Apparatus and methods for receiving discharged urine

Information

  • Patent Grant
  • 11628086
  • Patent Number
    11,628,086
  • Date Filed
    Friday, June 12, 2020
    3 years ago
  • Date Issued
    Tuesday, April 18, 2023
    a year ago
Abstract
A system suitable for collecting and transporting urine away from the body of a person or animal may include an assembly having a fluid impermeable casing, a fluid permeable membrane, and a fluid permeable support. A reservoir is defined by the fluid permeable support. The fluid permeable membrane can define a cavity. The casing can define an opening such that the cavity is accessible via the opening. The assembly can also include an outlet in fluidic communication with the reservoir. The assembly can be arranged such that a user's penis can be disposed through the opening with the urethral opening disposed within the cavity and such that a fluid can flow into the body from the urethral opening of the user's penis, collect in the reservoir, and flow out of the outlet.
Description
TECHNICAL FIELD

The present disclosure relates generally to systems, apparatus, and methods for collecting and transporting urine away from the body of a person or animal.


BACKGROUND

The embodiments described herein relate generally to collecting and transporting urine away from the body of a person or animal. In various circumstances, a person or animal may have limited or impaired mobility such that typical urination processes are challenging or impossible. For example, a person may experience or have a disability that impairs mobility. A person may have restricted travel conditions such as those experienced by pilots, drivers, and workers in hazardous areas. Additionally, sometimes urine collection is needed for monitoring purposes or clinical testing.


Urinary catheters, such as a Foley catheter, can be used to address some of these circumstances, such as incontinence. Unfortunately, however, urinary catheters can be uncomfortable, painful, and can lead to complications, such as infections. Additionally, bed pans, which are receptacles used for the toileting of bedridden patients, such as those in a health care facility, are sometimes used. Bed pans, however, can be prone to discomfort, spills, and other hygiene issues.


Males who suffer the most severe consequences of urinary incontinence, such as discomfort, rashes, and sores are typically elderly and often bedbound. They also require continuous assistance to maintain hygiene. Characteristics often found in these patients: they typically lay on their back, the size of the penis often decreases with age, skin rolls containing fat tissue cause the penis to recede, often pointing upward while in a laying position, patients have difficulty reaching the penis and manipulating devices. A urine capture device should be designed with reference to these characteristics.


Available solutions are typically for use while standing up (such as cups and funnels), with a urine discharge port opposite to the distal end of the penis. Other designs such as condom-style catheters are difficult for patients to manipulate, too often they are dimensionally incompatible; and they do not stay on reliably.


Thus, there is a need for a device capable of collecting urine from a person or animal, particularly a male, comfortably and with minimal contamination of the user and/or the surrounding area.


SUMMARY

A system is disclosed that is suitable for collecting and transporting urine away from the body of a person or animal, particularly a male. The disclosed system includes an assembly that may include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can define a reservoir. The support can be disposed within the interior region. The fluid permeable membrane can be disposed on the support and cover at least a portion of the support. The fluid permeable membrane can at least partially define a cavity. The tube can have a first end disposed in the elongated reservoir and can extend through the fluid outlet to a second, fluid discharge end. The apparatus is configured to be disposed with a user's penis disposed through the opening and with the urethral opening of the penis disposed within the cavity, to receive urine discharged from the urethral opening through the membrane, the support, and into the reservoir, and to have the received urine withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram of a system, according to an embodiment.



FIG. 2 is a top view of an assembly, according to an embodiment.



FIG. 3 is a cross-sectional view of the assembly of FIG. 2 taken along line 3-3 of FIG. 2.



FIG. 4 is a flowchart illustrating a method of using an assembly to collect urine from a user, according to an embodiment.



FIG. 5 is a schematic block diagram of a system, according to an embodiment.



FIG. 6 is a top view of an assembly, according to an embodiment.



FIG. 7 is a cross-sectional view of the assembly of FIG. 5 taken along line 7-7 of FIG. 5.



FIG. 8 is a flowchart illustrating a method of using an assembly to collect urine from a user, according to an embodiment.





DETAILED DESCRIPTION

A system is disclosed that is suitable for collecting and transporting urine away from the body of a person or animal, particularly a male. In some embodiments, the disclosed system includes an apparatus that may include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can define a reservoir. The support can be disposed within the interior region. The fluid permeable membrane can be disposed on the support and cover at least a portion of the support. The fluid permeable membrane can at least partially define a cavity. The tube can have a first end disposed in the elongated reservoir and can extend through the fluid outlet to a second, fluid discharge end. The apparatus is configured to be disposed with a user's penis disposed through the opening and with the urethral opening of the penis disposed within the cavity, to receive urine discharged from the urethral opening through the membrane, the support, and into the reservoir, and to have the received urine withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


In some embodiments, a method includes disposing in operative relationship with the urethral opening of a male user, a urine collecting apparatus. The method can include disposing in operative relationship with the urethral opening of a male user a urine collecting apparatus. The urine collecting apparatus can include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can define a reservoir. The support can be disposed within the interior region. The fluid permeable membrane can be disposed on the support and can cover at least the portion of the support. The fluid permeable membrane can at least partially define a cavity. The tube can have a first end disposed in the elongated reservoir and extending through the fluid outlet to a second, fluid discharge end. The operative relationship can include the user's penis being disposed through the opening in the casing with the urethral opening of the penis disposed within the cavity. Urine discharged from the urethral opening can be allowed to be received through the membrane, the support, and into the reservoir. The received urine can be withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


In some embodiments, an apparatus can include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can be disposed within the interior region and have a first side facing the opening and a second side opposite the first side. The second side and the casing can collectively define a reservoir between the second side and the casing. The fluid permeable membrane can be disposed on the support between the opening and the first side of the support. The fluid permeable membrane and the casing can collectively define a cavity. The tube can have a first end disposed in the reservoir and can extend through the fluid outlet to a second, fluid discharge end. The apparatus can be configured to be disposed with a user's penis disposed through the opening with the urethral opening of the penis disposed within the cavity, to receive urine discharged from the urethral opening through the membrane, the support, and into the reservoir, and to have the received urine withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


In some embodiments, a method can include disposing in operative relationship with the urethral opening of a male user a urine collecting apparatus. The urine collecting apparatus can include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can be disposed within the interior region and have a first side facing the opening and a second side opposite the first side. The second side and the casing can collectively defining a reservoir between the second side and the casing. The fluid permeable membrane can be disposed on the support between the opening and the first side of the support. The fluid permeable membrane and the casing can collectively defining a cavity. The tube can have a first end disposed in the reservoir and can extend through the fluid outlet to a second, fluid discharge end. The operative relationship can include the user's penis being disposed through the opening in the casing with the urethral opening of the penis disposed within the cavity. Urine discharged from the urethral opening can be allowed to be received through the membrane, the support, and into the reservoir. The received urine can be allowed to be withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


In some embodiments, a device can be used to so collect urine flowing from the penis of a person or an animal in such a manner that the urine can be readily transported from the device as the urine is being collected. The device can include a chamber assembly in which wicking material is disposed about porous material that is configured to form a chamber in which urine can be collected for transport. The chamber can have a port for receiving a tube so that urine collected within the chamber can be transported from the chamber by being drawn from the chamber when a partial vacuum is applied within the chamber via said received tube. The chamber assembly can be so dimensioned and configured that opposing portions of the assembly can be sufficiently adjacent as to define an opening through the which the head of a penis can be inserted. A layer of impermeable material can be so attached to the chamber assembly as to cover one side of the opening and thereby provide a receptacle for receiving the head of said inserted penis. Urine flowing from said penis can be drawn from the receptacle through the wicking material and the porous material into the chamber when said partial vacuum is applied within the chamber via said tube.


In some embodiments, a device can be used to so collect urine flowing from the penis of a person or an animal in such a manner that the urine can be transported from the device as the urine is being collected. The device can include a flexible layer of porous material, a flexible wicking material disposed on one side of the layer of porous material, and a flexible layer of impermeable material. The flexible layer of impermeable material can be secured to the periphery of the other side of the layer of porous material and so cover the other side of the layer of porous material as to define a chamber between the layer of porous material and the layer of impermeable material, within which chamber urine can be collected for transport. The chamber can have a port for receiving a tube so that urine collected within the chamber can be transported from the chamber by being drawn from the chamber when a partial vacuum is applied within the chamber via said received tube. The combination of the wicking material, the layer of porous material, and the layer of impermeable material can be so dimensioned and configured as to provide a receptacle for receiving the head of a penis. Urine flowing from said penis can be drawn from the receptacle through the wicking material and the porous material into the chamber when said partial vacuum is applied within the chamber via said received tube.


As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof.


The embodiments described herein can be formed or constructed of one or more biocompatible materials. Examples of suitable biocompatible materials include metals, ceramics, or polymers. Examples of suitable metals include pharmaceutical grade stainless steel, gold, titanium, nickel, iron, platinum, tin, chromium, copper, and/or alloys thereof. Examples of polymers include nylons, polyesters, polycarbonates, polyacrylates, polymers of ethylene-vinyl acetates and other acyl substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chlorosulphonate polyolefins, polyethylene oxide, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and/or blends and copolymers thereof.



