The present invention relates to methods and apparatus for performing mucosectomy. More particularly, the present invention relates to methods and apparatus for mapping out gastrointestinal (“GI”) surgery, such as endoluminal gastric reduction, via mucosectomy.
Morbid obesity is a serious medical condition pervasive in the United States and other countries. Its complications include hypertension, diabetes, coronary artery disease, stroke, congestive heart failure, multiple orthopedic problems and pulmonary insufficiency with markedly decreased life expectancy.
Several open surgical techniques have been developed to treat morbid obesity, e.g., bypassing an absorptive surface of the small intestine, or reducing the stomach size. These procedures are difficult to perform in morbidly obese patients because it is often difficult to gain access to the digestive organs. In particular, the layers of fat encountered in morbidly obese patients make difficult direct exposure of the digestive organs with a wound retractor, and standard laparoscopic trocars may be of inadequate length. In addition, previously known open surgical procedures may present numerous life-threatening post-operative complications, and may cause atypical diarrhea, electrolytic imbalance, unpredictable weight loss and reflux of nutritious chyme proximal to the site of the anastomosis.
Applicant has previously described methods and apparatus for laparoscopically reducing a patient's stomach, for example, in co-pending U.S. patent application Ser. No. 10/8434,682, filed May 10, 2004, which is incorporated herein by reference. Furthermore, Applicant has previously described methods and apparatus for endoluminally reducing a patient's stomach, for example, in co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which also is incorporated herein by reference. Those applications describe techniques for creating a small pouch from within the patient's stomach that is positioned below the gastroesophageal junction to limit food intake and promote a feeling of satiety. The endoluminal pouch is expected to act in a manner similar to a Vertical Banded Gastroplasty (“VBG”).
The gastrointestinal lumen includes four tissue layers, wherein the mucosa layer is the top (innermost) tissue layer, followed by connective tissue, the muscularis layer and the serosa layer. One problem with endoluminal gastrointestinal reduction systems is that the anchors (or staples) must engage at least the muscularis tissue layer in order to provide a proper foundation, since the mucosa and connective tissue layers tend to stretch elastically under the tensile loads imposed by normal movement of the stomach wall during ingestion and processing of food. Applicant's previously-described techniques for stomach reduction address this concern by reconfiguring the stomach lumen via engagement of at least the muscularis layer of tissue.
It is expected that proper placement of anchors or suture to achieve such stomach reduction will present significant challenges to a medical practitioner, due, for example, to the limited working space, as well as the limited visualization provided by an endoscope or fiberscope. U.S. Pat. No. 6,558,400 to Deem et al. describes methods and apparatus for marking the interior of the stomach from the esophagus to the pylorus to map out an endoluminal reduction procedure. Marking is achieved with dye channeled through ports in a marking device or bougie. The bougie optionally may comprise suction ports for evacuating the stomach about the bougie, at which point the dye may be injected to stain the stomach along points that contact the dye ports. The stomach then may be insufflated for performing the endoscopic reduction procedure utilizing the map provided by the dye marks stained onto the stomach mucosa.
A significant drawback of the marking technique described by Deem et al. is that dyes have a tendency to spread and are difficult to localize, especially in a fluid environment such as that which contacts the mucosa layer of the stomach. As such, it is expected that dye that does not penetrate beyond the mucosa will provide an inaccurate and/or unstable map for performing endoscopic gastric reduction. This, in turn, may yield an incorrectly sized or poorly sealed stomach pouch, which may render the procedure ineffective in facilitating weight loss and/or may result in dangerous complications.
In view of the aforementioned limitations, it would be desirable to provide methods and apparatus for mapping out endoluminal gastrointestinal surgery that may be readily localized, that enhance accuracy and stability of the surgical map, that facilitate direct engagement of muscularis tissue from within the stomach and/or that initiate a wound healing response along approximated tissue.
In view of the foregoing, the present invention provides apparatus and methods for marking the interior of a patient's gastrointestinal lumen. In a first variation, the surgical map comprises localized RF scarring or mucosal ablation. In an alternative variation, the map comprises pegs, e.g. colored pegs, which may be biodegradable, e.g. fabricated from polyglycolic acid. Alternatively, the pegs may comprise one or more corkscrews advanced into tissue surrounding the GI lumen. In yet another alternative variation, the map comprises dye injected into at least the submucosa. The dye may be fluorescent or of varying colors. Alternatively, the dye may be disposed within nanospheres or microspheres implanted submucosally. In addition, or as an alternative, to dye spheres, the spheres may be magnetic, heat-able ferromagnetic or Curie point, plastic and inert, radiopaque, etc. As a still further alternative, the map may comprise the shaft of an endoluminal surgical tool having specified dimensions and/or color-coding, etc. In another alternative variation, the map may be formed from surgical mesh. Additional mapping apparatus will be apparent.
