The present invention relates to apparatus and methods for separating blood components. More particularly, the present invention relates to apparatus and methods for effectively separating and removing specific components from blood.
Blood may be fractionated and the different fractions of the blood used for different medical needs. For instance, anemia (low erythrocyte levels) may be treated with infusions of erythrocytes. Thrombocytopenia (low thrombocyte (platelet) levels) may be treated with infusions of platelet concentrate.
The sedimentation of the various blood cells and plasma is based on the different specific gravity of the cells and the viscosity of the medium. When sedimented to equilibrium, the component with the highest specific gravity (density) eventually sediments to the bottom, and the lightest rises to the top. Under the influence of gravity or centrifugal force, blood spontaneously sediments into three layers. At equilibrium the top, low-density layer is a straw-colored clear fluid called plasma. Plasma is a water solution of salts, metabolites, peptides, and many proteins ranging from small (insulin) to very large (complement components). Plasma per se has limited use in medicine but may be further fractionated to yield proteins used, for instance, to treat hemophilia (factor VIII) or as a hemostatic agent (fibrinogen). The term platelet rich plasma (PRP) is used for this component because most of the plasma proteins and platelets in the whole blood are in the plasma following slow centrifugation so the concentration of platelets in the plasma has increased while suspended in supernatant plasma. The uppermost layer after centrifugation typically contains plasma proteins only and is typically called platelet-poor plasma (PPP) due to the absence or low number of platelets as a result of a “hard spin”.
The bottom, high-density layer is a deep red viscous fluid comprising nuclear red blood cells (RBC) specialized for oxygen transport. The red color is imparted by a high concentration of chelated iron or heme that is responsible for the erythrocytes high specific gravity. Packed erythrocytes, matched for blood type, are useful for treatment of anemia caused by, e.g., bleeding. The relative volume of whole blood that consists of erythrocytes is called the hematocrit, and in normal human beings can range from about 38% to about 54%.
The intermediate layer is the smallest layer, appearing as a thin white band on top the erythrocyte layer and below the plasma, and is called the buffy coat. The buffy coat itself has two major components, nucleated leukocytes (white blood cells) and anuclear smaller bodies called platelets (or thrombocytes). Leukocytes confer immunity and contribute to debris scavenging. Platelets seal ruptures in the blood vessels to stop bleeding and deliver growth and wound healing factors to the wound site. The buffy coat may be separated from whole blood when the blood is subjected to a “hard spin” in which the whole blood is spun hard enough and long enough so that platelets sediment from plasma onto packed red cells and white cells percolate up through red cell pack to the interface between red cells and plasma.
When whole blood is centrifuged at a low speed (e.g., up to 1,000 g) for a short time (e.g., two to four minutes) white cells sediment faster than red cells and both sediment much faster than platelets. At higher speeds the same distribution is obtained in a shorter time. The method of harvesting PRP from whole blood is based on this principle. Centrifugal sedimentation that takes the fractionation only as far as separation into packed erythrocytes and PRP is called a “soft spin” which is typically used to describe centrifugation conditions under which erythrocytes are sedimented but platelets remain in suspension. “Hard spin” is typically used to describe centrifugation conditions under which erythrocytes sediment and platelets sediment in a layer immediately above the layer of erythrocytes.
The auto-transfusion equipment used to make autologous platelet concentrates requires a skilled operator and considerable time and expense and these devices require a large prime volume of blood. While many of these devices have somewhat reduced the cost and the time required, skilled operators and time are still required. Accordingly, there remains a need for simple and effective methods and devices for separating and removing components from whole blood.
The present invention relates to apparatus and methods for rapid fractionation of blood into its different components, e.g., erythrocyte, plasma, and platelet fractions. The devices and methods described have particular value for rapid preparation of autologous concentrated platelet fractions, e.g., to help or speed healing.
In separating out the fractional layers from blood, one variation may include a centrifuge tube fitted with an access tube extending within and having a predefined length for withdrawing the fractional layers. A centrifuge tube may include an access tube extending within the channel of the tube from a cover or seal. The access tube may be fluidly coupled to a septum luer through which a line or syringe may be attached. In one variation, the access tube length may be about half of the centrifuge tube length so that the opening of the access tube may be suitably positioned to withdraw specified fractional layers of the separated blood. In one example, whole blood may be received within the centrifuge tube and sealed with the access tube extending within the blood. Alternatively, the blood may be introduced into the tube directly through the access tube and the tube may be subsequently sealed. Anticoagulants may be preloaded within the centrifuge tube or introduced into the tube along with the blood.