FIG. 1 is a schematic block diagram of a system 100. The system 100 includes an assembly 102. The assembly 102 includes a permeable membrane 130, a permeable support 140, and an impermeable casing 150 (also referred to herein as an “impermeable layer”). The permeable membrane 130 and the permeable support 140 can also be collectively referred to as a “chamber assembly.” The permeable support 140 defines a reservoir 110 (also referred to herein as a “chamber”). The assembly 102 also includes an outlet 120 (also referred to herein as a “port”) in fluidic communication with the reservoir 110. The permeable support 140 and the permeable membrane 130 can be arranged such that the permeable membrane 130 defines a cavity 152. The impermeable casing 150 defines an opening 132 such that the cavity 152 is accessible from the exterior of the assembly 100. The impermeable casing 150 can direct fluid toward the reservoir 110 and/or reduce and/or prevent fluid from exiting the assembly 102 except via the outlet 120. In some implementations, the assembly 102 can be arranged such that a fluid can flow through the opening 132, into the cavity 152, through the permeable membrane 130, through the permeable support 140, into the reservoir 110, and out of the outlet 120. In some implementations, the assembly 102 can be arranged such that a user's penis can be inserted through the opening 132 such that the user's urethral opening is disposed within the cavity 152 and a fluid can flow from the user's urethral opening, into the cavity 152, through the permeable membrane 130, through the permeable support 140, into the reservoir 110, and out of the outlet 120. In some implementations, the system 100 can include a discharge line 122 (also referred to herein as a “received tube”). The discharge line 122 can be fluidically coupled to an external receptacle 160. The external receptacle 160 can be in fluidic communication with a vacuum source 170 via a vacuum line 124. The discharge line 122 and the vacuum line 124 can both include flexible tubing, such as, for example, flexible plastic tubing.


More specifically, the impermeable casing 150 can define an interior region accessible via the opening 132. The permeable membrane 130 and the permeable support 140 (and thus, the reservoir 110) can be disposed within the interior region of the impermeable casing 150. The impermeable casing 150 can be any suitable shape. For example, in some implementations, the impermeable casing 150 can be bowl-shaped. In some implementations, the impermeable casing 150 can include a bottom surface and at least one sidewall. In some implementations, the at least one sidewall can define the opening 132 such that the opening 132 is opposite the bottom surface of the impermeable casing 150 and the interior region of the impermeable casing 150 is bounded (and collectively defined) by the bottom surface, the sidewall, and the opening 132. In some implementations, the impermeable casing 150 includes a top surface and the top surface defines the opening 132 opposite the bottom surface. In some implementations, the sidewall of the impermeable casing 150 is curved and continuous such that the impermeable casing 150 has a round (e.g., circular or ovalular) perimeter. In some implementations, the impermeable casing 150 can have any suitable shape and/or perimeter, such as the shape of an oblong, a square, or a triangle. In some implementations, the one or more sidewalls can be concave such that the one or more sidewalls can receive at least a portion of the permeable membrane 130 and the permeable support 140 as described in more detail below.


In some implementations, the impermeable casing 150 can be disposed around only a portion of the exterior sides of the permeable membrane 130 and/or the permeable support 140. In some implementations, the impermeable casing 150 can cover all of the exterior sides of the chamber assembly (i.e., the permeable membrane 130 and/or permeable support 140). In some implementations, the impermeable casing 150 can be disposed such that the impermeable casing 150 can wrap around the exterior surface of the permeable membrane 130 and/or the permeable support 140 and cover a portion of the interior side or sides of the chamber assembly (i.e., the permeable membrane 130 and/or the permeable support 140). In some implementations, the permeable membrane 130 and the permeable support 140 can be arranged to define a passageway with open ends (e.g., as a ring), and the impermeable casing 150 can be applied to one end and a side of the chamber assembly (i.e., the permeable membrane 130 and the permeable support 140) such that a cavity 152 is defined with the open end and the closed end. In some implementations, the chamber assembly can define the opening 132 rather than the impermeable casing 150. In some implementations, the portion of the impermeable casing 150 closing one end of the cavity 152 and partially defining the cavity 152 can have any suitable shape such that a portion or all of the head of a user's penis can be disposed within the cavity 152. For example, the portion of the impermeable casing 150 closing one end of the cavity 152 can be curved, convex, or flat.


In some implementations, the impermeable casing 150 can be attached to the chamber assembly (i.e., the permeable membrane 130 and the permeable support 140) via an adhesive. In some implementations, the impermeable casing 150 can be attached to the chamber assembly via any suitable retention mechanism, such as, for example, retainer clips or other fasteners. In some implementations, the impermeable casing 150 can be preshaped and the chamber assembly can be inserted into the impermeable casing 150 and retained in a particular shape by the impermeable casing 150. In some implementations, the impermeable casing 150 can be formed by, for example, elongate strips of adhesive tape such that the impermeable casing 150 can maintain the chamber assembly in the configuration defining the cavity 152.


The impermeable layer 150 can be impermeable to fluid, such as, for example, urine. In some implementations, the impermeable layer 150 can have a fluid transportation function and can assist in directing fluid towards the reservoir 110 and/or through the outlet 120 of the reservoir 110. In some implementations, the impermeable layer 150 can be formed as an integral, unitary structure. In other implementations, the impermeable layer 150 can be a multi-piece structure. The impermeable layer 150 can be a pre-molded (e.g., injection or blow molded) component. Alternatively, the impermeable layer 150 can be formed of a material, such as elongate strips of an adhesive tape, wrapped around at least a portion of the reservoir 110, a portion of the permeable support 140, and/or a portion of the permeable membrane 130. In some embodiments, the impermeable layer 150 can be formed of cardboard, pressed paper, and/or coated paper. In some embodiments, the impermeable layer 150 can be flexible.


The permeable membrane 130 can be formed of a material that has permeable properties with respect to liquids such as urine. The permeable properties can be wicking, capillary action, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “wicking.” The permeable membrane 130 can have a high absorptive rate and a high permeation rate such that urine can be rapidly absorbed by the permeable membrane 130 and/or transported through the permeable membrane 130. In some implementations, the permeable membrane 130 can be flexible. In some implementations, the permeable membrane 130 can be a ribbed knit fabric. In some implementations, the permeable membrane 130 can be shaped as a tubular sleeve such that the permeable membrane 130 can be disposed around the permeable support 140. In some implementations, the permeable membrane 130 can include and/or have the moisture-wicking characteristic of gauze, felt, terrycloth, thick tissue paper, and/or a paper towel. In some implementations, the permeable membrane 130 can be soft and/or minimally abrasive such that the permeable membrane 130 does not irritate the skin of the user. The permeable membrane 130 can be configured to wick fluid away from the urethral opening and/or the skin of the user such that the dampness of the skin of the user is lessened and infections are prevented. Additionally, the wicking properties of the permeable membrane 130 can help prevent urine from leaking or flowing beyond the assembly (e.g., out of opening 132) onto, for example, a bed. In some implementations, the permeable membrane 130 can be formed of fine denier polyester fibers coated with a thermoplastic water-based binder system. The tensile strength can be, for example, about 45 lbs/inch2 (measured using an Instron test method). The weight of a permeable membrane can be, for example, about 12 grams (measured using the Mettler Gram Scale). The thickness per ten permeable membranes can be, for example, about 2.5″ (measured using the Gustin-Bacon/Measure-Matic).


The permeable support 140 can be positioned relative to the permeable membrane 130 such that the permeable support 140 maintains the permeable membrane 130 in a particular shape and allows for fluid, such as, for example, urine, to flow through the permeable membrane 130, through the permeable support 140, and into the reservoir 110. In some implementations, the permeable support 140 can be ring-shaped such that, when disposed within the impermeable casing 150, the cavity 152 is defined in the center of the ring-shaped permeable support 140. Said another way, an outer surface of the permeable support 140 on the inner portion of the “ring” can define the cavity 152. When the permeable membrane 130 is disposed on the permeable support 140, the permeable membrane 130 can define a portion of the boundaries of the cavity 152. When the permeable support 140 and the permeable membrane 130 are disposed within the impermeable casing 150, the cavity 152 can be aligned with the opening 132 of the impermeable casing 150. The reservoir 110 can be defined within or by the permeable support 140 such that the reservoir 110 is an elongated, ring-shaped reservoir.


In some implementations, the permeable support 140 can be shaped and/or formed as a complete or continuous ring or circle. In some implementations, the permeable support 140 can be shaped and/or formed as a partial circle and/or in a discontinuous C-shape with spaced ends. In some implementations, the permeable support 140 can be U-shaped. In some implementations, the chamber assembly can be dimensioned and configured such that opposing end portions of the chamber assembly are sufficiently adjacent or proximate as to define an opening through which the head of a penis can be inserted. In some implementations, the permeable support 140 can be formed of a bendable tube having two ends. The bendable tube can be arranged such that the two ends meet (e.g., forming a C-shape) and the permeable support 140 can be secured such that the permeable support 140 has a substantially circular shape. In some implementations, the outlet or port 120 can be positioned at the intersection of the two ends and in fluid communication with the elongated ring-shaped reservoir 110 defined by the permeable support 140. The discharge line 122 can be inserted through the outlet 120 (and thus through the impermeable casing 150 and the permeable support 140) and into fluid communication with the reservoir 110.


In some implementations, the permeable support 140 can be formed as an elongated tube such that the reservoir 110 extends through a portion or through the entire length of the elongated tube. The permeable support 140 can then be arranged and/or bent to form a ring such that the permeable support 140 defines the cavity 152 in the center of the ring. In some implementations, the inner diameter or other dimensions of the permeable support 140 can be sized such that the cavity 152 can receive a penis of a user such that a head of the penis can be partially or fully disposed within the cavity 152 when the penis is disposed within the opening 132 of the impermeable casing 150. Said another way, the shaft of the penis can be disposed within the opening 132 and the head of the penis can be fully disposed within the cavity 152, or the urethral opening of the head of the penis can be disposed within the cavity 152 and the head can be partially disposed within the cavity 152 and partially outside the cavity 152, with the opening 132 surrounding a portion of the head. In some implementations, the cavity 152 can be dimensioned to receive a head of a penis of a user such that urine can be received from the urethral opening of the penis within the cavity 152, by the permeable membrane 130, and/or by the permeable support 140 without urine splashing out of the opening 132.