In one preferred variation, placement of the map is accurately achieved using suction ports and/or an inflatable member disposed along an endoluminal support, such as a shaft or other tool associated with the endoluminal GI surgery. When using suction, the stomach may be deflated about the support prior to deployment of the surgical map. When using an inflatable member, the inflatable member may be inflated to contact tissue prior to deployment of the map. As will be apparent, a combination of suction and inflation may be used to properly orient tissue prior to mapping.
In additional variations, mucosectomy and/or mucosal ablation is performed to map out endoluminal GI surgery, to facilitate direct endoluminal engagement of underlying muscularis tissue and/or to initiate a wound healing response. Specialized apparatus may be provided to achieve desired spacing and/or positioning of tissue markings, and may be provided to actually form the markings.
Methods of using apparatus of the present invention also are provided.
The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The present invention relates to methods and apparatus for mapping out endoluminal gastrointestinal (“GI”) surgery. More particularly, the present invention relates to methods and apparatus for mapping out endoluminal gastric reduction.
Applicant has previously described methods and apparatus for endoluminally forming and securing GI tissue folds, for example, in U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which has been incorporated herein by reference. Such methods and apparatus may be used to reduce or partition the effective cross-sectional area of a GI lumen, e.g., to treat obesity by approximating the walls of the stomach to narrow the stomach lumen and/or create a pouch or endoluminal Vertical Banded Gastroplasty (“VBG”), thus promoting a feeling of satiety and reducing the area for food absorption. However, as discussed previously, it is expected that proper placement of anchors or suture to form and secure such endoluminal VBG will present significant challenges to a medical practitioner, due, for example, to the limited working space, as well as the limited visualization provided by, e.g., an endoscope or fiberscope.
Referring now to
In use, endoluminal support 12 may be endoluminally advanced within a GI lumen, e.g., a patient's stomach. Actuation of suction pump 20 from outside the patient draws suction through tubing 22 and suction ports 16, thereby bringing luminal GI tissue into contact with shaft 14 of endoluminal support 12. Meanwhile, negative electrode 44 of RF generator 40 may be placed exterior to the patient, e.g., on the patient's chest, or on a metal operating table just under the patient's back while the patient lies on the table. As will be apparent, negative electrode 44 alternatively may be coupled to endoluminal support 12, for example, along shaft 14 at a location radially distant from RF electrodes 18. Positive electrode 42 may be selectively connected to any of the plurality of electrical contacts 34 of switching station 30, as desired, to actuate specified RF marking electrodes 18.
Actuation of electrodes 18 via RF generator 40 acts to locally burn, singe, cut, ablate, scar or otherwise injure tissue in contact with the electrodes along shaft 14 of endoluminal support 12, thereby leaving identifiable marks on the surface of the tissue that may be used to map out an endoluminal GI surgery. As will be apparent to those of skill in the art, the pattern of electrodes 18 and suction ports 16 about shaft 14 of endoluminal support 12 may be altered as desired to facilitate formation of surgical maps having varying characteristics. Likewise, the shape or orientation of shaft 14 may be altered.
Switching station 30 facilitates actuation of individual electrodes 18, as well as actuation of any combination of the individual electrodes, including simultaneous actuation of all the electrodes. Such selective actuation is dependent upon which electrical contact(s) 34 are connected to positive electrode 42 of RF generator 40 when the generator is energized. As will be apparent, switching station 30 optionally may be omitted, and wires 32 may couple RF electrodes 18 directly to RF generator 40.
Endoluminal support 12 optionally may comprise one or more working lumens (not shown) for advancing additional surgical instruments through the endoluminal support. Additionally or alternatively, endoluminal support 12 optionally may comprise proximal shaft 13 that is steerable and/or rigidizable or shape-lockable, e.g. via pull wires actuated through handle 15. Rigidizable shafts are described, for example, in Applicant's co-pending U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which has been incorporated herein by reference. When utilizing a steerable, rigidizable shaft, endoluminal support 12 may be steered into proper position within a GI lumen, rigidized to maintain its position, and then actuated as described above to mark tissue and map out endoluminal GI surgery.
With reference now to
Once RF electrodes 18 have been actuated in a desired pattern and for a desired duration at a desired intensity, RF generator 40 is turned off and/or positive electrode 42 is disconnected from switching station 30. As seen in
Referring now to
In use, endoluminal support 12′ is endoluminally advanced within a patient's stomach and/or GI lumen. Inflatable member 50 is inflated via inflation medium transferred from source 60 through tubing 22 to the inflatable member. The inflatable member conforms to the interior profile of the GI lumen, thereby bringing RF electrodes 18 into contact with the interior wall of the lumen. The electrodes then may be actuated as described previously to form marks M for mapping out an endoluminal GI surgery. As will be apparent, a combination of suction and inflation may be used to properly orient tissue prior to marking and mapping.
