Cooktop 14 includes four gas fueled surface burners 22, 24, 26, 28, which are positioned in spaced apart pairs 22, 24 and 26, 28 positioned adjacent each side of cooktop 14. In one embodiment, each pair of burners 22, 24 and 26, 28 is surrounded by a recessed area (not shown in
More specifically, input selectors 134 are divided into two groups 136, 138. Group 136 includes a SURFACE LIGHT keypad 138, a BAKE keypad 140, a BROIL keypad 142, an OVEN LIGHT keypad 144, a CONVECTION BAKE keypad 146, a CONVECTION ROAST keypad 148, a CLEAN keypad 150, a FAVORITE RECIPE keypad 152, a MULTI-STAGE keypad 154, a temperature up slew keypad 156 and a temperature down slew keypad 158. Group 138 includes an hour up slew keypad 160 and an hour down slew keypad 162, a minute up slew keypad 164 and a minute down slew keypad 166, a START keypad 168, a CLEAR/OFF keypad 170, a LOCK keypad 172, a COOK TIME keypad 174, a DELAY START keypad 176, a POWER LEVEL keypad 178, a CLOCK keypad 180, a KITCHEN TIMER keypad 182, and a SURFACE WARMER keypad 184.
By manipulating the appropriate input selector 134 in one of the control selector groups 136, 138, the appropriate feature and/or function is activated by an appliance controller (not shown in
Lockout valve assembly 66 controls gas flow to gas manifold 64, and is movable between a closed position and an open position, sometimes referred to as a full open position. When lockout valve assembly 66 is in the open position, gas flow is channeled through gas supply line 70 (shown in
In one embodiment, lockout valve 192 is a panel mount ball valve including a valve shaft (not shown) rotatably mounted within lockout valve 192, and motor 194 includes an output shaft 198 engaged with a cam 200. Cam 200 is also engaged with the valve shaft, such that motor 194 can rotatably drive the valve shaft to rotate for controlling the gas flow through lockout valve 192. In alternative embodiments, any suitable valve known to those skilled in the art and guided by the teachings herein provided may be employed without departing from the scope of the present invention. In a further embodiment, when being applied with an excessive force, the coupling between cam 200 and output shaft 198 of motor 194 is designed to break before the coupling between cam 200 and the valve shaft breaks. As such, lockout valve 192 is protected from damage in a malfunction situation.
In one embodiment, lockout valve 192, motor 194 and cam 200 are mounted on a mounting bracket 202. As illustrated in
In an alternative embodiment, lockout valve assembly 66 is a solenoid type valve instead of the motorized valve. The solenoid type lockout valve assembly 66 includes a solenoid (not shown) drivingly coupled to the valve shaft of lockout valve 192. As such, energizing the solenoid causes lockout valve 192 to open or close passage 196 to supply or not supply gas to gas manifold 64 and therefore to associated surface burner elements 22, 24, 26, 28 (shown in
In one embodiment, lockout valve assembly 66 also includes two switches 206, 207 positioned with respect thereto for sensing a position of lockout valve 192. An open position switch 206 and a closed position switch 207 sense whether lockout valve 192 reaches the corresponding open position or closed position, respectively. In one embodiment, switches 206, 207 are used to sense a position of the valve shaft. In another embodiment, switches 206, 207 are used to sense a position of a component which is mechanically coupled with the valve shaft, such as cam 200. As such, switches 206, 207 may indirectly detect a position of the valve shaft based on the position of cam 200. In a further embodiment, switches 206, 207 are used to sense a position of motor 194.
In one embodiment, each switch 206, 207 is a micro-switch including a contact arm (not shown) for detecting the position. The contract arm is displaced when lockout valve 192 moves to the corresponding open position or closed position. In alternative embodiments, any suitable switching mechanism known to those skilled in the art and guided by the teachings herein provided may be employed for sensing the position of lockout valve 192. Further, one or more switches may be employed without departing from the scope of the present invention.