The centrifuge tube may be then subjected to a centrifuge or left to separate under the force of gravity. The resulting fractional layers will form within the tube with the RBC layer formed in the lower portion of centrifuge tube. The PRP layer will remain suspended above the sedimented RBC layer and with the length of the access tube properly sized, the opening will remain within the PRP layer. The blood cell-free PRP layer can then be recovered by withdrawal back into the syringe via the access tube. The process time can be reduced dramatically by briefly spinning the anticoagulated blood to pellet the blood cells.
If desired, an optional layer of a matrix, such as open cell foam, fabric mat, or other open matrix, can occupy the lower portion of the tube to entrap the sedimented blood cells and reduce the risk of disturbing the settled cells during handling.
In yet another variation, a cylindrical tube may have a closed floor and a plunger having a funnel attached. A plunger opening may be defined through the plunger and a length of tubing having an opening may be connected to the apex of the funnel. Rather than having a plunger pushed through the channel of the tube from an end opposite of where the fractional layer is removed, the plunger and funnel may be used to remove the fractional layer from the same end of where the plunger is actuated. In this manner, the plunger is pushed down into the tube and towards the floor rather than from the bottom of the tube away from the floor.
One variation of a method for separating blood into its fractional layers and then withdrawing specific layers using the tube may have the plunger and attached funnel initially positioned at the closed floor of the tube. The tubing may be seen extend from the funnel through the tube and terminating at the opening positioned externally of the tube. A syringe containing a volume of blood, e.g., anticoagulated blood, may be connected to the opening and then injected through the tubing, into the funnel, through the plunger, and into the tube which may force the plunger and funnel away from the floor as the blood enters the tube.
Once the tube has been sufficiently filled with the blood, the tubing may be detached from the top of the funnel which may be secured with a cap or seal in preparation for centrifugation with the funnel remaining in place upon the plunger. Once the tube and blood has been sufficiently centrifuged, the blood may have fractionalized into its component layers, e.g., a first PRP layer and a second RBC layer.
A tubing connected to a withdrawal syringe may be coupled to the funnel and the syringe may be used to draw the PRP layer directly through the funnel and into the syringe. Due to the vacuum drawn via the withdrawal syringe, the plunger and funnel may be forced to move further into the tube and towards the floor as the PRP layer is removed from the tube.
During withdrawal, because the plunger and funnel are moving into the PRP layer for collection, the platelets within the layer are no longer dragged against the walls of the tubing. Moreover, because the PRP layer (buffy coat, RBC layer) remains undisturbed until contacted with the funnel, the yield on platelets and white blood cells are potentially improved while contamination from the RBC layer is potentially reduced.
One variation of a separation apparatus generally comprises a tube having a first length and defining a channel within, an access tube having a second length and extending into the channel, and an open cell matrix configured to entrap red blood cells and positioned within at least a portion of the channel, wherein the access tube defines an opening which is positioned within proximity of the open cell matrix within the channel.
Another variation of a separation apparatus generally comprises a cylindrical tube defining an opening and a channel extending therethrough, a plunger defining a plunger fluid opening and slidably positioned within the channel, and a funnel positioned upon the plunger and movable therewith, wherein the funnel defines a funnel fluid opening in fluid communication with the plunger fluid opening.
One variation for a method of separating components from blood generally comprises introducing a volume of blood through a funnel and a plunger and into a channel defined by a cylindrical tube such that the funnel and plunger are moved from a first position within the tube to a second position in proximity to an opening defined by the tube, applying a centrifugal force to the volume of blood contained within the tube such that the blood forms at least a first fractional layer and a second fractional layer, and withdrawing at least the first fractional layer from the tube via the funnel and the plunger such that the funnel and plunger are moved from the second position back towards the first position.
Throughout the description, terms such as “top”, “above, “bottom”, “below” are used to provide context with respect to the relative positioning of components when, e.g., a container tube with fractional components of blood are positioned when the longitudinal axis of a container tube is positioned upright or non-horizontally. Such description is used for illustrative purposes only.
