. | Jan 1993 | A |
5237511 | Caird et al. | Aug 1993 | A |
5422565 | Swanson | Jun 1995 | A |
5525898 | Lee et al. | Jun 1996 | A |
5572396 | Robinson | Nov 1996 | A |
5576700 | Davis et al. | Nov 1996 | A |
5586112 | Tabata | Dec 1996 | A |
5699276 | Roos | Dec 1997 | A |
5729145 | Blades | Mar 1998 | A |
5764739 | Patton et al. | Jun 1998 | A |
5838660 | Croslin | Nov 1998 | A |
5862391 | Salas et al. | Jan 1999 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5897607 | Jenney et al. | Apr 1999 | A |
5940009 | Loy et al. | Aug 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5986574 | Colton | Nov 1999 | A |
5994892 | Turino et al. | Nov 1999 | A |
6049791 | Lerner | Apr 2000 | A |
6064192 | Redmyer | May 2000 | A |
6104586 | Robinson | Aug 2000 | A |
6115676 | Rector et al. | Sep 2000 | A |
6232886 | Morand | May 2001 | B1 |
6301527 | Butland et al. | Oct 2001 | B1 |
6529883 | Yee et al. | Mar 2003 | B1 |
6618628 | Davlin et al. | Sep 2003 | B1 |
6628207 | Hemminger et al. | Sep 2003 | B1 |
6665620 | Burns et al. | Dec 2003 | B1 |
7596459 | Swarztrauber et al. | Sep 2009 | B2 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20040257005 | Poehlman et al. | Dec 2004 | A1 |
20050137813 | Swarztrauber et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
2 279 802 | Feb 2003 | CA |
2306852 | May 1997 | GB |
2310779 | Sep 1997 | GB |
04-160838 | Jun 1992 | JP |
WO 9946746 | Sep 1999 | WO |
WO 9957697 | Nov 1999 | WO |
9106610 | Jun 1992 | ZA |
Entry |
---|
International Search Report in PCT/US2001/006573 May 16, 2001. |
Supplementary Partial European Search Report in 01 91 3201 Apr. 10, 2003. |
International Search Report in PCT/US2006/044762 Mar. 11, 2008. |
R. Summers, Integrated Sumiconductor Solutions for Metering and Telemetering Applications, Conerence on Apr. 3-5, 1990, pp. 116-120. |
A J Dick, Revenue Protection in a Competitive Supply Environment, IEEE Article, Jan. 1999, pp. 229-233. |
S. Singhal, The Role of Metering in Revenue Protection, IEEE Article, May 1999, pp. 223-228. |
Desmond J. Mapps et al. A Non-Volatile Solid-State Memory using the Magnetic Spin-Dependent-Tunnelling Effect, University of Plymouth, UK Jan. 2000, pp. 25-27. |
Hakki Cavdar, a Solution to Remote Detection of Illegal Electricity Usage via Power Lime Communications, IEEE Trans. on Power Delivery, Oct. 2004, vol. 19, No. 4, pp. 1663-1667. |
Number | Date | Country | |
---|---|---|---|
20120022814 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
60737580 | Nov 2005 | US | |
60739375 | Nov 2005 | US | |
60813901 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11030417 | Jan 2005 | US |
Child | 11431849 | US | |
Parent | 09795838 | Feb 2001 | US |
Child | 11030417 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12541852 | Aug 2009 | US |
Child | 13199664 | US | |
Parent | 11600234 | Nov 2006 | US |
Child | 12541852 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11431849 | May 2006 | US |
Child | 11600234 | US |