In some implementations, the permeable support 140 can be configured to maintain the permeable membrane 130 against the skin of a penis of a user and/or near a urethral opening of a user. For example, the permeable support 140 can be shaped and sized such that the cavity 152 is slightly larger than a head or tip of a penis of a user. The permeable support 140 can include a portion having a curved or convex shape in contact with the permeable membrane 130 such that the permeable membrane 130 is also curved or convex. The permeable support 140 can support the permeable membrane 130 such that the permeable membrane 130 can rest against the skin of the head or tip of the penis with the urethral opening directed toward a bottom surface of the impermeable casing 150, and thus creating a comfortable and at least partially enclosed interface for engagement with the area of the body (e.g., the head and/or neck of a penis of a user) near the urethral opening.


In some implementations, the permeable support 140 can be made of a rigid plastic. In some implementations, the permeable support 140 can have any suitable shape and be formed of any suitable material. For example, the permeable support 140 can be flexible. Additionally, the permeable support 140 can be formed of aluminum, a composite of plastic and aluminum, some other metal and/or a composite of plastic and another metal. In some implementations, the permeable support 140 can be formed of a natural material, such as, for example, plant fibers (e.g., Greener Clean manufactured by 3M®). The natural material can include openings that allow fluid to flow through the natural material. In some embodiments, the permeable support 140 can be cylindrical and can define a lumen. In some embodiments, the permeable support 140 can be formed of perforated coated paper, such as tubular waxed paper.


The permeable support 140 can define one or more openings (e.g., an array of openings) to allow for fluid flow from the permeable membrane 130 to the reservoir 110. In some implementations, the permeable support 140 can be formed as a curved tube or a curved cylinder with one or more openings. In some implementations, the permeable support 140 can include membrane supports (e.g., struts) extending across an opening such that the opening is divided into an array of distinct slot-shaped openings. The membrane supports can be used to support the permeable membrane 130. For example, the membrane supports can maintain the shape of the permeable membrane 130 against the skin of a penis of a user and/or near a urethral opening of a user such that urine flowing from the urethral opening contacts and travels through the permeable membrane 130. In some implementations, the permeable support 140 can define several openings having a variety of shapes, such as a plurality of round openings. In some implementations, the permeable support 140 can be formed as a curved or ring-shaped cylinder of spun plastic (e.g., non-woven permeable nylon and polyester webbing) such that the permeable support 140 can have many openings. For example, a rectangular portion of spun plastic can be folded or rolled into a cylinder shape and then curved into a ring or U-shape for use in the assembly 102. In some implementations, the permeable support 140 can be formed of a porous material. For example, the permeable support 140 can be a porous glass ring-shaped tubular container defining frits. In other implementations, the permeable support 140 can define an opening in a sidewall of the permeable support 140 and the sidewall can be covered by a mesh screen defining many smaller openings. In some embodiments, the reservoir 110 can include any spaces and/or openings defined within the permeable support 140 (e.g., spaces within porous material or defined within spun plastic material).


The reservoir 110 can be any suitable shape and/or have any diameter (or other dimension) suitable for receiving and transporting urine during use of the system 100. In some implementations, the reservoir 110 can be sized such that the reservoir 110 is capable of collecting and temporarily holding a large or small amount of urine until the urine can be removed from the reservoir via the outlet 120. For example, the reservoir 110 can be sized such that the reservoir 110 is configured to hold a small amount of urine as may be released due to incontinence. In some implementations, the reservoir 110 can be sized such that the reservoir 110 is configured to hold a large amount of urine as may be released during voiding of a full bladder. In some implementations, the reservoir 110 can be sized such that the reservoir is configured to collect and hold a small or large amount of urine while the urine is simultaneously removed via, for example, gravity and/or a pump, such as the vacuum source 170. Said another way, the reservoir 110 can function as a sump and be sized such that the reservoir 110 can form a portion of a passageway for urine from the permeable membrane 130, through the permeable support 140, through the reservoir 110, and out of the outlet 120. In a condition where the flow rate of urine into the assembly 102 via the permeable membrane 130 is greater than the flow rate of urine through the discharge line 122, a temporary backup of urine may occur in the reservoir 110. Thus, the reservoir 110 can be sized to contain a volume of fluid that may temporarily accumulate due to the difference in flow rates into and out of the assembly 102. Although the outlet 120 is shown as extending from the side of the reservoir 110, in some implementations, the outlet 120 can extend from the bottom of the reservoir 110.


In some embodiments, the assembly 102 can optionally include a cushion assembly 180. The cushion assembly 180 can include a membrane layer 182 and a support layer 184 (also referred to herein as a “bed of porous material”). The membrane layer 182 can be formed of the same or a similar material as the permeable membrane 130 and can have the same or similar properties as the permeable membrane 130. For example, the membrane layer 182 can be configured to wick fluid (e.g., urine) away from a urethral opening of a user when a urethral opening of a user is position near or in contact with the membrane layer 182. The membrane layer 182 can also be permeable such that fluid (e.g., urine) can flow through the membrane layer 182 and to the permeable membrane 130 and/or the permeable support 140, into the reservoir 110, and through the outlet 120. The support layer 184 can be formed of the same or a similar material as the permeable support 140 and can have the same or similar properties as the permeable support 140. For example, the support layer 184 can be configured to maintain the membrane layer 182 near or in contact with the head of a user's penis when the head of the user's penis is disposed within the cavity 152 of the assembly 102. The support layer 184 can also be permeable such that fluid (e.g., urine) can flow through the membrane layer 182, through the support layer 184, and to the permeable membrane 130 and/or the permeable support 140, into the reservoir 110, and through the outlet 120. The cushion assembly 180 can be arranged within the impermeable casing 150 such that the cushion assembly 180 forms a boundary of the cavity 152 (e.g., the bottom of the cavity 152). The cushion assembly 180 can be positioned along a bottom surface of the impermeable casing 150 such that a user's penis can be placed in contact with the cushion assembly 180 and/or such that urine flowing from a user's urethral opening into the cavity 152 can flow into the cushion assembly 180 thereby reducing splashing. In some implementations, the cushion assembly 180 (and specifically the membrane layer 182) can be disposed within the impermeable casing 150 such that the cushion assembly 180 contacts the permeable membrane 130.


The external receptacle 160, via the discharge line 122, can collect fluid exiting the reservoir 110 through the outlet 120. The external receptacle 160 can be a sealed container. In some implementations, the external receptacle 160 can be disposable. In some implementations, the external receptacle 160 can be configured to be sterilized and reused.


In some implementations, gravity can cause fluid within the reservoir 110 to follow a flow path (i.e., the fluid flow path including the outlet 120 and the discharge line 122) from the reservoir 110 to the external receptacle 160. In some implementations, the vacuum source 170 can assist and/or provide the pressure differential needed to draw fluid voided from the urethral opening of a user into the permeable support 140, into the reservoir 110, and from the reservoir 110 into the external receptacle 160. The vacuum source 170 can be fluidically coupled to the external receptacle 160 via a vacuum line 124 such that gaseous fluid is drawn from the external receptacle 160 via the vacuum line 124. As a result of the decrease in pressure within the external receptacle 160 caused by the drawing of gaseous fluid out of the external receptacle 160, liquid and/or gaseous fluid can be drawn from the reservoir 110, through the outlet 120, through the discharge line 122, and into the external receptacle 160. In some implementations, the vacuum source 170 can apply sufficient suction to capture all or substantially all of the urine voided by a user in a variety of positions (e.g., when a male user is lying on his side or back).


The vacuum source 170 can have a sufficiently high vacuum strength and air volume transport rate such that rapid air and liquid aspiration is maintained over a portion of or the entire permeable membrane 130. In some implementations, the one or more openings of the permeable support 140 are distributed over an area that is slightly larger than the area of the permeable membrane 130 that is configured to be wetted by urine flow in operation. Thus, the partial vacuum created by the vacuum source 170 in combination with the one or more openings of the permeable support 140 and the permeable membrane 130 can draw the urine contacting the permeable membrane 130 into the assembly 102 and, specifically, into the reservoir 110. In some implementations, however, the one or more openings of the permeable support 140 should not be distributed over too large of an area of the permeable support 140 because the partial vacuum strength may be reduced, thereby reducing the urine collection rate and the efficiency of the system 100.


In some implementations, the vacuum source 170 can be a pump that is readily available, inexpensive, relatively quiet, and/or configured to run continuously. For example, the vacuum source 170 can be an aquarium aerator pump. The vacuum line 124 can be attached to the intake port of the aquarium aerator pump (rather than the exhaust port of the aerator) such that gaseous fluid is drawn into the aquarium aerator pump from the external receptacle 160 via the vacuum line 124. In some implementations, the necessary static vacuum of the system 100 is about 3-10 feet of water (10%-30% of one atmosphere; 80-250 mm Hg) with a free-flow rate of about 10-100 cubic centimeters per second. In some implementations, the necessary static vacuum of the system 100 is higher or lower depending on the size of the user and the expected rate of urine flow from the user and/or through the system 100. In some implementations, the discharge line 122 can be about 0.25″ in diameter and the vacuum source 170 can be configured to cause about 500 cubic centimeters of urine to flow through the discharge line 122 to the external receptacle 160 over the duration of a typical urination event for a user, which may typically range from 10 to 20 seconds but may be shorter or longer, e.g., 5 to 90 seconds. In some implementations, the vacuum source 170 can include a wall-mounted vacuum system, such as is found in hospitals. In some implementations, a wall-mounted vacuum system can be configured to apply a vacuum of, for example, about 20 mm Hg to about 40 mm Hg. In some implementations, the vacuum source 170 can be powered by electrical AC or DC power. For example, in mobile applications when the user is away from an AC power source, such as when the user is using the system 100 during transportation via a wheel chair or motor vehicle, the vacuum source 170 can be powered by DC power.


In some implementations, urine collected by any of the systems and/or assemblies described herein can be sampled for analysis using urine strips. Urine test strips can be used to test a variety of health measures. Urine test strips can be configured to change color in response to being wetted with urine to indicate a particular measurement (i.e., the colors can correspond to known measurement scales). In some implementations, a urine test strip (not shown) can be inserted into the discharge line 122 such that urine flowing from the outlet 120 to the external receptacle 160 contacts the urine test strip. The discharge line 122 can be transparent such that data on the urine test strip can be read through a wall of the discharge line 122. In some implementations, the urine test strip can be disposed within the external receptacle 160 such that urine flowing into the external receptacle 160 contacts the urine test strip. The external receptacle 160 can be at least partially transparent such that the urine test strip can be read through a wall of the external receptacle 160.