Burner valve 190 also includes a control shaft 220 movably received within valve body 210 and controlling the gas flow through flow path 216. Control shaft 220 further includes an upper portion 222 extending upward from valve body 210. Upper portion 222 is coupled to the corresponding burner control knob 65 (shown in
Burner valve 190 also includes a switch assembly 230 positioned thereon for detecting a position of burner valve 190. In one embodiment, switch assembly 230 includes two switches 231, 232 stacked together to form a switch body 233, and a rotator 234 rotatably received within switch body 233. Each switch 231, 232 is used to detect whether control shaft 220 is in the corresponding open position or closed position, respectively. Switch body 233 is mounted onto valve body 210 by screws (not shown), and rotator 234 defines a shaft opening 236 therethrough which is complementary with respect to control shaft 220 in sectional view. Control shaft 220 extends through shaft opening 236, such that rotator 234 moves together with control shaft 220 for sensing the position of control shaft 220. In alternative embodiments, any suitable switching mechanism known to those skilled in the art and guided by the teachings herein provided may be employed for sensing the position of burner valve 190 without departing from the scope of the present invention. Further, one or more switches may be employed for sensing one or more positions of burner valve 190.
In one embodiment, control shaft 220 is rotatably positioned within burner valve 190, and each switch 302, 304, 306, 308 is used to detect whether control shaft 220 is positioned within an angle range of about −15 to about +15 degrees with respect to the predetermined closed position. When control shaft 220 is detected positioned within this angle range, the corresponding switch 302, 304, 306, 308 is closed. As such, lines 321 and 323 are connected when all switches 302, 304, 306, 308 are closed, and a signal indicating that all burner valves 190 are in the closed position is sent to the appliance controller (shown in
In one embodiment, when control shaft 220 is rotated from the closed position to the open position, gas is supplied to corresponding surface burner 22, 24, 26, 28 if lockout valve assembly 66 (shown in
Microprocessor 402 is operatively coupled to gas heating elements 408 (i.e., oven bake element, oven broil element, oven convection element, and cooktop surface heating units) for energization thereof through relays, triacs 409, or other known mechanisms (not shown) for cycling electrical power to oven heating elements. One or more temperature sensors 410 sense operating conditions of gas heating elements 408 and are coupled to an analog to digital converter (A/D converter) 412 to provide a feedback control signal to microprocessor 402.
In addition, gas lockout valve assembly 66 is coupled to gas heating elements (such as burners 22, 24, 26, 28 shown in
Switches 206 (shown in
In operation, when the gas lockout feature is selected through operator manipulation of I/O interface 130, microprocessor 402 detects the position of all burner valves 190 through the corresponding burner valve switches 230. If all burner valves 190 are detected in the closed position, microprocessor 402 signals lockout valve assembly 66. More specifically, microprocessor 402 energizes motor 194 (shown in
When the gas lockout feature is deselected through user manipulation of I/O interface 130, microprocessor 402 also detects the position of all burner valves 190 through burner valve switches 230. If all burner valves 190 are detected in the closed position, microprocessor 402 signals lockout valve assembly 66. More specifically, microprocessor 402 energizes motor 194 or the solenoid to open lockout valve 192. In one embodiment, microprocessor 402 is configured to stop displaying “Loc” on display 132 when lockout valve 192 moves to the open position.
In one embodiment, if at least one burner valve 190 is detected in the open position when the gas lockout feature is selected or deselected, microprocessor 402 prevents lockout valve 192 from moving between the closed position and the open position. When at least one switch 302, 304, 306, 308 (shown in
In a further embodiment, when the gas lockout feature is selected, microprocessor 402 also detects the operation status of the oven (not shown). If all burner valves 190 are detected in the closed position and the oven is in an off state, microprocessor 402 drives lockout valve 192 to move. If the oven is performing some predetermined functions, such as for example, baking, broiling, or a timing function, microprocessor 402 visually and/or audibly prompts the operator of an error. Microprocessor 402 then returns to the previous operation without operating lockout valve assembly 66.
In one embodiment, when the lockout feature is activated, any manipulation input other than deselecting the gas lockout feature is ignored. In another embodiment, if burner valve 190 is turned on when the lockout feature is activated, microprocessor 402 visually and/or audibly prompts the operator to turn off burner valves 190.
