The disclosed subject matter relates to methods and apparatus for controlling a variable-displacement, multiple-cylinder, internal combustion engine. More particularly, the disclosed subject matter relates to varying the displacement by selectively deactivating combustion in one or more cylinders of the engine.
Some related art internal combustion engines can include a relatively large number of combustion cylinder assemblies in order to achieve one or more desirable performance targets, such as but not limited to high travel speed, low acceleration times, high torque output at low speeds, etc. Generally, fuel efficiency of an engine with a larger number of combustion cylinders can be less than that for an engine having a smaller number of combustion cylinders. Additionally, the total torque output by the engine can exceed the amount necessary under certain operating conditions, such as idling, low speed travel, heavy traffic, steady speed cruising, etc. This excess torque can be converted to heat that is exhausted to the ambient environment, thus further reducing the fuel efficiency of the engine.
Some embodiments are therefore directed to a variable displacement controller for use with a vehicle engine that includes multiple cylinder assemblies. According to one aspect, the controller can include a processor for performing various operations that can include: receiving data indicative of a requested torque, receiving data indicative of vehicle speed, determining a torque variable timer threshold value based on the received data indicative of requested torque and vehicle speed, initiating a timer, comparing the timer value to the determined variable timer threshold value, and selectively activating/deactivating at least one of the engine cylinder assemblies based on the comparison between the timer value and the variable timer threshold value, such that the at least one of the engine cylinder assemblies is activated if the timer value is less than the variable timer threshold value, and the at least one of the engine cylinder assemblies is deactivated if the timer value is greater than or equal to the variable timer threshold value.
In another aspect, a variable displacement system can include a vehicle engine including multiple cylinder assemblies, a speed sensor that can obtain data indicative of at least one of engine speed and vehicle speed, and a variable displacement controller. The controller can include a processor for performing at least the operations of receiving data indicative of a requested torque, receiving data indicative of vehicle speed, determining a torque variable timer threshold value based on the received data indicative of requested torque and vehicle speed, initiating a timer, comparing the timer value to the determined variable timer threshold value, and selectively activating/deactivating at least one of the engine cylinder assemblies based on the comparison between the timer value and the variable timer threshold value, such that at least one of the engine cylinder assemblies is activated if the timer value is less than the variable timer threshold value, and at least one of the engine cylinder assemblies is deactivated if the timer value is greater than or equal to the variable timer threshold value.
In yet another aspect, a method of performing variable displacement of a vehicle engine that includes multiple cylinder assemblies can include receiving data indicative of a requested torque; receiving data indicative of vehicle speed, determining a torque variable timer threshold value based on the received data indicative of requested torque and vehicle speed; initiating a timer, comparing the timer value to the determined variable timer threshold value; and selectively activating/deactivating at least one of the engine cylinder assemblies based on the comparison between the timer value and the variable timer threshold value, such that at least one of the engine cylinder assemblies is activated if the timer value is less than the variable timer threshold value, and at least one of the engine cylinder assemblies is deactivated if the timer value is greater than or equal to the variable timer threshold value.
The disclosed subject matter of the present application will now be described in more detail with reference to exemplary embodiments of the apparatus and method, given by way of example, and with reference to the accompanying drawings, in which:
A few inventive aspects of the disclosed embodiments are explained in detail below with reference to the various figures. Exemplary embodiments are described to illustrate the disclosed subject matter, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a number of equivalent variations of the various features provided in the description that follows.
In order to enhance or improve fuel efficiency under low load conditions, some multiple-cylinder engines can selectively deactivate combustion in one or more cylinders of the engine. For example, a six-cylinder engine can be operated in a four-cylinder mode or in a three-cylinder mode. Similarly, an eight-cylinder engine can be operated in one of at least a six-cylinder mode and a four-cylinder mode.