In some implementations, a camera, such as a camera built into a portable communication device (e.g., a smartphone, an iPhone, or the like) can be used to read the data on the urine test strip. The camera can capture an image of the test strip and the image can be processed using, for example, a smartphone application. The data read from the urine test strip can be sent to a clinician for analysis and/or sent to a cloud-based address for physician access.


In some implementations, the system 100 can include a scale (not shown). For example, the scale can be disposed underneath the external receptacle 160 such that the scale is configured to measure the weight of fluid (e.g., urine) in the external receptacle 160. The data indicating the weight of the fluid that has been delivered to the external receptacle 160 via the discharge line 122 can be measured at different time intervals and processed to determine how much urine, for example, has been voided by a user of the system 100.


Although described as being intended for use by an adult male, in some implementations the system 100 can be used in adult, pediatric, male, female, and veterinary applications for animals of different species and sizes. In female applications, the assembly 102 can be placed between the legs or labia of the user and held snugly against the external urethra by the pressure of friction from the user's body, by the pressure of the legs or by such means as an undergarment, elastic strips, and/or adhesive tape. In male applications, the assembly 102 can be placed such that a penis of a user is disposed within the assembly 102 (e.g., within the cavity 152 formed within the assembly 102). A male user can use the assembly 102 in any suitable position, such as, for example, while lying on his back, lying on his side, sitting, or standing. In some implementations, the head of the penis of the male user can be placed in contact with the permeable membrane 130 and/or the membrane layer 182 during urination. In some implementations, the head of the penis of the male user can be disposed at least partially within the cavity 452, but not placed in contact with the permeable membrane 430 and/or the membrane layer 182 during urination.



FIG. 2 is a top view of an assembly 202. FIG. 3 is a cross-sectional view of the assembly 202 taken along line 3-3 in FIG. 2. The assembly 202 includes a permeable membrane 230, a permeable support 240, and a cushion assembly 280. The permeable membrane 230 and the permeable support 240 can also be collectively referred to as a “chamber assembly.” The permeable membrane 230, the permeable support 240, and the cushion assembly 280 are disposed within an impermeable casing (also referred to herein as an “impermeable layer”). The permeable membrane 230, the permeable support 240, the cushion assembly 280, and the impermeable casing 250 can be the same or similar in structure and/or function to the permeable membrane 130, the permeable support 140, the cushion assembly 180, and the impermeable casing 150 described above with reference to the system 100. For example, the permeable support 240 defines a reservoir 210 (also referred to herein as a “channel”). The impermeable casing 250 defines an opening 232 (also referred to herein as a “port”). The assembly 202 also includes an outlet 220 in fluidic communication with the reservoir 210.


The permeable support 240 and the permeable membrane 230 can be arranged such that the permeable support 240 and/or the permeable membrane 230 collectively define a cavity 252 within the permeable membrane 230. The impermeable casing 250 can direct fluid toward the reservoir 210 and/or reduce and/or prevent fluid from exiting the assembly 202 except via the outlet 220. In some implementations, the assembly 202 can be arranged such that a fluid can flow through the opening 232, into the cavity 252, through the permeable membrane 230, through the permeable support 240, into the reservoir 210, and out of the outlet 220. In some implementations, the assembly 202 can be arranged such that a user's penis can be inserted through the opening 232 such that the user's urethral opening is disposed within the cavity 252 and a fluid can flow from the user's urethral opening, into the cavity 252, through the permeable membrane 230, through the permeable support 240, into the reservoir 210, and out of the outlet 220. A discharge line 222 (e.g., a tube) (also referred to herein as a “received tube”) can extend through the outlet 220. A first end (not shown) of the discharge line 222 can be positioned within the reservoir 210, and the discharge line 222 can extend through the permeable support 240, the permeable membrane 230, and the impermeable casing 250 such that fluid in the reservoir 210 can be transported away from the assembly 202 via the discharge line 222. A second end of the discharge line 222 can be fluidically coupled to an external receptacle (e.g., external receptacle 160). The external receptacle can be in fluidic communication with a vacuum source (e.g., vacuum source 170) via a vacuum line (e.g., vacuum line 124). The discharge line 222 and the vacuum line can both include flexible tubing, such as, for example, flexible plastic tubing.


More specifically, the impermeable casing 250 can define an interior region accessible via the opening 232. The permeable membrane 230 and the permeable support 240 (and thus, the reservoir 210) can be disposed within the interior region of the impermeable casing 250. The impermeable casing 250 can be any suitable shape. For example, in some implementations, the impermeable casing 250 can be bowl-shaped. As shown in FIG. 3, the impermeable casing 250 can include a bottom surface and a sidewall. The sidewall can define the opening 232 such that the opening 232 is opposite the bottom surface of the impermeable casing 250 and the interior region of the impermeable casing 250 is bounded (and collectively defined) by the bottom surface, the sidewall, and the opening 232. The sidewall of the impermeable casing 250 can be curved and continuous such that the impermeable casing 250 has a round (e.g., circular or ovalular) perimeter. The sidewall can be concave such that the one or more sidewalls can receive at least a portion of the permeable membrane 230 and the permeable support 240 as shown in FIG. 3.


The impermeable layer 250 can be impermeable to fluid, such as, for example, urine. In some implementations, the impermeable layer 250 can have a fluid transportation function and can assist in directing fluid towards the reservoir 210 and/or through the outlet 220 of the reservoir 210. In some implementations, the impermeable layer 250 can be formed as an integral, unitary structure. In other implementations, the impermeable layer 250 can be a multi-piece structure. The impermeable layer 250 can be a pre-molded (e.g., injection or blow molded) component. Alternatively, the impermeable layer 250 can be formed of a material, such as elongate strips of an adhesive tape, wrapped around at least a portion of the reservoir 210, a portion of the permeable support 240, and/or a portion of the permeable membrane 230. In some embodiments, the impermeable layer 250 can be formed of cardboard, pressed paper, and/or coated paper. In some embodiments, the impermeable layer 250 can be flexible.


The permeable membrane 230 can be formed of a material that has permeable properties with respect to liquids such as urine. The permeable properties can be wicking, capillary action, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “wicking.” The permeable membrane 230 can have a high absorptive rate and a high permeation rate such that urine can be rapidly absorbed by the permeable membrane 230 and/or transported through the permeable membrane 230. In some implementations, the permeable membrane 230 can be flexible. In some implementations, the permeable membrane 230 can be a ribbed knit fabric. In some implementations, the permeable membrane 230 can be shaped as a tubular sleeve such that the permeable membrane 230 can be disposed around the permeable support 240. In some implementations, the permeable membrane 230 can include and/or have the moisture-wicking characteristic of gauze, felt, terrycloth, thick tissue paper, and/or a paper towel. In some implementations, the permeable membrane 230 can be soft and/or minimally abrasive such that the permeable membrane 230 does not irritate the skin of the user. The permeable membrane 230 can be configured to wick fluid away from the urethral opening and/or the skin of the user such that the dampness of the skin of the user is lessened and infections are prevented. Additionally, the wicking properties of the permeable membrane 230 can help prevent urine from leaking or flowing beyond the assembly (e.g., out of opening 232) onto, for example, a bed. In some implementations, the permeable membrane 230 can be formed of fine denier polyester fibers coated with a thermoplastic water-based binder system. The tensile strength can be, for example, about 45 lbs/inch2 (measured using an Instron test method). The weight of a permeable membrane can be, for example, about 12 grams (measured using the Mettler Gram Scale). The thickness per ten permeable membranes can be, for example, about 2.5″ (measured using the Gustin-Bacon/Measure-Matic).


The permeable support 240 can be positioned relative to the permeable membrane 230 such that the permeable support 240 maintains the permeable membrane 230 in a particular shape and allows for fluid, such as, for example, urine, to flow through the permeable membrane 230, through the permeable support 240, and into the reservoir 210. As shown in FIG. 2, the permeable support 240 can be ring-shaped such that, when the permeable membrane 230 is disposed on the permeable support 240 and the permeable support 240 is disposed within the impermeable casing 250, the cavity 252 is defined in the center of the ring-shaped permeable support 240 and permeable membrane 230. Said another way, an outer surface of the permeable membrane 230 on the inner portion of the “ring” can define the cavity 252. As shown in FIGS. 2 and 3, the cavity 252 can be aligned with the opening 232 of the impermeable casing 250. The reservoir 210 can be defined within the permeable support 240 such that the reservoir 210 is an elongated, ring-shaped reservoir.


In some implementations, the permeable support 240 can be shaped and/or formed as a complete or continuous ring or circle. In some implementations, the permeable support 240 can be shaped and/or formed as a partial circle. In some implementations, the chamber assembly can be dimensioned and configured such that opposing end portions of the chamber assembly are sufficiently adjacent or proximate as to define an opening through which the head of a penis can be inserted. In some implementations, the permeable support 240 can be formed of a bendable tube having two ends. The bendable tube can be arranged such that the two ends meet (e.g., forming a C-shape) and the permeable support 240 can be secured such that the permeable support 240 has a substantially circular shape. In some implementations, the outlet or port 220 can be positioned at the intersection of the two ends and in fluid communication with the elongated ring-shaped reservoir 210 defined by the permeable support 240. The discharge line 222 can be inserted through the outlet 220 (and thus through the impermeable casing 250 and the permeable support 240) and into fluid communication with the reservoir 210.