When a self clean mode is selected for the oven, microprocessor 402 automatically locks door 16 (shown in
In one embodiment, if burner valve 190 is turned on during the self clean mode, microprocessor 402 continues the self clean process and visually and/or audibly prompts the operator of an error. In a further embodiment, microprocessor 402 displays “turn surface burners off” on display 132, and continues producing audible signals until all burner valves 190 are turned off. If burner valve 190 is still on after the self clean process, microprocessor 402 maintains door 16 locked and lockout valve assembly 66 is closed until all burner valves 190 are turned off.
In one embodiment, microprocessor 402 monitors the movement of lockout valve assembly 66 and fault conditions, such as motor failure, switch failure, and/or miswiring, based on the signal received from switches 206. As described above, open/closed position switch 206 is respectively configured to close to connect an OPEN/CLOSED circuit when lockout valve 192 reaches the corresponding full open or closed position, and configured to open to disconnect the OPEN/CLOSED circuit when lockout valve 192 leaves the corresponding full open position or closed position.
When only one of the OPEN and the CLOSED circuits is closed and the other one is open, microprocessor 402 determines that lockout valve 192 reaches the corresponding full open or closed position. When both of the OPEN and CLOSED circuits are open, microprocessor 402 indicates lockout valve 192 is positioned between the full open position and the closed position. As such, microprocessor 402 determines that lockout valve 192 is moving between the full open position and the closed position. When the OPEN circuit and the CLOSED circuit are closed, microprocessor 402 determines that the fault conditions occur.
In one embodiment, a data indicative of the state of lockout valve assembly 66 is stored in permanent memory 406. In a further embodiment, “1” is defined as the closed state of lockout valve assembly 66, and “0” is defined as the open state of lockout valve assembly 66. Microprocessor 402 is configured to change the lockout valve data to “1” upon deciding to activate lockout valve assembly 66 to the closed position. In a further embodiment, microprocessor 402 changes the lockout valve data to “1” before initiating driving lockout valve assembly 66 to the closed position. In an alternative embodiment, microprocessor 402 changes the lockout valve data to “1” upon determining to activate the self clean mode. Microprocessor 402 changes the lockout valve data to “0” only when lockout valve 192 moves to the open position.
In a further embodiment, microprocessor 402 compares the lockout valve data stored in permanent memory 406 with the signal received from lockout valve switches 206 when range 10 is powered up. When the lockout valve data is “1”, microprocessor 402 drives lockout valve 192 to the closed position if lockout valve 192 is detected in the full open position or between the closed position and the full open position. When the lockout valve data is “0”, microprocessor 402 determines the fault conditions occur if lockout valve assembly 66 is detected in the closed position or between the closed position and the full open position.
In one embodiment, when activating lockout valve 192 to move from the full open position to the closed position, microprocessor 402 uses a time counter (not shown) to monitor the movement. When open position switch 206 is open, which indicates lockout valve 192 leaves the full open position, microprocessor 402 detects whether lockout valve 192 reaches the closed position within a predetermined time period, such as for example 30 seconds. If closed position switch 206 is not closed within the predetermined time period, microprocessor 402 determines the fault conditions occur. In another embodiment, if open position switch 206 is not open and close position switch 206 is not closed within the predetermined time period, microprocessor 402 also determines the fault conditions. In one embodiment, microprocessor 402 monitors the movement of lockout valve 192 from the closed position to the full open position in a similar method.
Upon determining the fault condition, microprocessor 402 cancels all functions including driving lockout valve 192 to move, and visually and/or audibly prompts the operator of error. If burner valve 190 is turned on in the fault condition, microprocessor 402 further continues visually and/or audibly prompting the operator to turn off all burner valves 190 until the operator follows the prompt. The fault conditions may be reset when the main power of range 10 is turned off and turned on again.
In one embodiment, the microprocessor opens the lockout valve when all surface burner element control valves are closed. As such, gas is not unintentionally introduced into the kitchen room when the lockout valve is de-actuated, even when at least one of the burner control knobs is already unknowingly actuated. In a further embodiment, the microprocessor visually and/or audibly prompts the operator of such situation, which effectively prompts the operator of such error.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.