Referring now to
In
With reference now to
In use, endoluminal support 302 may be advanced within a GI lumen with needles 310 retracted. Suction then may be drawn through ports 306 to bring tissue into proximity with channels 308. Needles 310 then may be extended into the tissue to penetrate the tissue. When conducting endoluminal gastric procedures, the needles are configured to penetrate the tissue at least submucosally. Upon penetration of tissue by needles 310, marking elements may be injected into the tissue below the surface through the needles.
Illustrative subsurface or submucosal marking elements include, but are not limited to, dyes, fluorescent dyes and colored dyes. As described in U.S. Pat. No. 6,558,400 to Deem et al., which is incorporated herein by reference, marking dyes may comprise, for example, methylene blue, thionine, acridine orange, acridine yellow, acriflavine, quinacrine and its derivatives, brilliant green, gentian violet, crystal violet, triphenyl methane, bis naphthalene, trypan blue, and trypan red. U.S. Pat. No. 6,558,400 describes using these dyes to mark or stain the interior lining of the stomach. However, that reference does not describe injecting such dyes submucosally. Submucosal injection is expected to enhance localization, stability and accuracy, as compared to mucosal staining. Additional dyes that may be utilized include black ink and India ink, as well as various combinations of dyes.
Additional subsurface/submucosal marking elements include, for example, saline or bulking agents, e.g. collagen, to achieve geometric marking/mapping via localized protrusion of the mucosa. As yet another alternative, nanospheres or microspheres may be utilized, e.g. colored spheres or dye-filled spheres. In addition, or as an alternative, to dye spheres, the spheres may be magnetic, heat-able ferromagnetic or Curie point, plastic and inert, bioresorbable, radiopaque, etc. Curie point materials may be heated to a known temperature via an external electromagnetic field, for example, to cause local ablation, inflammation or scar formation, mucosectomy, etc. Such local marking may be used to map out an endoluminal GI surgery.
With reference now to
Referring now to
In
With reference to
With reference to
Inflatable member 610 is coupled to an inflation source, such as previously described inflation source 60 of
In
Ring electrode 620 then is activated, e.g. via RF generator 40, to locally singe, burn or otherwise mark the interior of stomach S. After marking, electrode 620 is deactivated, inflatable member 610 is deflated, and endoluminal support 605 of apparatus 600 is removed from stomach S, thereby leaving a map within the stomach for conducting endoluminal gastric reduction or restriction. Advantageously, the volume of fluid disposed in upper left portion 612 of inflatable member 610 (the portion of the inflatable member disposed proximal of marking electrode 620) during activation of electrode 620 substantially defines the mapped out volume of a pouch that may be formed utilizing the map provided by apparatus 600. In this manner, a stomach pouch of specified volume may be accurately formed. As will be apparent, prior to marking stomach S via activation of electrode 620, the stomach optionally may be deflated, e.g., via suction, in order to better approximate stomach tissue against inflatable member 610 and electrode 620.
Referring now to
With reference to
Referring now to
In addition to providing a physical marking, when tissue T comprises stomach tissue, cut C may locally remove mucosa and cause bleeding. If cut C is held in apposition with other tissue, the local bleeding or mucosectomy may initiate a wound healing response that gradually fuses the cut to the apposed tissue. Applicant has previously described initiation of a wound healing response to fuse tissue, for example, in co-pending U.S. patent application Ser. No. 10/898,683, filed Jul. 23, 2004, which is incorporated herein by reference in its entirety. Furthermore, local removal of the mucosa along cut C or coagulation region Co may expose underlying muscularis, which then may be engaged directly.
With reference to
Tip 714 is coupled to torqueable shaft 716 having irrigation lumen 717 that is connected to ports 715. Fluid irrigants may be injected through lumen 717 of shaft 716 and ports 715 of tip 714. Shaft 716 also conveys electromagnetic impulses between energy source 720 (which may, for example, comprise RF generator 40) and tip 714 or piercing element 712/712′. In use, element 712/712′ may pierce tissue, tip 714 may coagulate tissue, and irrigation ports 715 may convey irrigants for cooling pierced and/or coagulated tissue. Furthermore, shaft 716 may be torqued while piercing element 712/712′ is disposed within tissue; in this manner, tissue singed, burned, coagulated, etc., with tip 714 may be removed.
With reference to
Referring to
Malleable submucosal connective tissue, which weakly joins muscularis tissue to mucosal tissue; as well as the composition of mucosal tissue itself, may make it challenging to securely engage muscularis tissue from the interior of a patient's stomach. Thus, in addition to providing tissue marks that may be used to map out a surgical procedure, use of apparatus 730 may facilitate engagement of tissue within the weld zone(s). Such engagement may be achieved due to more secure binding of the mucosal layer to the muscularis layer, as well as denaturing or denuding of the mucosal layer.