As discussed herein, when sedimented to equilibrium, the component with the highest specific gravity (density) eventually sediments to the bottom, and the lightest rises to the top. Under the influence of gravity or centrifugal force, blood spontaneously sediments into three layers. At equilibrium the top, low-density layer is a straw-colored clear fluid called plasma. The term platelet rich plasma (PRP) is used for this component because most of the plasma proteins and platelets in the whole blood are in the plasma following slow centrifugation so the concentration of platelets in the plasma has increased while suspended in supernatant plasma. The bottom, high-density layer comprises sedimented red blood cells (RBC). The intermediate layer, if the blood is subjected to further centrifugation, is called the buffy coat.
In separating out the fractional layers from blood, one variation may include a centrifuge tube fitted with an access tube extending within and having a predefined length for withdrawing the fractional layers. Because blood typically contains about 40% to 45% of red blood cells by volume, the resulting volume of the RBC layer after centrifugation can be determined relative to the height of the centrifugation tube.
With the opening 20 of the access tube 12 positioned approximately half-way down the length of the centrifuge tube 10, the opening 20 may be suitably positioned to withdraw specified fractional layers of the separated blood. In one example, whole blood may be received within the centrifuge tube 10 and sealed with the access tube 12 extending within the blood. Alternatively, the blood may be introduced into the tube 10 directly through the access tube 12 and the tube may be subsequently sealed. Anticoagulants may be preloaded within the centrifuge tube 10 or introduced into the tube 10 along with the blood.
The centrifuge tube 10 may be then subjected to a centrifuge or left to separate under the force of gravity. The resulting fractional layers will form within the tube 10 with the RBC layer formed in the lower portion of centrifuge tube 22. The PRP layer will remain suspended above the sedimented RBC layer and with the length of the access tube 12 properly sized, the opening 20 will remain within the PRP layer. The blood cell-free PRP layer can then be recovered by withdrawal back into the syringe 18 via the access tube 12. The process time can be reduced dramatically by briefly spinning the anticoagulated blood to pellet the blood cells.
If desired, an optional layer of a matrix 24, such as open cell foam, fabric mat, or other open matrix, can occupy the lower portion 22 of the tube 10 to entrap the sedimented blood cells and reduce the risk of disturbing the settled cells during handling.
In yet another variation,
Once the tube 30 has been sufficiently filled with the blood 46, the tubing 40 may be detached from the top of the funnel 36 which may be secured with a cap or seal 48 in preparation for centrifugation, as shown in
A tubing 50 connected to a withdrawal syringe 52 may be coupled to the funnel 36, as shown in
During withdrawal, because the plunger 34 and funnel 36 are moving into the PRP layer 46′ for collection, the platelets within the layer 46′ are no longer dragged against the walls of the tubing 30. Moreover, because the PRP layer (buffy coat, RBC layer) remains undisturbed until contacted with the funnel 36, the yield on platelets and white blood cells are potentially improved while contamination from the RBC layer is potentially reduced.
For discussion purposes, a “hard spin” generally refers to the first spin in the double-centrifugation protocol for separating the red blood cells from the plasma while a “soft spin” generally refers to the second spin in the protocol which is used to further separate the platelets, white blood cells and few remaining red blood cells from the plasma. While not intended to be limiting, a “hard spin” may range, e.g., between 2000 to 4000×g over 2 to 20 minutes, while a “soft spin” may range, e.g., between 500 to 1000×g over 2 to 20 minutes.
In the case where the whole blood 46 has been subjected to a “soft spin”, the fractionalized PRP layer may be withdrawn using the method described. In the case where the whole blood 46 has been subjected to a “hard spin”, an additional fractional layer of platelet-poor plasma (PPP) may be formed atop of the PRP layer. The plunger 34 and funnel 36 may be partially translated through the tube 30 and towards the floor 32 to capture just the PPP layer, the PRP layer, or both, if desired. In the case where a buffy coat has been formed after a “hard spin”, once the PRP layer has been withdrawn, a second withdrawal syringe may be connected and the buffy coat alone may then be withdrawn into the second withdrawal syringe.