However, noise and/or vibration characteristics differ depending on the mode in which the engine is operating. For example, noise and/or vibration characteristics differ depending on whether a six-cylinder engine is operating in the six-cylinder mode, a four-cylinder mode, or a three-cylinder mode. In other words, the noise and/or vibration characteristics of each of these modes can be different than the other modes. These different noise and vibration characteristics can be transmitted into the passenger compartment of the vehicle where they can be perceived by the driver and one or more passenger(s) as undesirable.
Some methods and systems may selectively activate and deactivate one or more combustion cylinder assemblies, but fail to provide an advantageous amount of time that the system is active, while preventing excessive and/or frequent activation and deactivation operation (“hunting”) during variable cylinder management (VCM). Excessive hunting can degrade the fuel economy impact as well as cause poor vehicle drivability. Unwanted VCM hunting can occur at higher speeds and/or road loads where an engine operation approaches the VCM operational torque limit. The negative issues of VCM hunting can be exacerbated by rough driving styles.
It may therefore be beneficial to provide a variable-displacement, multiple-cylinder, internal combustion engine that addresses at least one of the above and/or other disadvantages. In particular, it may be beneficial to provide methods and apparatus for selectively activating and deactivating one or more combustion cylinder assemblies based on variable cylinder management (VCM) hunting controls. For example, it may be beneficial to selectively activate and deactivate combustion in one or more cylinders based on vehicle speed and filtered data from driver requested torque to reduce VCM hunting effects due to driving style, environmental conditions, or vehicle road load including towing and grade. It may also be beneficial to provide a timer that can be used to vary a delay before initiating VCM based on a predicted relative risk of hunting effects to decrease transitions in and out of VCM. It may also be beneficial to enhance or improve fuel efficiency in a vehicle by performing predictive VCM hunting risk calculations and activate VCM when an enhancement or improvement to real-world fuel economy is probable.
The powertrain 11 can include an internal combustion engine 18, a transmission 20, a pair of driveshafts 22L, 22R, a control system 24, and an engine cooling system 35. As shown in
The output axis of the engine 18 can be oriented in the longitudinal direction L or in the traverse direction T of the vehicle 10. The engine 18 can be mounted forward of the front axles, rearward of the rear axles, or intermediate the front and rear axles. The engine 18 can be connected to drive the front wheels 14L, 14R, or the rear wheels 16R, 16L, or both the front wheels 14L, 14R and the rear wheels 16L, 16R. In the exemplary embodiment of
The engine 18 can include a plurality of combustion cylinder assemblies of an even count or of an odd count. The cylinders can be arranged in “V” pattern or a “W” pattern, arranged in pair of horizontally opposed banks, arranged in a single row, or arranged in any other appropriate configuration.
The transmission 20 can be configured as an automatic transmission, a manual transmission, or a semi-automatic transmission. The transmission 20 can be configured in any appropriate manner with a stepped speed ratio assembly or a continuously variable speed ratio assembly. The transmission 20 can be coupled to the driveshafts 22L, 22R in any appropriate manner that can permit transmission drive torque from the engine to the front wheels.
A coupling can connect an engine output shaft to a transmission input shaft. The coupling can permit selective engagement/disengagement of the transmission input shaft with the engine output shaft, or at least permit relative rotation of the engine output shaft with respect to the transmission input shaft, in any appropriate manner. Exemplary couplings can include, but are not limited to, a friction disc clutch and a torque converter. The exemplary vehicle 10 of
In order to enhance or improve the fuel efficiency of the engine 18 during certain operating conditions, the control system 24 can be configured to selectively deactivate and activate at least one of the combustion cylinder assemblies. The control system 24 can include a controller 26 and a cylinder deactivation assembly 28. The controller 26 can be in electrical communication with the engine 18, the transmission 20, the cylinder deactivation assembly 28, an accelerator pedal sensor 30, a timer 32, and wheel speed sensors 34LF, 34RF, 34LR, 34RR in any appropriate manner. The control system 24 can share the sensors 30, 34LF, 34RF, 34LR, 34RR and the timer 32 with other system(s) of the vehicle 10. However, exemplary embodiments are intended to include the one or more of the timer 32 and the sensors 30, 34LF, 34RF, 34LR, 34RR as exclusive to the control system 24.