With reference now to
Handle 808 also comprises floating electrical connection 812 coupled to electrical jack 814, which is connected to energy source 720, e.g., RF generator 40. Connection 812 contacts shaft 802 and facilitates energizing of the shaft during concurrent rotation thereof, e.g., via knob 806. Shaft 802 comprises insulation sleeve 816 that covers the shaft between the point of contact with electrical connection 812 and the sharpened distal tip 804. In this manner, distal tip 802 may be energized selectively via energy source 720.
As seen in
Referring to
Referring to
With reference now to
In
Referring to
Advantageously, plug mucosectomies PM may facilitate direct internal engagement of gastric muscularis tissue. In
Concurrently or sequentially (or both), opposing rows of anterior Ra and posterior Rp tissue folds may be formed along the opposing anterior and posterior rows of plug mucosectomies PM of
As seen in
Referring now to
With reference to
In
Referring now to
As shown, grasper 1120 engages and separates mucosal tissue Muc from muscularis tissue Mus. A plug of the engaged mucosal tissue is retracted proximal of wire 1130, which is then pivoted about tube 1110 to sever and separate the plug of tissue from the mucosa, thereby exposing the underlying muscularis, e.g., for the purposes of physical marking, ease of tissue engagement and/or wound healing. Severed tissue optionally may be aspirated or otherwise removed from the patient.
Wire 1130 may comprise a sharpened blade to sever the tissue. Alternatively or additionally, wire 1130 may be electrically coupled to energy source 720 and may be energized to cut through the tissue. To act as a safety mechanism, energizing and pivoting of wire 1130 may be linked, such that wire 1130 is only energized when a medical practitioner pivots the wire.
Referring now to
When wire 1130 is energizable, electrical or other energy impulses may be transmitted from energy source 720 to wire 1130 through elongated member 1132. Member 1132 optionally may be insulated to protect the medical practitioner from, e.g., electrical discharge. Furthermore, distal advancement of member 1132 optionally may activate energy source 720 while proximal retraction of the member may deactivate the energy source.
Referring to
As seen in
With reference to
Referring now to
With reference to
Rulers 1304 and 1306 may also comprise energizable electrodes 1308a and 1308b, which may be energized via energy source 720 in order to mark tissue. A distance D between electrodes 1308a and 1308b in the expanded deployed configuration of
Referring now to
As best seen in
With rulers 1304 and 1306 properly positioned, optional electrodes 1308 may be energized to physically mark the tissue with markings M. Alternatively, secondary marking apparatus may be utilized to mark the tissue at desired locations, determined, for example, via indicia In. Apparatus 1300 then may be repositioned along the length of bougie 750 in additional planes, where additional anterior and posterior tissue markings may be formed until a desired pattern of markings has been achieved, e.g., opposing anterior and posterior rows of markings. The apparatus then may be collapsed back to the delivery configuration and removed from the patient. Bougie 750 optionally may also be removed.
With reference to
Apparatus 1300 is then advanced through lumen 1401, is expanded to the deployed configuration, and is positioned in contact with body 1402 of support 1400, as in
Referring now to
In use, tips 1505 and 1507 may, for example, be utilized to simultaneously or sequentially form anterior and posterior plug mucosectomies within a patient's stomach. In addition or as an alternative to tips 1505 and 1507, shafts 1504 and 1506 may comprise any previously described or other engagement, marking, ablation, mucosectomy, etc., tips for mapping out or otherwise facilitating endoluminal GI surgery, e.g., for facilitating direct muscularis engagement and/or for initiating a wound healing response. Furthermore, the shafts may comprise tips that perform different functions. For example, one shaft may comprise a grasper for engaging and stabilizing apparatus 1500 against tissue, while the opposing shaft may comprise apparatus for marking tissue or performing mucosectomy. Additional variations will be apparent.
With reference to
As seen in
Referring again to
With reference to
Referring now to
In addition to the plug mucosectomies, opposing anterior and posterior strip mucosectomies SM may be formed between the plug mucosectomies and the centerline markings. A medical practitioner may internally engage the patient's stomach at a plug mucosectomy PM to form a tissue fold, such that the plug mucosectomy is positioned at the top of the fold (i.e., the turning point or critical point of the fold, where the slope of the fold changes direction), and a strip mucosectomy SM forms a side of the fold. Opposing anterior and posterior folds may be formed in this manner and approximated to bring the opposing strip mucosectomies SM into contact. The approximated folds may be secured together in order to partition stomach S and to initiate a wound healing response along the apposed strip mucosectomies SM that in time may fuse them together.