In some implementations, the permeable support 240 can be formed as an elongated tube such that the reservoir 210 extends through a portion or through the entire length of the elongated tube. The permeable support 240 can then be arranged and/or bent to form a ring such that the permeable support 240 defines the cavity 252 in the center of the ring. In some implementations, the inner diameter or other dimensions of the permeable support 240 can be sized such that the cavity 252 can receive a penis of a user such that a head of the penis can be partially or fully disposed within the cavity when the penis is disposed within the opening 232 of the impermeable casing 250. Said another way, the shaft of the penis can be disposed within the opening 232 and the head of the penis can be fully disposed within the cavity 252, or the urethral opening of the head of the penis can be disposed within the cavity 252 and the head can be partially disposed within the cavity 252 and partially outside the cavity 252, with the opening 232 surrounding a portion of the head. In some implementations, the cavity 252 can be dimensioned to receive a head of a penis of a user such that urine can be received from the urethral opening of the penis within the cavity 252, by the permeable membrane 230, and/or by the permeable support 240 without urine splashing out of the opening 232.


In some implementations, the permeable support 240 can be configured to maintain the permeable membrane 230 against the skin of a penis of a user and/or near a urethral opening of a user. For example, the permeable support 240 can be shaped and sized such that the cavity 252 is slightly larger than a head or tip of a penis of a user. The permeable support 240 can include a portion having a curved or convex shape in contact with the permeable membrane 230 such that the permeable membrane 230 is also curved or convex. The permeable support 240 can support the permeable membrane 230 such that the permeable membrane 230 can rest against the skin of the head or tip of the penis with the urethral opening directed toward a bottom surface of the impermeable casing 250, and thus creating a comfortable and at least partially enclosed interface for engagement with the area of the body (e.g., the head and/or neck of a penis of a user) near the urethral opening.


In some implementations, the permeable support 240 can be made of a rigid plastic. In some implementations, the permeable support 240 can have any suitable shape and be formed of any suitable material. For example, the permeable support 240 can be flexible. Additionally, the permeable support 240 can be formed of aluminum, a composite of plastic and aluminum, some other metal and/or a composite of plastic and another metal. In some implementations, the permeable support 240 can be formed of a natural material, such as, for example, plant fibers (e.g., Greener Clean manufactured by 3M®). The natural material can include openings that allow fluid to flow through the natural material. In some embodiments, the permeable support 240 can be cylindrical and can define a lumen. In some embodiments, the permeable support 240 can be formed of perforated coated paper, such as tubular waxed paper.


The permeable support 240 can define one or more openings (e.g., an array of openings) to allow for fluid flow from the permeable membrane 230 to the reservoir 210. In some implementations, the permeable support 240 can be formed as a curved tube or a curved cylinder with one or more openings. In some implementations, the permeable support 240 can include membrane supports (e.g., struts) extending across an opening such that the opening is divided into an array of distinct slot-shaped openings. The membrane supports can be used to support the permeable membrane 230. For example, the membrane supports can maintain the shape of the permeable membrane 230 against the skin of a penis of a user and/or near a urethral opening of a user such that urine flowing from the urethral opening contacts and travels through the permeable membrane 230. In some implementations, the permeable support 240 can define several openings having a variety of shapes, such as a plurality of round openings. In some implementations, the permeable support 240 can be formed as a curved or ring-shaped cylinder of spun plastic (e.g., non-woven permeable nylon and polyester webbing) such that the permeable support 240 can have many openings. For example, a rectangular portion of spun plastic can be folded or rolled into a cylinder shape and then curved into a ring for use in the assembly 202. In some implementations, the permeable support 240 can be formed of a porous material. For example, the permeable support 240 can be a porous glass ring-shaped tubular container defining frits. In other implementations, the permeable support 240 can define an opening in a sidewall of the permeable support 240 and the sidewall can be covered by a mesh screen defining many smaller openings. In some embodiments, the reservoir 210 can include any spaces and/or openings defined within the permeable support 240 (e.g., spaces within porous material or defined within spun plastic material).


The reservoir 210 can be any suitable shape and/or have any diameter (or other dimension) suitable for receiving and transporting urine during use of a system including the assembly 202. In some implementations, the reservoir 210 can be sized such that the reservoir 210 is capable of collecting and temporarily holding a large or small amount of urine until the urine can be removed from the reservoir via the outlet 220. For example, the reservoir 210 can be sized such that the reservoir 210 is configured to hold a small amount of urine as may be released due to incontinence. In some implementations, the reservoir 210 can be sized such that the reservoir 210 is configured to hold a large amount of urine as may be released during voiding of a full bladder. In some implementations, the reservoir 210 can be sized such that the reservoir is configured to collect and hold a small or large amount of urine while the urine is simultaneously removed via, for example, gravity and/or a pump, such as the vacuum source 270. Said another way, the reservoir 210 can function as a sump and be sized such that the reservoir 210 can form a portion of a passageway for urine from the permeable membrane 230, through the permeable support 240, through the reservoir 210, and out of the outlet 220. In a condition where the flow rate of urine into the assembly 202 via the permeable membrane 230 is greater than the flow rate of urine through the discharge line 222, a temporary backup of urine may occur in the reservoir 210. Thus, the reservoir 210 can be sized to contain a volume of fluid that may temporarily accumulate due to the difference in flow rates into and out of the assembly 202.


Although the outlet 220 is shown as extending from the side of the reservoir 210, in some implementations, the outlet 220 can extend from the bottom of the reservoir 210.


The cushion assembly 280 can include a membrane layer 282 and a support layer 284 (also referred to herein as a “bed of porous material”). The membrane layer 282 can be formed of the same or a similar material as the permeable membrane 230 and can have the same or similar properties as the permeable membrane 230. For example, the membrane layer 282 can be configured to wick fluid (e.g., urine) away from a urethral opening of a user when a urethral opening of a user is position near or in contact with the membrane layer 282. The membrane layer 282 can also be permeable such that fluid (e.g., urine) can flow through the membrane layer 282 and to the permeable membrane 230 and/or the permeable support 240, into the reservoir 210, and through the outlet 220. The support layer 284 can be formed of the same or a similar material as the permeable support 240 and can have the same or similar properties as the permeable support 240. For example, the support layer 284 can be configured to maintain the membrane layer 282 near or in contact with the head of a user's penis when the head of the user's penis is disposed within the cavity 252 of the assembly 202. The support layer 284 can also be permeable such that fluid (e.g., urine) can flow through the membrane layer 282, through the support layer 284, and to the permeable membrane 230 and/or the permeable support 240, into the reservoir 210, and through the outlet 220. The cushion assembly 280 can be arranged within the impermeable casing 250 such that the cushion assembly 280 forms a boundary of the cavity 252 (e.g., the bottom of the cavity 252). The cushion assembly 280 can be positioned along a bottom surface of the impermeable casing 250 such that a user's penis can be placed in contact with the cushion assembly 280 and/or such that urine flowing from a user's urethral opening into the cavity 252 can flow into the cushion assembly 280 thereby reducing splashing. In some implementations, the cushion assembly 280 (and specifically the membrane layer 282) can be disposed within the impermeable casing 250 such that the cushion assembly 280 contacts the permeable membrane 230.



FIG. 4 is a flowchart illustrating a method of using an assembly to collect urine from a user, according to an embodiment. The method 300 optionally includes, at 302, fluidically coupling a discharge end of a tube of a urine collecting apparatus to a fluid receptacle. The method 300 optionally further includes, at 304, fluidically coupling the discharge end of the tube of the urine collecting apparatus to a source of vacuum.


The method 300 further includes, at 306, disposing the urine collecting apparatus in operative relationship with the urethral opening of the user, with a head of a penis of a male user (e.g. human or animal) disposed through an opening and into a cavity at least partially defined by a membrane of the urine collecting apparatus. The urine collecting apparatus can be the same or similar in structure and/or function to any of the urine collecting apparatus described herein, such as, for example, the assembly 102 in FIG. 1 and/or the assembly 202 in FIG. 2. For example, the urine collecting apparatus can include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can define a reservoir. The fluid permeable support can also be disposed within the interior region of the fluid impermeable casing. The fluid permeable membrane can be disposed on the support and cover at least a portion of the support. The fluid permeable membrane can at least partially define a cavity aligned with the opening defined in the fluid impermeable casing. The tube can have a first end disposed in the elongated reservoir and extend through the fluid outlet to a second, fluid discharge end. The assembly can be arranged such that a fluid can flow into the cavity from the urethral opening of the user's penis, flow through the fluid permeable membrane and the fluid permeable support, collect in the reservoir, and flow out of the outlet.


The method 300 also includes, at 308, allowing urine discharged from the penis to be received into the cavity, through the membrane, through the support, and into the reservoir.


The method 300 also includes, at 310, allowing the received urine to be withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


The method 300 optionally includes, at 312, allowing the withdrawn urine to be collected in the fluid receptacle.


The method 300 optionally includes, at 314, removing the urine collecting apparatus from the penis of the user. Thus, the urine collecting apparatus can capture and transport urine from a user without having to attach a catheter to the urethral opening of the user's penis. In some implementations, the urine can flow against gravity during collection.


Finally, the method 300 optionally includes, at 316, disposing a second urine collecting apparatus in operative relationship with the urethral opening of the user, with the head of the penis of the user disposed through the opening and into the cavity of the urine collecting apparatus.