An engine speed sensor 66 can be configured to output data indicative of the rotational speed (Ne) of the crankshaft 64. This data can be expressed in revolutions per minute (RPM). The engine speed sensor 66 can be shared with other control systems of the engine 18, or the sensor 66 can be exclusive to the control system 24.
The controller 26 can be in electrical communication with the intake actuator 52, exhaust actuator 54, spark plug 56, fuel injector 58 and engine speed sensor 66. If the controller 26 determines that it can be advantageous to deactivate the combustion cylinder assembly C, the controller 26 can signal any appropriate one or combination of the intake actuator 52, exhaust actuator 54, spark plug 56 and fuel injector 58 to shut down. This shut down can prevent combustion of fuel within the assembly C, thereby increasing fuel efficiency of the engine 18 under certain operating conditions of the engine 18 and the vehicle 10.
The accelerator pedal sensor 30 can be configured to output data indicative of a position of the accelerator pedal, which can be used with engine speed data to develop a driver demand torque map (that is, the torque requested by the driver as a function of engine speed Ne and a position of the accelerator pedal of the vehicle 10). Embodiments are intended to include a throttle position sensor 76 instead if an accelerator pedal sensor 30. The throttle position sensor 76 can be configured to output data indicative a position of a throttle valve 74, as shown in
As shown in
An intake manifold 68 can be in selective fluid communication with each of the cylinders C1, C2, C3, C4, C5, C6. An intake conduit 70 can be in fluid communication with the ambient air outside of the vehicle 10. A throttle assembly 72 can be connected between the intake manifold 68 and the intake conduit 70. An air sensor 78, extending into the intake conduit 70, can be configured to output data indicative of the mass flow rate and the temperature of the air passing through the intake conduit 70.
The throttle assembly 72 can include a movable throttle valve 74 and a throttle position sensor 76. The throttle valve 74 can be movably mounted to selectively open and close fluid communication between the intake conduit 70 and the intake manifold 68. The throttle position sensor 76 can be configured to output data indicative of the angular position of the throttle valve 74 that can be expressed as a percentage of the wide open throttle position (WOT).
The control system 24 can include one or more of the throttle position sensor 76, a longitudinal acceleration sensor 84, engine speed sensor 66, a vehicle speed (VP) sensor 80, and a next gear ratio input 82. The longitudinal acceleration sensor 84 can be a dedicated sensor input that can measure acceleration/deceleration of the vehicle 10. Embodiments are intended to include the omission of the longitudinal acceleration sensor 84, and the derivation of acceleration/deceleration from either the vehicle speed sensor 80 or from one or any combination of the wheel speed sensors 34LF, 34RF, 34LR, 34RR. The engine speed (Ne) sensor 66 can be mounted to the crankshaft 64 and can measure the rotational speed of the crankshaft 64. The vehicle speed sensor 80 can detect a vehicle speed based on information from sensors mounted on the transmission 20 to measure driveshaft rotational speed, or alternatively in the embodiments the controller 26 can calculate the vehicle speed using information received from wheel speed sensors 34LF, 34RF, 34LR, and 34RR. The next gear ratio input 82 can provide information regarding the current gear ratio selected in the transmission 20, and an upshift or downshift to a next target gear in the transmission
At step S102, the controller 26 can analyze vehicle data and perform a torque NV judgment to determine whether the current torque request from the driver exceeds an NVH Trq threshold, as described above. The NVH Trq threshold can be predetermined based on known, estimated, or standardized criteria. The NVH Trq threshold can be set at any appropriate predetermined engine output torque that can provide the desired performance and/or perceived performance of the engine. During step S102 the controller 26 can set a respective parameter value that corresponds to a pass and a fail of the NV judgment. For example, the controller 26 can set an NV flag to a value of “1” if the current torque request from the driver is less than the NVH Trq threshold, and the controller 26 can set the NV flag to a value of “0” if the current torque request from the driver is greater than or equal to the NVH Trq threshold. The controller 26 can save the NV flag value in a memory device for later retrieval by the controller 26.