With reference to
Referring to
With reference to
Once properly positioned, suction may be drawn through tube 1920 to capture a plug of mucosal tissue within snare 1940. The snare then may be retracted to cut, sever, ligate, etc., the plug of mucosal tissue disposed therein, thereby facilitating direct engagement of muscularis Mus, mapping of gastrointestinal surgery and/or initiation of a wound healing response. This procedure optionally may be achieved without utilizing tubes 1920 and 1930. In such a variation, suction may be drawn directly through lumen 1911a, and ligating snare 1940 may be advanced directly through lumen 1911b.
Referring now to
With reference to
Referring now to
With reference to
Shaft 2110 further comprises channel 2130 which may define a curved channel and may extend proximally to provide sufficient spacing for parting the resected mucosa Muc. Dimension D across the channel limits a depth of mucosal resection, thereby reducing a risk of resecting underlying muscularis or serosal tissue. Energizable element 2140, which may comprise a wire or conductive segment, may extend across channel 2130 for resecting mucosa. Element 2140 is proximally connected, e.g., via wire(s) 2142, to an energy source, such as previously described energy source 720, which may, for example, comprise previously described RF generator 40, although any alternative energy source may be provided. Although element 2140 is illustrated as a wire, element 2140 may alternatively be a blade having a cutting edge for slicing through the mucosa.
Referring now to
With reference to
With reference to
Referring now to
With reference to
Upon reaching a desired separation from the muscularis, the mucosa contacts blade 2230 and is resected by sharpened edge 2232 of the blade. Edge 2232 optionally may be energized to facilitate such resection. Continued lateral movement of shaft 2210 resects mucosa Muc along a line or strip.
Referring now to
With reference to
As seen in
Referring now to
Once disposed within the submucosal space, continued advancement of member 2410 urges the mucosa up the member's inclined surface, thereby separating the mucosa from muscularis Mus. Once separated, the mucosa automatically contacts resection element 2420 and is resected by the element, for example, via a cutting force or via RF ablation. Member 2410 may be advanced along any desired path to resect mucosa along the path.
Although preferred illustrative embodiments of the present invention are described hereinabove, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. For example, a variety of energy sources optionally may be utilized to mark, resect or otherwise manipulate tissue, including, but not limited to lasers (pulsed or continuous), RF (monopolar, bipolar or multipolar), high energy ultrasound, etc. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application is a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 10/954,658 , filed Sep. 29, 2004, which is a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 10/797,910 , filed Mar. 9, 2004, both of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
616672 | Kelling | Dec 1898 | A |
1814791 | Ende et al. | Jul 1931 | A |
2201610 | Dawson, Jr. | May 1940 | A |
2413142 | Jones et al. | Dec 1946 | A |
2510198 | Tesmer | Jun 1950 | A |
2533494 | Mitchell, Jr. | Dec 1950 | A |
3060972 | Sheldon | Oct 1962 | A |
3096962 | Meijs | Jul 1963 | A |
3150379 | Brown | Sep 1964 | A |
3162214 | Bazinet, Jr. | Dec 1964 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3168274 | Street | Feb 1965 | A |
3430662 | Guarnaschelli | Mar 1969 | A |
3494006 | Brumlik | Feb 1970 | A |
3546961 | Marton | Dec 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3646615 | Ness | Mar 1972 | A |
3664345 | Dabbs et al. | May 1972 | A |
3753438 | Wood et al. | Aug 1973 | A |
3858578 | Milo | Jan 1975 | A |
3867944 | Samuels | Feb 1975 | A |
3874388 | King et al. | Apr 1975 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
3974834 | Kane | Aug 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4007743 | Blake | Feb 1977 | A |
4054128 | Seufert et al. | Oct 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4069825 | Akiyama | Jan 1978 | A |
4245624 | Komiya | Jan 1981 | A |
4366810 | Slanetz, Jr. | Jan 1983 | A |
4367746 | Derechinsky | Jan 1983 | A |
4414720 | Crooms | Nov 1983 | A |
4462402 | Burgio | Jul 1984 | A |
4494531 | Gianturco | Jan 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4534350 | Golden et al. | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4586503 | Kirsh et al. | May 1986 | A |
4592339 | Kumak et al. | Jun 1986 | A |
4592356 | Gutierrez | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4610250 | Green | Sep 1986 | A |
4648733 | Merkt | Mar 1987 | A |
4655257 | Iwashita | Apr 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4711002 | Kreeger | Dec 1987 | A |
4724840 | McVay et al. | Feb 1988 | A |