FIG. 5 is a schematic block diagram of a system 400. The system 400 includes an assembly 402. The assembly 402 includes a permeable membrane 430, a permeable support 440, and an impermeable casing 450 (also referred to herein as an “impermeable layer”). The permeable support 440 and the impermeable casing 450 collectively define a reservoir 410 (also referred to herein as a “chamber”). The assembly 402 also includes an outlet 420 (also referred to herein as a “port”) in fluidic communication with the reservoir 410. The permeable support 440 and the permeable membrane 430 can be arranged such that the permeable membrane 430 defines a cavity 452 within the impermeable casing 450. The impermeable casing 450 defines an opening 432 such that the cavity 452 is accessible from an exterior of the assembly 402. The impermeable casing 450 can direct fluid toward the reservoir 410 and/or reduce and/or prevent fluid from exiting the assembly 402 except via the outlet 420. In some implementations, the assembly 402 can be arranged such that a fluid can flow through the opening 432, into the cavity 452, through the permeable membrane 430, through the permeable support 440, into the reservoir 410, and out of the outlet 420. In some implementations, the assembly 402 can be arranged such that a user's penis can be inserted through the opening 432 such that the user's urethral opening is disposed within the cavity 452 and a fluid can flow from the user's urethral opening, into the cavity 452, through the permeable membrane 430, through the permeable support 440, into the reservoir 410, and out of the outlet 420. In some implementations, the system 400 can include a discharge line 422 (also referred to herein as a “received tube”). The discharge line 422 can be fluidically coupled to an external receptacle 460. The external receptacle 460 can be in fluidic communication with a vacuum source 470 via a vacuum line 424. The discharge line 422 and the vacuum line 424 can both include flexible tubing, such as, for example, flexible plastic tubing.


More specifically, the impermeable casing 450 can define an interior region accessible via the opening 432. The permeable membrane 430 and the permeable support 440 can be disposed within the interior region of the impermeable casing 450. The impermeable casing 450 can be any suitable shape. For example, in some implementations, the impermeable casing 450 can be bowl-shaped. In some implementations, the impermeable casing 450 can include a bottom surface and at least one sidewall. In some implementations, the opening 432 can be opposite a bottom surface of the impermeable casing 450. In some implementations, the opening 432 can be any suitable shape and/or size. In some implementations, the impermeable casing 450 can optionally include a lip 456 such that the opening 432 is bounded and defined at least partially by the lip 456. The lip 456 can partially or completely surround the opening 432. In some implementations, the lip 456 can be shaped and sized such that the lip 456 can reduce the potential of urine flowing out of the opening 432 and/or such that the risk of splashing of urine through the opening 432 is reduced.


In some implementations, the opening 432 has a width and/or length similar in size to the diameter of a user's penis. In some implementations, the opening 432 is larger in width and/or length than the diameter than a user's penis. In some implementations, the opening 432 can be, for example, circular or ovalular. In some implementations, the opening 432 can have any suitable shape. Similarly, the impermeable casing 450 can have any suitable shape and/or perimeter shape, such as the shape of, for example, an oblong, square, triangle, circle, oval, or an irregular shape. For example, the opening 432 (and the impermeable casing 450) can have a rounded or semi-circular first portion and a second portion that tapers from a first side adjacent to the first portion having a first width to a second width smaller than the first width. In some implementations, the shape of the opening 432 can be the same or similar as the perimeter shape of the top of the impermeable casing 450.


In some implementations, the permeable support 440 can have a bottom side with a periphery. The periphery can be secured to the impermeable casing 450. In some implementations, the periphery can be secured (e.g., via adhesive) to a portion of the impermeable casing 450 adjacent a top edge of the impermeable casing. In some implementations, the impermeable casing 450 can extend upward beyond the location to which the periphery of the permeable support 540 is attached. In some implementations, the impermeable casing 450 can be attached to the permeable support 440 via any suitable retention mechanism, such as, for example, retainer clips or other fasteners. In some implementations, the permeable support 440 and the permeable membrane 430 can be placed within the impermeable casing without additional coupling mechanisms.


The impermeable layer 450 can be impermeable to fluid, such as, for example, urine. In some implementations, the impermeable layer 450 can have a fluid transportation function and can assist in directing fluid towards the reservoir 410 and/or through the outlet 420 of the reservoir 410. In some implementations, the impermeable layer 450 can be formed as an integral, unitary structure. In other implementations, the impermeable layer 450 can be a multi-piece structure. The impermeable layer 450 can be a pre-molded (e.g., injection or blow molded) component. Alternatively, the impermeable layer 450 can be formed of a material, such as elongate strips of an adhesive tape, wrapped around at least a portion of the reservoir 410, a portion of the permeable support 440, and/or a portion of the permeable membrane 430. In some embodiments, the impermeable layer 450 can be formed of cardboard, pressed paper, and/or coated paper. In some embodiments, the impermeable layer 450 can be flexible.


The permeable membrane 430 can be formed of a material that has permeable properties with respect to liquids such as urine. The permeable properties can be wicking, capillary action, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “wicking.” The permeable membrane 430 can have a high absorptive rate and a high permeation rate such that urine can be rapidly absorbed by the permeable membrane 430 and/or transported through the permeable membrane 430. In some implementations, the permeable membrane 430 can be flexible. In some implementations, the permeable membrane 430 can be a ribbed knit fabric. In some implementations, the permeable membrane 430 can include and/or have the moisture-wicking characteristic of gauze, felt, terrycloth, thick tissue paper, and/or a paper towel. In some implementations, the permeable membrane 430 can be soft and/or minimally abrasive such that the permeable membrane 430 does not irritate the skin of the user. The permeable membrane 430 can be configured to wick fluid away from the urethral opening and/or the skin of the user such that the dampness of the skin of the user is lessened and infections are prevented. Additionally, the wicking properties of the permeable membrane 430 can help prevent urine from leaking or flowing beyond the assembly (e.g., out of opening 432) onto, for example, a bed. In some implementations, the permeable membrane 430 can be formed of fine denier polyester fibers coated with a thermoplastic water-based binder system. The tensile strength can be, for example, about 45 lbs/inch2 (measured using an Instron test method). The weight of a permeable membrane can be, for example, about 12 grams (measured using the Mettler Gram Scale). The thickness per ten permeable membranes can be, for example, about 2.5″ (measured using the Gustin-Bacon/Measure-Matic).


The permeable support 440 can be positioned relative to the permeable membrane 430 such that the permeable support 440 maintains the permeable membrane 430 in a particular shape and allows for fluid, such as, for example, urine, to flow through the permeable membrane 430, through the permeable support 440, and into the reservoir 410. In some implementations, the permeable membrane 430 can be disposed on a first, upper side of the permeable support 440, and the second, bottom side of the permeable support 440 can define a boundary of the reservoir 410. In some implementations, the permeable support 440 can have a concave shape such that, when disposed within the impermeable casing 450, the cavity 452 has a concave bottom. When the permeable membrane 430 is disposed on the permeable support 440, the permeable membrane 430 can define a portion of the bottom and/or side boundaries of the cavity 452. When the permeable support 440 and the permeable membrane 430 are disposed within the impermeable casing 450, the cavity 452 can be aligned with the opening 432 of the impermeable casing 450. The reservoir 410 can be defined by the permeable support 440 and the impermeable casing 450 such that the reservoir 410 is concave and has any suitable shape and/or dimensions.


In some implementations, the permeable support 440 and/or the permeable membrane 430 can be any suitable shape and/or size. In some implementations, the permeable support 440 and the permeable membrane 430 can have the same or similar shape and dimensions. In some implementations, the permeable support 440 and/or the permeable membrane 430 can be shaped such that the outer perimeter of the permeable support 440 and/or the permeable membrane 430 can be the same or similar to the outer perimeter of the top of the impermeable casing 450 and/or the opening 432. In some implementations, the dimensions of the permeable support 440 and/or the permeable membrane 430 can be sized such that the cavity 452 can receive a penis of a user such that a head of the penis can be partially or fully disposed within the cavity 452 (i.e., the shaft of the penis can be disposed within the opening 432 and the head of the penis can be fully disposed within the cavity 452, or the urethral opening of the head of the penis can be disposed within the cavity 452 and the head can be partially disposed within the cavity 452 and partially outside the cavity 452, with the opening 432 surrounding a portion of the head). In some implementations, the cavity 452 can be dimensioned to receive a head of a penis of a user such that urine can be received from the urethral opening of the penis within the cavity 452, by the permeable membrane 430, and/or by the permeable support 440 without urine splashing out of the opening 432.


In some implementations, the permeable support 440 can be configured to maintain the permeable membrane 430 against the skin of a penis of a user and/or near a urethral opening of a user. For example, the permeable support 440 can be shaped and sized such that the cavity 452 is slightly larger than a head or tip of a penis of a user. The permeable support 440 can include a portion having a curved or convex shape in contact with the permeable membrane 430 such that the permeable membrane 430 is also curved or convex. The permeable support 440 can support the permeable membrane 430 such that the permeable membrane 430 can rest against the skin of the head or tip of the penis with the urethral opening directed toward a bottom surface of the impermeable casing 450, and thus creating a comfortable and at least partially enclosed interface for engagement with the area of the body (e.g., the head and/or neck of a penis of a user) near the urethral opening.


In some implementations, the permeable support 440 can be made of a rigid plastic. In some implementations, the permeable support 440 can have any suitable shape and be formed of any suitable material. For example, the permeable support 440 can be flexible. Additionally, the permeable support 440 can be formed of aluminum, a composite of plastic and aluminum, some other metal and/or a composite of plastic and another metal. In some implementations, the permeable support 440 can be formed of a natural material, such as, for example, plant fibers (e.g., Greener Clean manufactured by 3M®). The natural material can include openings that allow fluid to flow through the natural material. In some embodiments, the permeable support 440 can be formed of perforated coated paper, such as tubular waxed paper.


The permeable support 440 can define one or more openings (e.g., an array of openings) to allow for fluid flow from the permeable membrane 430 to the reservoir 410. In some implementations, the permeable support 440 can include membrane supports (e.g., struts) extending across an opening such that the opening is divided into an array of distinct slot-shaped openings. The membrane supports can be used to support the permeable membrane 430. For example, the membrane supports can maintain the shape of the permeable membrane 430 against the skin of a penis of a user and/or near a urethral opening of a user such that urine flowing from the urethral opening contacts and travels through the permeable membrane 430. In some implementations, the permeable support 440 can define several openings having a variety of shapes, such as a plurality of round openings. In some implementations, the permeable support 440 can be formed of spun plastic (e.g., non-woven permeable nylon and polyester webbing) such that the permeable support 440 can have many openings. In some implementations, the permeable support 440 can be formed of a porous material. For example, the permeable support 440 can be a porous glass container defining frits. In other implementations, the permeable support 440 can define an opening in the permeable support 440 and the opening can be covered by a mesh screen defining many smaller openings. In some embodiments, the reservoir 410 can include any spaces and/or openings defined within the permeable support 440 (e.g., spaces within porous material or defined within spun plastic material).