The apparatus and methods disclosed above are not limited to the individual embodiments which are shown or described but may include combinations which incorporate individual features between the different variations. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application claims the benefit of priority to U.S. Prov. 62/695,649 filed Jul. 9, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3586064 | Brown | Jun 1971 | A |
3914985 | von Behrens | Oct 1975 | A |
3960727 | Hochstrasser | Jun 1976 | A |
4021352 | Sarstedt | May 1977 | A |
4152270 | Cornell | May 1979 | A |
4210623 | Breno et al. | Jul 1980 | A |
4417981 | Nugent | Nov 1983 | A |
4867887 | Smith | Sep 1989 | A |
5064541 | Jeng | Nov 1991 | A |
5550060 | Saunders et al. | Aug 1996 | A |
5585007 | Antanavich | Dec 1996 | A |
5707876 | Levine | Jan 1998 | A |
5860937 | Cohen | Jan 1999 | A |
6123655 | Fell | Sep 2000 | A |
6221655 | Fung | Apr 2001 | B1 |
6465256 | Iskra | Oct 2002 | B1 |
6506167 | Ishimoto et al. | Jan 2003 | B1 |
7001774 | Gamble | Feb 2006 | B1 |
7074577 | Haubert et al. | Jul 2006 | B2 |
7077273 | Ellsworth et al. | Jul 2006 | B2 |
7153477 | DiCesare et al. | Dec 2006 | B2 |
7179391 | Leach et al. | Feb 2007 | B2 |
7223346 | Dorian et al. | May 2007 | B2 |
7329534 | Haubert et al. | Feb 2008 | B2 |
7358095 | Haubert et al. | Apr 2008 | B2 |
7374678 | Leach et al. | May 2008 | B2 |
7445125 | Ellsworth et al. | Nov 2008 | B2 |
7470371 | Dorian et al. | Dec 2008 | B2 |
7771590 | Leach et al. | Aug 2010 | B2 |
7780860 | Higgins et al. | Aug 2010 | B2 |
7798021 | Gamble et al. | Sep 2010 | B2 |
7845499 | Higgins et al. | Dec 2010 | B2 |
7947236 | Losada et al. | May 2011 | B2 |
7976796 | Smith | Jul 2011 | B1 |
7992725 | Leach et al. | Aug 2011 | B2 |
8012742 | Haubert et al. | Sep 2011 | B2 |
8048297 | Leach et al. | Nov 2011 | B2 |
8048321 | Leach et al. | Nov 2011 | B2 |
8119013 | Leach et al. | Feb 2012 | B2 |
8177072 | Chapman et al. | May 2012 | B2 |
8187477 | Dorian et al. | May 2012 | B2 |
8236258 | Leach et al. | Aug 2012 | B2 |
8313954 | Leach et al. | Nov 2012 | B2 |
8328024 | Leach et al. | Dec 2012 | B2 |
8348066 | Ellsworth | Jan 2013 | B2 |
8377395 | Coleman | Feb 2013 | B2 |
8394342 | Felix et al. | Mar 2013 | B2 |
8445264 | Seubert et al. | May 2013 | B2 |
8474630 | Dorian et al. | Jul 2013 | B2 |
8506823 | Chapman et al. | Aug 2013 | B2 |
8511479 | Chapman et al. | Aug 2013 | B2 |
8511480 | Chapman et al. | Aug 2013 | B2 |
8518272 | Hoeppner | Aug 2013 | B2 |
8596470 | Leach et al. | Dec 2013 | B2 |
8603345 | Ross et al. | Dec 2013 | B2 |
8603346 | Leach et al. | Dec 2013 | B2 |
8632736 | Spatafore et al. | Jan 2014 | B2 |
8632740 | Dastane et al. | Jan 2014 | B2 |
8747781 | Bartfield et al. | Jun 2014 | B2 |
8794452 | Crawford et al. | Aug 2014 | B2 |
8808551 | Leach et al. | Aug 2014 | B2 |
8950586 | Dorian et al. | Feb 2015 | B2 |
8992862 | Leach et al. | Mar 2015 | B2 |
8998000 | Crawford et al. | Apr 2015 | B2 |
9011800 | Leach et al. | Apr 2015 | B2 |
9079123 | Crawford et al. | Jul 2015 | B2 |
9114334 | Leach et al. | Aug 2015 | B2 |
9120095 | O'Connel, Jr. | Sep 2015 | B2 |
9138664 | Leach et al. | Sep 2015 | B2 |
9162232 | Ellsworth | Oct 2015 | B2 |
9239276 | Landrigan et al. | Jan 2016 | B2 |