4750492 | Jacobs et al. | Jun 1988 | A |
4765335 | Schmidt et al. | Aug 1988 | A |
4832055 | Palestrant | May 1989 | A |
4841888 | Mills et al. | Jun 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4890615 | Caspari et al. | Jan 1990 | A |
4923461 | Caspari et al. | May 1990 | A |
4929240 | Kirsh et al. | May 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
5032127 | Frazee et al. | Jul 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5108420 | Marks | Apr 1992 | A |
5122136 | Gugliemi et al. | Jun 1992 | A |
5123914 | Cope | Jun 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5201746 | Shichman | Apr 1993 | A |
5203864 | Phillips | Apr 1993 | A |
5217471 | Burkhart | Jun 1993 | A |
5217473 | Yoon | Jun 1993 | A |
5222508 | Contarini | Jun 1993 | A |
5222961 | Nakao et al. | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5224946 | Hayhurst et al. | Jul 1993 | A |
5234430 | Huebner | Aug 1993 | A |
5234445 | Walker et al. | Aug 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254126 | Filipi et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5268001 | Nicholson et al. | Dec 1993 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5284488 | Sideris | Feb 1994 | A |
5289817 | Williams et al. | Mar 1994 | A |
5300065 | Anderson | Apr 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5316543 | Eberbach | May 1994 | A |
5327914 | Shlain | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5336222 | Durgin, Jr. et al. | Aug 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5337732 | Grundfest et al. | Aug 1994 | A |
5337733 | Bauerfeind et al. | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5345949 | Shlain | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5354298 | Lee et al. | Oct 1994 | A |
5366459 | Yoon | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5372146 | Branch | Dec 1994 | A |
5372604 | Trott | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5382231 | Shlain | Jan 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5403329 | Hinchcliffe | Apr 1995 | A |
5417691 | Hayhurst et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5429583 | Paulus et al. | Jul 1995 | A |
5429598 | Waxman et al. | Jul 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5437266 | McPherson et al. | Aug 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5458609 | Gordon et al. | Oct 1995 | A |
5462560 | Stevens | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5470337 | Moss | Nov 1995 | A |
5470338 | Whitfield et al. | Nov 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480405 | Yoon | Jan 1996 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5496334 | Klundt et al. | Mar 1996 | A |
5499991 | Garman et al. | Mar 1996 | A |
5501691 | Goldrath | Mar 1996 | A |
5507811 | Koike et al. | Apr 1996 | A |
5520691 | Branch | May 1996 | A |
5520701 | Lerch | May 1996 | A |
5522843 | Zang | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5531788 | Dibie et al. | Jul 1996 | A |
5535759 | Wilk | Jul 1996 | A |
5540704 | Gordon et al. | Jul 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5562684 | Kammerer | Oct 1996 | A |
5562686 | Sauer et al. | Oct 1996 | A |
5562688 | Riza | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569306 | Thal | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571119 | Atala | Nov 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5573548 | Nazre et al. | Nov 1996 | A |
5578045 | Das | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5584859 | Brotz | Dec 1996 | A |
5601557 | Hayhurst | Feb 1997 | A |
5603718 | Xu | Feb 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5624381 | Kieturakis | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5626614 | Hart | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5643274 | Sander et al. | Jul 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643317 | Pavcnik et al. | Jul 1997 | A |
5643320 | Lower et al. | Jul 1997 | A |
5651788 | Fleischer et al. | Jul 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5658313 | Thal | Aug 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5665112 | Thal | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5679005 | Einstein | Oct 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5683419 | Thal | Nov 1997 | A |
5690655 | Hart et al. | Nov 1997 | A |
5693060 | Martin | Dec 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5707394 | Miller et al. | Jan 1998 | A |
5709708 | Thal | Jan 1998 | A |
5713903 | Sander et al. | Feb 1998 | A |
5720765 | Thal | Feb 1998 | A |
5724978 | Tenhoff | Mar 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5732707 | Widder et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752963 | Allard et al. | May 1998 | A |
5759151 | Sturges | Jun 1998 | A |
5766189 | Matsuno | Jun 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5782865 | Grotz | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5792152 | Klein et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5797929 | Andreas et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5814070 | Borzone et al. | Sep 1998 | A |