At step S104, the controller 26 can perform an overall VCM judgment to determine if cylinder deactivation should be initiated, continued or terminated. The controller 26 can retrieve the NV flag value determined at step S102. If the NV flag has a value of “0,” then the controller 26 can set a VCM flag to a value of “0.” Then the controller 26 can proceed to step S106. If during step S104 the controller 26 determines that the NV flag has a value of “1,” then the controller 26 can check one or more operating parameters of the vehicle 10 and/or the engine 18 and/or the transmission 20 in order to determine whether cylinder deactivation (or re-activation) could result in an advantageous fuel consumption rate. Exemplary parameters can include but are not limited to engine speed, engine load, road grade, etc. If the controller 26 determines that each parameter has satisfied its predetermined criteria, the controller can set the VCM flag to a value of “1” so that cylinder deactivation can be initiated or continued. If the controller 26 determines that at least one parameter has not satisfied its predetermined criteria, the controller 26 can set the VCM flag to a value of “0” so that cylinder deactivation can be terminated or so that all combustion will continue in all of the cylinders C1-C6. The controller 26 can save the VCM flag value in a memory device for later retrieval by the controller 26.
In step S106, the controller 26 can set a value for a parameter, such as a CS flag, that indicates the number of cylinders that are to be deactivated by the cylinder deactivation assembly 28. As will be discussed in greater detail below, the subroutine of step S108 can permit the controller 26 to reduce the risk of “hunting” between cylinder deactivation and activation of all of the cylinders that can be caused by erratic or sudden changes in the position of the accelerator pedal (or the throttle valve 74). During the subroutine of step S108, the controller 26 can delay cylinder deactivation (or re-activation) by using either a predetermined fixed timer threshold or a variable timer threshold that can vary as a function of vehicle speed and the driver's torque request. This delay can reduce the risk of “hunting” between cylinder deactivation and re-activation. Before determining the appropriate timer threshold, the controller 26 can retrieve the VCM flag value determined at step S104. As will be discussed in further detail below, the controller 26 can determine the number of cylinders (0 or 2 or 3, for example, for a six-cylinder engine) that are to be deactivated. The controller 26 can save a CS flag to equal the number of cylinders to be deactivated. The controller 26 can save the CS flag value in a memory device for later retrieval by the controller 26.
At step S106, the controller 26 can issue a signal to the cylinder deactivation assembly 28 to deactivate the number of cylinder assemblies C1-C6 based on the value of the CS flag determined in step S104. For example, if the CS flag has a value of “0,” then the controller 26 can signal the assembly 28 to activate all of the cylinder assemblies. Further, if the CS flag has a value of 3, then the controller 26 can signal the assembly 28 to deactivate the three cylinder assemblies C4-C6 of a common bank. At step S108, the controller 26 can issue a final VCM command that implements the VCM operation.
In
At step S114, the controller 26 can receive vehicle speed VP data for the vehicle 10 and receive a torque request Trq from a driver via one or more of the accelerator pedal sensor 30 and the throttle position sensor 76. At step S116 the controller 26 can filter the torque request using various criteria. In one embodiment, the controller 26 can perform a torque filtering operation to provide an appropriate value to a lookup map. A comparison of driver torque and filtered torque is illustrated in
At step S120 in
As another condition in step S120, if the controller 26 determines the engine 18 does not have any of the cylinder assemblies C1-C6 deactivated, then the controller 26 can gather vehicle speed VP and acceleration data to determine if the vehicle 10 is decelerating. If the controller 26 detects deceleration of the vehicle 10, then the controller 26 can use a deceleration timer to determine if conditions are appropriate for cylinder deactivation.