9272083 | Duffy et al. | Mar 2016 | B2 |
9333445 | Battles et al. | May 2016 | B2 |
9339741 | Newby et al. | May 2016 | B2 |
9364828 | Crawford et al. | Jun 2016 | B2 |
9375661 | Chapman et al. | Jun 2016 | B2 |
9393575 | Ellsworth et al. | Jul 2016 | B2 |
9393576 | Ellsworth et al. | Jul 2016 | B2 |
9399226 | Ellsworth et al. | Jul 2016 | B2 |
9452427 | Felix et al. | Sep 2016 | B2 |
9642956 | Landrigan et al. | May 2017 | B2 |
9649579 | Leach et al. | May 2017 | B2 |
9656274 | Ellsworth et al. | May 2017 | B2 |
9694359 | Losada et al. | Jul 2017 | B2 |
9700886 | Felix et al. | Jul 2017 | B2 |
9714890 | Newby et al. | Jul 2017 | B2 |
9731290 | Crawford et al. | Aug 2017 | B2 |
9802189 | Crawford et al. | Oct 2017 | B2 |
9897589 | Woodell-May | Feb 2018 | B2 |
9919307 | Crawford et al. | Mar 2018 | B2 |
9919308 | Crawford et al. | Mar 2018 | B2 |
9919309 | Crawford et al. | Mar 2018 | B2 |
9933344 | Newby et al. | Apr 2018 | B2 |
9937445 | King et al. | Apr 2018 | B2 |
10005081 | Duffy et al. | Jun 2018 | B2 |
10183042 | Leach et al. | Jan 2019 | B2 |
10343157 | Crawford et al. | Jul 2019 | B2 |
10350591 | Felix et al. | Jul 2019 | B2 |
10376879 | Crawford et al. | Aug 2019 | B2 |
10393728 | Woodell-May | Aug 2019 | B2 |
10413898 | Crawford et al. | Sep 2019 | B2 |
10456782 | Crawford et al. | Oct 2019 | B2 |
10603665 | Levine et al. | Mar 2020 | B2 |
10618044 | Petrie, Jr. | Apr 2020 | B1 |
20050109716 | Leach | May 2005 | A1 |
20050139547 | Manoussakis et al. | Jun 2005 | A1 |
20090050553 | Okamoto | Feb 2009 | A1 |
20100256595 | Leach et al. | Oct 2010 | A1 |
20110281714 | Dorian et al. | Nov 2011 | A1 |
20120053041 | Ihm et al. | Mar 2012 | A1 |
20120129676 | Duffy et al. | May 2012 | A1 |
20140042094 | Montagu et al. | Feb 2014 | A1 |
20150231626 | Shi et al. | Aug 2015 | A1 |
20150367064 | Pennie | Dec 2015 | A1 |
20160030661 | Hwang | Feb 2016 | A1 |
20160279551 | Foucault | Sep 2016 | A1 |
20160367982 | Pennie | Dec 2016 | A1 |
20170304823 | Sparks et al. | Oct 2017 | A1 |
20180304251 | Ellson et al. | Oct 2018 | A1 |
20180353952 | Olson | Dec 2018 | A1 |
20200009551 | Dorian et al. | Jan 2020 | A1 |
20200009552 | Crawford et al. | Jan 2020 | A1 |
20200129560 | Centeno et al. | Apr 2020 | A1 |
20200197929 | Weinstock et al. | Jun 2020 | A1 |
20200215243 | Dorian et al. | Jul 2020 | A1 |
20200246516 | Dorian et al. | Aug 2020 | A1 |
20200289720 | Streit | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
0385953 | Sep 1990 | EP |
0778944 | Jun 1997 | EP |
3342436 | Jul 2018 | EP |
WO 2007000966 | Jan 2007 | WO |
WO 2010138895 | Dec 2010 | WO |
WO 2014120797 | Aug 2014 | WO |
WO 2016205640 | Dec 2016 | WO |
WO 2018197562 | Nov 2018 | WO |
WO 2018197564 | Nov 2018 | WO |
WO 2018197592 | Nov 2018 | WO |
WO 2020013981 | Jan 2020 | WO |
WO 2020013997 | Jan 2020 | WO |
WO 2020154305 | Jul 2020 | WO |
WO 2020163105 | Aug 2020 | WO |
Entry |
---|
Rohrer, Device for receiving liquids and for exactly removing single phases of the received liquid, Jul. 4, 2018, https://patents.google.com/patent/EP3342436B1/en?oq=EP+3342436 (Year: 2018). |
Number | Date | Country | |
---|---|---|---|
20200009304 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62695649 | Jul 2018 | US |