5817110 | Kronner | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5824011 | Stone et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840078 | Yerys | Nov 1998 | A |
5843084 | Hart et al. | Dec 1998 | A |
5843126 | Jameel | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5887594 | LoCiero, III | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891168 | Thal | Apr 1999 | A |
5893856 | Jacobs et al. | Apr 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5897417 | Grey | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899920 | DeSatnick et al. | May 1999 | A |
5899921 | Caspari et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902254 | Magram | May 1999 | A |
5916147 | Boury | Jun 1999 | A |
5916224 | Esplin | Jun 1999 | A |
5921915 | Azonian et al. | Jul 1999 | A |
5925059 | Palermo et al. | Jul 1999 | A |
5928264 | Sugarbaker et al. | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5947983 | Solar et al. | Sep 1999 | A |
5947997 | Pavcnik et al. | Sep 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5964765 | Fenton, Jr. et al. | Oct 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5964783 | Grafton et al. | Oct 1999 | A |
5976073 | Ouchi | Nov 1999 | A |
5976127 | Lax | Nov 1999 | A |
5976158 | Adams et al. | Nov 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5980558 | Wiley | Nov 1999 | A |
5984933 | Yoon | Nov 1999 | A |
5993476 | Groiso | Nov 1999 | A |
6013083 | Bennett | Jan 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6033430 | Bonutti | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6045573 | Wenstrom, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6077281 | Das | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6079414 | Roth et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6110183 | Cope | Aug 2000 | A |
6113609 | Adams et al. | Sep 2000 | A |
6113611 | Allen et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162168 | Schweich, Jr. et al. | Dec 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6165120 | Schweich, Jr. et al. | Dec 2000 | A |
6167889 | Benetti | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6174323 | Biggs et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
RE37117 | Palermo | Mar 2001 | E |
6197022 | Baker | Mar 2001 | B1 |
6214007 | Anderson | Apr 2001 | B1 |
6228023 | Zaslavsky et al. | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6261222 | Schweich, Jr. et al. | Jul 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6283973 | Hubbard et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293956 | Crainich et al. | Sep 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6306159 | Schwartz et al. | Oct 2001 | B1 |
6312437 | Kortenbach | Nov 2001 | B1 |
6315789 | Cragg | Nov 2001 | B1 |
6322563 | Cummings et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6332468 | Benetti | Dec 2001 | B1 |
6332863 | Schweich, Jr. et al. | Dec 2001 | B1 |
6332864 | Schweich, Jr. et al. | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6336940 | Graf et al. | Jan 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6348064 | Kanner | Feb 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6358197 | Silverman et al. | Mar 2002 | B1 |
6363938 | Saadat et al. | Apr 2002 | B2 |
6368339 | Amplatz et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6423087 | Sawada | Jul 2002 | B1 |
6425911 | Akerfeldt et al. | Jul 2002 | B1 |
6447533 | Adams et al. | Sep 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537285 | Hatasaka, Jr. et al. | Mar 2003 | B1 |
6551315 | Kortenbach et al. | Apr 2003 | B2 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6558400 | Deem et al. | May 2003 | B2 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6695764 | Silverman et al. | Feb 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6719763 | Chung et al. | Apr 2004 | B2 |
6719764 | Gellman et al. | Apr 2004 | B1 |
6736828 | Adams et al. | May 2004 | B1 |
6746460 | Gannoe et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6773440 | Gannoe et al. | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
20010000040 | Adams et al. | Mar 2001 | A1 |
20010016675 | Mortier et al. | Aug 2001 | A1 |
20010025171 | Mortier et al. | Sep 2001 | A1 |
20010049509 | Sekine et al. | Dec 2001 | A1 |
20010051815 | Esplin | Dec 2001 | A1 |
20010056282 | Sonnenschein et al. | Dec 2001 | A1 |
20020010490 | Schaller et al. | Jan 2002 | A1 |
20020013608 | ElAttrache et al. | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022851 | Kalloo et al. | Feb 2002 | A1 |
20020029080 | Mortier et al. | Mar 2002 | A1 |
20020040226 | Laufer et al. | Apr 2002 | A1 |
20020055757 | Torre et al. | May 2002 | A1 |
20020058855 | Schweich, Jr. et al. | May 2002 | A1 |
20020062062 | Belson et al. | May 2002 | A1 |