The reservoir 410 can be any suitable shape and/or have any diameter (or other dimension) suitable for receiving and transporting urine during use of the system 400. In some implementations, the reservoir 410 can be sized such that the reservoir 410 is capable of collecting and temporarily holding a large or small amount of urine until the urine can be removed from the reservoir via the outlet 420. For example, the reservoir 410 can be sized such that the reservoir 410 is configured to hold a small amount of urine as may be released due to incontinence. In some implementations, the reservoir 410 can be sized such that the reservoir 410 is configured to hold a large amount of urine as may be released during voiding of a full bladder. In some implementations, the reservoir 410 can be sized such that the reservoir is configured to collect and hold a small or large amount of urine while the urine is simultaneously removed via, for example, gravity and/or a pump, such as the vacuum source 470. Said another way, the reservoir 410 can function as a sump and be sized such that the reservoir 410 can form a portion of a passageway for urine from the permeable membrane 430, through the permeable support 440, through the reservoir 410, and out of the outlet 420. In a condition where the flow rate of urine into the assembly 402 via the permeable membrane 430 is greater than the flow rate of urine through the discharge line 422, a temporary backup of urine may occur in the reservoir 410. Thus, the reservoir 410 can be sized to contain a volume of fluid that may temporarily accumulate due to the difference in flow rates into and out of the assembly 402.


Although the outlet 420 is shown as extending from the side of the reservoir 410, in some implementations, the outlet 420 can extend from the bottom of the reservoir 410.


The external receptacle 460, via the discharge line 422, can collect fluid exiting the reservoir 410 through the outlet 420. The external receptacle 460 can be a sealed container. In some implementations, the external receptacle 460 can be disposable. In some implementations, the external receptacle 460 can be configured to be sterilized and reused.


In some implementations, gravity can cause fluid within the reservoir 410 to follow a flow path (i.e., the fluid flow path including the outlet 420 and the discharge line 422) from the reservoir 410 to the external receptacle 460. In some implementations, the vacuum source 470 can assist and/or provide the pressure differential needed to draw fluid voided from the urethral opening of a user into the permeable support 440, into the reservoir 410, and from the reservoir 410 into the external receptacle 460. The vacuum source 470 can be fluidically coupled to the external receptacle 460 via a vacuum line 424 such that gaseous fluid is drawn from the external receptacle 460 via the vacuum line 424. As a result of the decrease in pressure within the external receptacle 460 caused by the drawing of gaseous fluid out of the external receptacle 460, liquid and/or gaseous fluid can be drawn from the reservoir 410, through the outlet 420, through the discharge line 422, and into the external receptacle 460. In some implementations, the vacuum source 470 can apply sufficient suction to capture all or substantially all of the urine voided by a user in a variety of positions (e.g., when a male user is lying on his side or back).


The vacuum source 470 can have a sufficiently high vacuum strength and air volume transport rate such that rapid air and liquid aspiration is maintained over a portion of or the entire permeable membrane 430. In some implementations, the one or more openings of the permeable support 440 are distributed over an area that is slightly larger than the area of the permeable membrane 430 that is configured to be wetted by urine flow in operation. Thus, the partial vacuum created by the vacuum source 470 in combination with the one or more openings of the permeable support 440 and the permeable membrane 430 can draw the urine contacting the permeable membrane 430 into the assembly 402 and, specifically, into the reservoir 410. In some implementations, however, the one or more openings of the permeable support 440 should not be distributed over too large of an area of the permeable support 440 because the partial vacuum strength may be reduced, thereby reducing the urine collection rate and the efficiency of the system 400.


In some implementations, the vacuum source 470 can be the same or similar in structure and or function to the vacuum source 170 described above with respect to the system 100 shown in FIG. 1. In some implementations, urine collected by any of the systems and/or assemblies described herein can be sampled for analysis using urine strips similarly as describe above with respect to the system 100 shown in FIG. 1. In some implementations, the external receptacle 460 can be the same or similar in structure and/or function to the external receptacle 160 described above with respect to the system 100 shown in FIG. 1.


Although described as being intended for use by an adult male, in some implementations the system 400 can be used in adult, pediatric, male, female, and veterinary applications for animals of different species and sizes. In female applications, the assembly 402 can be placed between the legs or labia of the user and held snugly against the external urethra by the pressure of friction from the user's body, by the pressure of the legs or by such means as an undergarment, elastic strips, and/or adhesive tape. In male applications, the assembly 402 can be placed such that a penis of a user is disposed within the assembly 402 (e.g., within a cavity formed within the assembly 402). A male user can use the assembly 402 in any suitable position, such as, for example, while lying on his back, lying on his side, sitting, or standing. In some implementations, the head of the penis of the male user can be placed in contact with the permeable membrane 430 during urination. In some implementations, the head of the penis of the male user can be disposed at least partially within the cavity 452, but not placed in contact with the permeable membrane 430 during urination.



FIG. 6 is a top view of an assembly 502. FIG. 7 is a cross-sectional view of the assembly 502 taken along line 7-7 in FIG. 6. The assembly 502 includes a permeable membrane 530, a permeable support 540, and an impermeable casing 250 (also referred to herein as an “impermeable layer”). The permeable membrane 530 and the permeable support 540 are disposed within the impermeable casing 550. The permeable membrane 530, the permeable support 540, and the impermeable casing 550 can be the same or similar in structure and/or function to the permeable membrane 430, the permeable support 440, and the impermeable casing 450 described above with reference to the system 400. For example, the permeable support 540 and the impermeable casing 550 collectively define a reservoir 510 (also referred to herein as a “chamber”). The impermeable casing 550 defines an opening 532. The assembly 502 also includes an outlet 520 (also referred to herein as a “port”) in fluidic communication with the reservoir 510.


The permeable support 540 and the permeable membrane 530 can be arranged such that the impermeable membrane 550 and the permeable support 540 and/or the permeable membrane 530 collectively define a cavity 552 within the permeable membrane 530. The impermeable casing 550 can direct fluid toward the reservoir 510 and/or reduce and/or prevent fluid from exiting the assembly 502 except via the outlet 520. In some implementations, the assembly 502 can be arranged such that a fluid can flow through the opening 532, into the cavity 552, through the permeable membrane 530, through the permeable support 540, into the reservoir 510, and out of the outlet 520. In some implementations, the assembly 502 can be arranged such that a user's penis can be inserted through the opening 532 such that the user's urethral opening is disposed within the cavity 552 and a fluid can flow from the user's urethral opening, into the cavity 552, through the permeable membrane 530, through the permeable support 540, into the reservoir 510, and out of the outlet 520. A discharge line 522 (e.g., a tube) (also referred to herein as a “received tube”) can extend through the outlet 520. As shown in FIG. 7, a first end of the discharge line 522 can be positioned within the reservoir 510, and the discharge line 522 can extend through the impermeable casing 550 such that fluid in the reservoir 510 can be transported away from the assembly 502 via the discharge line 522. A second end of the discharge line 522 can be fluidically coupled to an external receptacle (e.g., external receptacle 460). The external receptacle can be in fluidic communication with a vacuum source (e.g., vacuum source 470) via a vacuum line (e.g., vacuum line 424). The discharge line 522 and the vacuum line can both include flexible tubing, such as, for example, flexible plastic tubing.


More specifically, the impermeable casing 550 can define an interior region accessible via the opening 532. The permeable membrane 530 and the permeable support 540 can be disposed within the interior region of the impermeable casing 550. The impermeable casing 550 can be any suitable shape. For example, in some implementations, the impermeable casing 550 can be bowl-shaped. As shown in FIG. 7, the impermeable casing 550 can include a curved or concave bottom surface opposite the opening 532. As shown in FIGS. 6 and 7, the impermeable casing 550 can include a lip 556 surrounding the opening 532. The lip 556 can define the opening 532 such that the opening 532 is opposite the bottom surface of the impermeable casing 550 and the interior region of the impermeable casing 550 is bounded (and collectively defined) by the curved or concave bottom surface of the impermeable casing 550, the lip 556, and the opening 532. The lip 556 can be shaped and sized such that the lip 556 can reduce the potential of urine flowing out of the opening 532 and/or such that the risk of splashing of urine through the opening 532 is reduced. In some implementations, the opening 532 has a width and/or length similar in size to the diameter of a user's penis. In some implementations, the opening 532 is larger in width and/or length than the diameter than a user's penis. In some implementations, the opening 532 can be irregularly shaped. For example, as shown in FIG. 6, the opening 532 (and the impermeable casing 550) can have a rounded or semi-circular first portion and a second portion that tapers from a first side adjacent to the first portion having a first width to a second width smaller than the first width.


As shown in FIG. 7, the permeable support 540 can have a bottom side with a periphery 542. The periphery 542 can be secured (via, e.g., adhesive) to an inner wall of the impermeable casing 550. In some implementations, the periphery 542 can be secured at one or more locations (or continuously along the periphery) such that the reservoir 510 formed by the permeable support 540 and the impermeable casing 550 is a suitable size for collecting and/or transporting urine, and such that the cavity 552 is sufficiently sized for a portion or all of a user's penis to be disposed within the cavity 552. In some implementations, the impermeable casing 550 can be attached to the permeable support 540 via any suitable retention mechanism, such as, for example, retainer clips or other fasteners. In some implementations, the permeable support 540 and the permeable membrane 530 can be placed within the impermeable casing without additional coupling mechanisms.