At step 120, if the controller 26 determines that conditions are appropriate for VCM operation, then the controller 26 can analyze the current VCM state. If the controller 26 determines the engine 18 is currently operating in VCM, then the controller can reset the up-counting timer and continue VCM operation. If the controller 26 determines that the current state is not in VCM operation (that is, VCM is disengaged), then the controller 26 can compare criteria for the current gear ratio selected in the transmission 20 to a next gear ratio appropriate for engaging VCM. For example, VCM logic may restrict VCM operation to a top gear ratio, top two gear ratios, etc. However, the embodiments are intended to include or otherwise cover any gear ratio that could provide advantageous fuel consumption rate if the engine 18 operates in VCM. If the controller 26 in step S148 determines that the next gear ratio is not appropriate for VCM operation, then the controller 26 can proceed to step S150 and select a fixed timer threshold as a delay timer limit in step S122. If the controller 26 determines the next gear ratio is appropriate for VCM operation, then in step S152 the controller 26 can select a variable timer threshold as the delay timer limit. In an embodiment, the variable timer threshold can be determined as a function of the filtered torque criteria. In the algorithm, if the engine 18 is operating with VCM disengaged, the transmission 20 is in the relevant gear, and torque conditions are present that are appropriate for VCM operation, the controller 26 can determine a delay timer limit based on the filtered torque value and the current VP. The delay timer limit is used to postpone VCM activation based on a predicted VCM hunting risk.
If the controller 26 determines, in step S120, the current conditions are not appropriate to continue with cylinder deactivation, then the controller 26 can set the value of the CS flag to be “0.” The controller 26 can reset an up-counting timer prior to ending the process at step S132.
At step S124, the controller 26 can initiate the up-counting timer while the conditions remain appropriate for VCM operation. Whether the controller 26 selects the fixed timer threshold or the variable timer threshold, at step S128 the controller 26 can compare the up-counting timer to the selected delay timer limit. While conditions are such that VCM is appropriate to operate, the variable timer limit can be continuously calculated by the controller 26 and compared to the up-counting timer. At step S128, if the controller 26 determines that the delay timer limit is greater than the up-counting timer value, then the controller 26 can proceed to the end of process step S132. However, if the controller 26 determines that the up-counting timer has a value greater or equal to the timer delay limit, then the controller 26 can engage VCM operation in the engine 18. After VCM engagement, the controller 26 can end the process at step S132.
Region 2 of
Region 3 can represent a vehicle condition in which the vehicle speed VP remains constant but the filtered torque demand TRQF rises to a sharp peak and then gradually decreases. The controller 26 can set the VCM condition flag FL from one to zero, indicating that regardless of the timer limits TL, conditions are not appropriate for VCM operation. In an embodiment, conditions in Region 3 are not advantageous for VCM because the filtered torque TRQF value increases above the NV torque threshold. The controller 26 can also reset the up-counting time TU to zero at the corresponding time of FL change.
Region 4 can represent a state where VCM operation would be appropriate under the current conditions. Vehicle speed VP remains constant but the filtered torque TRQF continues to gradually decrease but remains at a higher torque than TRQD. Over the same time period, the actual torque demand TRQD decreases in a sharp decline and abruptly flattens. The controller 26 changes VCM flag condition FL to true, meaning conditions are appropriate for VCM operation due to TF falling below the NV torque criteria threshold. In Region 4, the timer limit threshold TL gradually decreases from a trend that initiated in Region 3. The up-counting timer TU steadily increases across Region 4 until it crosses the TL threshold. According to the algorithm step S154, if TU is greater than or equal to TL, the controller 26 will command VCM operation. Since FL is true and VCM is available, and TU is greater than TL, which occurs at the TL crossing point, the controller 26 can command VCM operation. Using VCM also changes the binary plot for cylinder deactivation command, plotted as CS Flag, from zero, or false, to one, or true. This can occur when the controller 26 deactivates one or more target cylinders within the engine 18.