20020065534 | Hermann et al. | May 2002 | A1 |
20020068849 | Schweich, Jr. et al. | Jun 2002 | A1 |
20020068945 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020072761 | Abrams et al. | Jun 2002 | A1 |
20020077524 | Schweich, Jr. et al. | Jun 2002 | A1 |
20020078967 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020082621 | Schurr et al. | Jun 2002 | A1 |
20020082622 | Kane | Jun 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20020120178 | Tartaglia et al. | Aug 2002 | A1 |
20020147385 | Butler et al. | Oct 2002 | A1 |
20020161281 | Jaffe et al. | Oct 2002 | A1 |
20020183768 | Deem et al. | Dec 2002 | A1 |
20020193661 | Belson | Dec 2002 | A1 |
20020193662 | Belson | Dec 2002 | A1 |
20020193816 | Laufer et al. | Dec 2002 | A1 |
20030009085 | Arai et al. | Jan 2003 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030055442 | Laufer et al. | Mar 2003 | A1 |
20030065359 | Weller et al. | Apr 2003 | A1 |
20030109892 | Deem et al. | Jun 2003 | A1 |
20030139752 | Pasricha et al. | Jul 2003 | A1 |
20030158582 | Bonutti et al. | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171651 | Page et al. | Sep 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030181924 | Yamamoto et al. | Sep 2003 | A1 |
20030204205 | Sauer et al. | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20030216613 | Suzuki et al. | Nov 2003 | A1 |
20030225312 | Suzuki et al. | Dec 2003 | A1 |
20030229296 | Ishikawa et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236536 | Grigoryants et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040010271 | Kortenbach | Jan 2004 | A1 |
20040030347 | Gannoe et al. | Feb 2004 | A1 |
20040034371 | Lehman et al. | Feb 2004 | A1 |
20040049095 | Goto et al. | Mar 2004 | A1 |
20040059346 | Adams et al. | Mar 2004 | A1 |
20040082963 | Gannoe et al. | Apr 2004 | A1 |
20040088008 | Gannoe et al. | May 2004 | A1 |
20040092974 | Gannoe et al. | May 2004 | A1 |
20040093091 | Gannoe et al. | May 2004 | A1 |
20040122452 | Deem et al. | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20040138682 | Onuki et al. | Jul 2004 | A1 |
20040147941 | Takemoto | Jul 2004 | A1 |
20040176784 | Okada | Sep 2004 | A1 |
20040193117 | Laufer et al. | Sep 2004 | A1 |
20040193184 | Laufer et al. | Sep 2004 | A1 |
20040193193 | Laufer et al. | Sep 2004 | A1 |
20040193194 | Laufer et al. | Sep 2004 | A1 |
20040194790 | Laufer et al. | Oct 2004 | A1 |
20040210243 | Gannoe | Oct 2004 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20040215216 | Gannoe et al. | Oct 2004 | A1 |
20040243152 | Taylor et al. | Dec 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20050033320 | McGuckin, Jr. et al. | Feb 2005 | A1 |
20050033328 | Laufer et al. | Feb 2005 | A1 |
20050043758 | Golden et al. | Feb 2005 | A1 |
20050049617 | Chatlynne et al. | Mar 2005 | A1 |
20060020276 | Saadat et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0 480 428 | Apr 1992 | EP |
0 497 781 | Aug 1992 | EP |
0 646 356 | Apr 1995 | EP |
0 847 727 | Jun 1998 | EP |
1 031 321 | Aug 2000 | EP |
2 768 324 | Mar 1999 | FR |
2 165 559 | Apr 1986 | GB |
2004-180781 | Jul 2004 | JP |
WO 9204870 | Apr 1992 | WO |
WO 9519140 | Jul 1995 | WO |
WO 9525468 | Sep 1995 | WO |
WO 9922649 | May 1999 | WO |
WO 9951283 | Oct 1999 | WO |
WO 9959664 | Nov 1999 | WO |
WO 0040159 | Jul 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0057796 | Oct 2000 | WO |
WO 0078227 | Dec 2000 | WO |
WO 0078229 | Dec 2000 | WO |
WO 0121246 | Mar 2001 | WO |
WO 0166001 | Sep 2001 | WO |
WO 0166018 | Sep 2001 | WO |
WO 0170096 | Sep 2001 | WO |
WO 0170097 | Sep 2001 | WO |
WO 0185034 | Nov 2001 | WO |
WO 0187144 | Nov 2001 | WO |
WO 0189370 | Nov 2001 | WO |
WO 0189392 | Nov 2001 | WO |
WO 0189393 | Nov 2001 | WO |
WO 0200119 | Jan 2002 | WO |
WO 0224080 | Mar 2002 | WO |
WO 0239880 | May 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02064012 | Aug 2002 | WO |
WO 02069841 | Sep 2002 | WO |
WO 02085252 | Oct 2002 | WO |
WO 02094105 | Nov 2002 | WO |
WO 03007796 | Jan 2003 | WO |
WO 03007799 | Jan 2003 | WO |
WO 03090633 | Nov 2003 | WO |
WO 03092509 | Nov 2003 | WO |
WO 03094785 | Nov 2003 | WO |
WO 03096909 | Nov 2003 | WO |
WO 03099137 | Dec 2003 | WO |
WO 03105732 | Dec 2003 | WO |
WO 2004004542 | Jan 2004 | WO |
WO 2004004544 | Jan 2004 | WO |
WO 2004019787 | Mar 2004 | WO |
WO 2004019788 | Mar 2004 | WO |
WO 2004021865 | Mar 2004 | WO |
WO 2004021867 | Mar 2004 | WO |
WO 2004021868 | Mar 2004 | WO |
WO 2004021873 | Mar 2004 | WO |
WO 2004021894 | Mar 2004 | WO |
WO 2004049905 | Jun 2004 | WO |
WO 2004071284 | Aug 2004 | WO |
WO 2004075787 | Sep 2004 | WO |
WO 2004084702 | Oct 2004 | WO |
WO 2004084808 | Oct 2004 | WO |
WO 2004103189 | Dec 2004 | WO |
WO 2005037152 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050203489 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10954658 | Sep 2004 | US |
Child | 11069890 | US | |
Parent | 10797910 | Mar 2004 | US |
Child | 10954658 | US |