Region 5 can represent a condition of continuing VCM operation even as the filtered torque TRQF decline reverses a downward trend and begins a gradual increase. The TRQF increase causes the timer limit TL to correspondingly increase until it rises above the up-counting timer TU. In Region 5, although the TL threshold rises above up-counting timer TU, FL remains in a condition available for VCM and therefore the controller 26 does not cancel the VCM operation. Thus, the CS Flag plot remains in a true state during the time period of Region 5.
Region 6 can represent a continuation of the increasing filtered torque demand TRQF from Region 5 that crosses the NV torque criteria threshold at the start of Region 6. After TRQF crosses NV threshold, the controller 26 can disengage VCM due to the increased demand for torque beyond the ability for a reduced cylinder operation in the engine 18 to deliver. The controller 26 can change the VCM condition flag FL from one to zero, indicating that conditions are not appropriate for VCM due to the increased demand for torque greater than the NV torque criteria threshold.
The controller 26 can be configured with hardware, with or without software, to perform the operations discussed above. Electrical communication lines (not numbered) can connect the controller 26 to the engine 18, the transmission 20, the cylinder deactivation assembly 28, the sensors or inputs 30, 34LF, 34RF, 34LR, 34RR, 66, 76, 78 and the timer 32, in any appropriate manner. Electrical communication can be either one-way communication or two-way communication and can be networked or not networked. The controller 26 also can be referred to as an electronic control unit (ECU) or as a central processing unit. The sensors or inputs 30, 34LF, 34RF, 34LR, 34RR, 66, 76, 78 can be configured with hardware, with or without software, to perform the assigned task(s).
Any of the sensors or inputs 30, 34LF, 34RF, 34LR, 34RR, 66, 76, 78 can be configured as a smart sensor such that the sensor can process the raw data collected by the sensor prior to transmission to the controller 26 or the sensor can be configured as a simple sensor that passes the raw data directly to the controller 26 without any manipulation of the raw data. Any of the sensors or inputs 30, 34LF, 34RF, 34LR, 34RR, 66, 76, 78 can be configured to send data to the controller 26, with or without a prompt from the controller 26.
The wheel speed sensors 34LF, 34RF, 34LR, 34RR can be mounted on an appropriate portion of the vehicle 10 to detect rotation of the respective wheel 14L, 14R, 16L, 16R (or the respective driveshaft 22L, 22R) in any appropriate manner. The raw data from the wheel speed sensors 34LF, 34RF, 34LR, 34RR can be processed by one or both of the wheel speed sensors 34LF, 34RF, 34LR, 34RR or by the controller 26 to indicate a rotational velocity of the respective wheels 14L, 14R, 16L, 16R. The wheel speed sensors 34LF, 34RF, 34LR, 34RR can be any type of sensor capable of providing the appropriate data.
Exemplary embodiments are intended to include the timer 32 integrated into the controller 26. Exemplary embodiments are intended to include the controller 26 configured with hardware, with or without software, to perform the function provided by the timer 32 of the exemplary embodiment described above.
While certain embodiments of the invention are described above, and
Embodiments are disclosed above in the context of automotive vehicles. However, embodiments are intended to be applicable to any type of vehicle, including boats, ships, aircraft, etc.
Embodiments disclosed above disclose the fuel injector 58 arranged in a direct-injection configuration. However, embodiments are intended to include any fuel supply configuration such as but not limited to a port fuel-injection configuration, a single fuel injector that can supply each of the cylinder assemblies, a plurality of fuel injectors associated with each cylinder assembly, at least one carburetor, etc.
The disclosed controllers and other apparatus can include processors and computer programs implemented by processors used to perform various of the operations and determinations disclosed above. Exemplary embodiments are intended to cover all software or computer programs capable of enabling processors to implement the above operations and determinations. Exemplary embodiments are also intended to cover any and all currently known, related art or later developed non-transitory recording or storage mediums (such as a CD-ROM, DVD-ROM, hard drive, RAM, ROM, floppy disc, magnetic tape cassette, etc.) that record or store such software or computer programs. Exemplary embodiments are further intended to cover such software, computer programs, systems and/or processes provided through any other currently known, related art, or later developed medium (such as non-transitory mediums, carrier waves, etc.), usable for implementing the exemplary operations disclosed above.
These computer programs can be executed in many exemplary ways, such as an application that is resident in the memory of a device or as a hosted application that is being executed on a server and communicating with the device application or browser via a number of standard protocols, such as TCP/IP, HTTP, XML, SOAP, REST, JSON and other sufficient protocols. The disclosed computer programs can be written in exemplary programming languages that execute from memory on the device or from a hosted server, such as BASIC, COBOL, C, C++, Java, Pascal, or scripting languages such as JavaScript, Python, Ruby, PHP, Perl or other sufficient programming languages.
Some of the disclosed embodiments include or otherwise involve data transfer over a network, such as communicating various inputs over the network. The network may include, for example, one or more of the Internet, Wide Area Networks (WANs), Local Area Networks (LANs), analog or digital wired and wireless telephone networks (e.g., a PSTN, Integrated Services Digital Network (ISDN), a cellular network, and Digital Subscriber Line (xDSL)), radio, television, cable, satellite, and/or any other delivery or tunneling mechanism for carrying data. Network may include multiple networks or subnetworks, each of which may include, for example, a wired or wireless data pathway. The network may include a circuit-switched voice network, a packet-switched data network, a dedicated short range communication (DSRC) network, wireless access in vehicular environments (WAVE), or any other network able to carry electronic communications. For example, the network may include networks based on the Internet protocol (IP) or asynchronous transfer mode (ATM), and may support voice using, for example, VoIP, Voice-over-ATM, or other comparable protocols used for voice data communications. In one implementation, the network includes a cellular telephone network configured to enable exchange of text or SMS messages.
Examples of a network include, but are not limited to, a personal area network (PAN), a storage area network (SAN), a home area network (HAN), a campus area network (CAN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a virtual private network (VPN), an enterprise private network (EPN), Internet, a global area network (GAN), and so forth.
While the subject matter has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. All related art references discussed in the above Description of the Related Art section are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4104991 | Abdoo et al. | Aug 1978 | A |
5408974 | Lipinski et al. | Apr 1995 | A |
5884603 | Matsuki | Mar 1999 | A |
5970943 | Robichaux et al. | Oct 1999 | A |
6615804 | Matthews et al. | Sep 2003 | B2 |
6748916 | Schaefer-Siebert | Jun 2004 | B2 |
6752121 | Rayl et al. | Jun 2004 | B2 |
6857491 | Wakashiro et al. | Feb 2005 | B2 |
7021273 | Prucka et al. | Apr 2006 | B1 |
7044885 | Doering | May 2006 | B2 |
7328686 | Cullen | Feb 2008 | B2 |
7350499 | Takaoka et al. | Apr 2008 | B2 |
7647154 | Heap | Jan 2010 | B2 |
7757666 | Whitney et al. | Jul 2010 | B2 |
7765052 | Kaiser et al. | Jul 2010 | B2 |
7775320 | McCain et al. | Aug 2010 | B2 |
7913669 | Luken et al. | Mar 2011 | B2 |
8550055 | Ferch et al. | Oct 2013 | B2 |
8886422 | Sujan et al. | Nov 2014 | B2 |
8967118 | Whitney et al. | Mar 2015 | B2 |
9598065 | Mori | Mar 2017 | B2 |
20040237935 | Fukusako et al. | Dec 2004 | A1 |
20100147258 | Edwards et al. | Jun 2010 | A1 |
20130327292 | Knippelmeyer | Feb 2013 | A1 |
Entry |
---|
Kortwittenborg et al. “Strategy to Control the Cylinder Deactivation” Bosch Development Engine Management. MTZ 0212013 vol. 74, pp. 18-22. |