The impermeable layer 550 can be impermeable to fluid, such as, for example, urine. In some implementations, the impermeable layer 550 can have a fluid transportation function and can assist in directing fluid towards the reservoir 510 and/or through the outlet 520 of the reservoir 510. In some implementations, the impermeable layer 550 can be formed as an integral, unitary structure. In other implementations, the impermeable layer 550 can be a multi-piece structure. The impermeable layer 550 can be a pre-molded (e.g., injection or blow molded) component. Alternatively, the impermeable layer 550 can be formed of a material, such as elongate strips of an adhesive tape, wrapped around at least a portion of the reservoir 510, a portion of the permeable support 540, and/or a portion of the permeable membrane 530. In some embodiments, the impermeable layer 550 can be formed of cardboard, pressed paper, and/or coated paper. In some embodiments, the impermeable layer 550 can be flexible.


The permeable membrane 530 can be formed of a material that has permeable properties with respect to liquids such as urine. The permeable properties can be wicking, capillary action, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “wicking.” The permeable membrane 530 can have a high absorptive rate and a high permeation rate such that urine can be rapidly absorbed by the permeable membrane 530 and/or transported through the permeable membrane 530. In some implementations, the permeable membrane 530 can be flexible. In some implementations, the permeable membrane 530 can be a ribbed knit fabric. In some implementations, the permeable membrane 530 can include and/or have the moisture-wicking characteristic of gauze, felt, terrycloth, thick tissue paper, and/or a paper towel. In some implementations, the permeable membrane 530 can be soft and/or minimally abrasive such that the permeable membrane 530 does not irritate the skin of the user. The permeable membrane 530 can be configured to wick fluid away from the urethral opening and/or the skin of the user such that the dampness of the skin of the user is lessened and infections are prevented. Additionally, the wicking properties of the permeable membrane 530 can help prevent urine from leaking or flowing beyond the assembly (e.g., out of opening 532) onto, for example, a bed. In some implementations, the permeable membrane 530 can be formed of fine denier polyester fibers coated with a thermoplastic water-based binder system. The tensile with the Webb direction can be, for example, about 45 lbs/inch2 measured using an Instron test method. The weight per permeable membrane can be, for example, about 12 grams measured using the Mettle Gram Scale. The thickness per ten permeable membrane can be, for example, about 2.5″, measured using the Gustin-Bacon/Measure-Matic.


The permeable support 540 can be positioned relative to the permeable membrane 530 such that the permeable support 540 maintains the permeable membrane 530 in a particular shape and allows for fluid, such as, for example, urine, to flow through the permeable membrane 530, through the permeable support 540, and into the reservoir 510. In some implementations, the permeable membrane 530 can be disposed on a first, upper side of the permeable support 540, and the second, bottom side of the permeable support 540 can define a boundary of the reservoir 510. As shown in FIG. 7, the permeable support 540 can have a concave shape such that, when the permeable membrane 530 is disposed on the permeable support 540 and the permeable membrane 530 and the permeable support 540 are disposed within the impermeable casing 550, the cavity 552 has a concave bottom. When the permeable support 540 and the permeable membrane 530 are disposed within the impermeable casing 550, the cavity 552 can be aligned with the opening 532 of the impermeable casing 550. The reservoir 510 can be defined by the permeable support 540 and the impermeable casing 550 such that the reservoir 510 is concave and has any suitable shape and/or dimensions.


In some implementations, the permeable support 540 and/or the permeable membrane 530 can be any suitable shape and/or size. In some implementations, the permeable support 540 and the permeable membrane 530 can have the same or similar shape and dimensions. In some implementations, the permeable support 540 and/or the permeable membrane 530 can be shaped such that the outer perimeter of the permeable support 540 and/or the permeable membrane 530 can be the same or similar to the outer perimeter of the top of the impermeable casing 550 and/or the opening 532. In some implementations, the dimensions of the permeable support 540 and/or the permeable membrane 530 can be sized such that the cavity 552 can receive a penis of a user such that a head of the penis can be partially or fully disposed within the cavity 552 (i.e., the shaft of the penis can be disposed within the opening 532 and the head of the penis can be fully disposed within the cavity 552, or the urethral opening of the head of the penis can be disposed within the cavity 552 and the head can be partially disposed within the cavity 552 and partially outside the cavity 552, with the opening 532 surrounding a portion of the head). In some implementations, the cavity 552 can be dimensioned to receive a head of a penis of a user such that urine can be received from the urethral opening of the penis within the cavity 552, by the permeable membrane 530, and/or by the permeable support 540 without urine splashing out of the opening 532.


In some implementations, the permeable support 540 can be configured to maintain the permeable membrane 530 against the skin of a penis of a user and/or near a urethral opening of a user. For example, the permeable support 540 can be shaped and sized such that the cavity 552 is slightly larger than a head or tip of a penis of a user. The permeable support 540 can include a portion having a curved or convex shape in contact with the permeable membrane 530 such that the permeable membrane 530 is also curved or convex. The permeable support 540 can support the permeable membrane 530 such that the permeable membrane 530 can rest against the skin of the head or tip of the penis with the urethral opening directed toward a bottom surface of the impermeable casing 550, and thus creating a comfortable and at least partially enclosed interface for engagement with the area of the body (e.g., the head and/or neck of a penis of a user) near the urethral opening.


In some implementations, the permeable support 540 can be made of a rigid plastic. In some implementations, the permeable support 540 can have any suitable shape and be formed of any suitable material. For example, the permeable support 540 can be flexible. Additionally, the permeable support 540 can be formed of aluminum, a composite of plastic and aluminum, some other metal and/or a composite of plastic and another metal. In some implementations, the permeable support 540 can be formed of a natural material, such as, for example, plant fibers (e.g., Greener Clean manufactured by 3M®). The natural material can include openings that allow fluid to flow through the natural material. In some embodiments, the permeable support 540 can be formed of perforated coated paper, such as tubular waxed paper.


The permeable support 540 can define one or more openings (e.g., an array of openings) to allow for fluid flow from the permeable membrane 530 to the reservoir 510. In some implementations, the permeable support 540 can include membrane supports (e.g., struts) extending across an opening such that the opening is divided into an array of distinct slot-shaped openings. The membrane supports can be used to support the permeable membrane 530. For example, the membrane supports can maintain the shape of the permeable membrane 530 against the skin of a penis of a user and/or near a urethral opening of a user such that urine flowing from the urethral opening contacts and travels through the permeable membrane 530. In some implementations, the permeable support 540 can define several openings having a variety of shapes, such as a plurality of round openings. In some implementations, the permeable support 540 can be formed of spun plastic (e.g., non-woven permeable nylon and polyester webbing) such that the permeable support 540 can have many openings. In some implementations, the permeable support 540 can be formed of a porous material. For example, the permeable support 540 can be a porous glass container defining frits. In other implementations, the permeable support 540 can define an opening in the permeable support 540 and the opening can be covered by a mesh screen defining many smaller openings. In some embodiments, the reservoir 510 can include any spaces and/or openings defined within the permeable support 540 (e.g., spaces within porous material or defined within spun plastic material).


The reservoir 510 can be any suitable shape and/or have any diameter (or other dimension) suitable for receiving and transporting urine during use of a system including assembly 502. In some implementations, the reservoir 510 can be sized such that the reservoir 510 is capable of collecting and temporarily holding a large or small amount of urine until the urine can be removed from the reservoir via the outlet 520. For example, the reservoir 510 can be sized such that the reservoir 510 is configured to hold a small amount of urine as may be released due to incontinence. In some implementations, the reservoir 510 can be sized such that the reservoir 510 is configured to hold a large amount of urine as may be released during voiding of a full bladder. In some implementations, the reservoir 510 can be sized such that the reservoir is configured to collect and hold a small or large amount of urine while the urine is simultaneously removed via, for example, gravity and/or a pump, such as the vacuum source 570. Said another way, the reservoir 510 can function as a sump and be sized such that the reservoir 510 can form a portion of a passageway for urine from the permeable membrane 530, through the permeable support 540, through the reservoir 510, and out of the outlet 520. In a condition where the flow rate of urine into the assembly 502 via the permeable membrane 530 is greater than the flow rate of urine through the discharge line 522, a temporary backup of urine may occur in the reservoir 510. Thus, the reservoir 510 can be sized to contain a volume of fluid that may temporarily accumulate due to the difference in flow rates into and out of the assembly 502.



FIG. 8 is a flowchart illustrating a method of using an assembly to collect urine from a user, according to an embodiment. The method 600 optionally includes, at 602, fluidically coupling a discharge end of a tube of a urine collecting apparatus to a fluid receptacle. The method 600 optionally further includes, at 604, fluidically coupling the discharge end of the tube of the urine collecting apparatus to a source of vacuum.


The method 600 further includes, at 606, disposing the urine collecting apparatus in operative relationship with the urethral opening of the user, with a head of a penis of a male user (e.g. human or animal) disposed through an opening and into a cavity defined by a fluid permeable membrane and a casing of the urine collecting apparatus. The urine collecting apparatus can be the same or similar in structure and/or function to any of the urine collecting apparatus described herein, such as, for example, the assembly 402 in FIG. 5 and/or the assembly 502 in FIGS. 6 and 7. For example, the urine collecting apparatus can include a fluid impermeable casing, a fluid permeable support, a fluid permeable membrane, and a tube. The fluid impermeable casing can define an opening, an interior region, and a fluid outlet. The fluid permeable support can have a first side and a second side. The second side of the fluid permeable support and the fluid impermeable casing can collectively define a reservoir. The fluid permeable support can also be disposed within the interior region of the fluid impermeable casing. The fluid permeable membrane can be disposed on the first side of the support and cover at least a portion of the support. The fluid permeable membrane and the casing can collectively define the cavity. The tube can have a first end disposed in the elongated reservoir and extend through the fluid outlet to a second, fluid discharge end. The assembly can be arranged such that a fluid can flow into the cavity from the urethral opening of the user's penis, flow through the fluid permeable membrane and the fluid permeable support, collect in the reservoir, and flow out of the outlet.


The method 600 also includes, at 608, allowing urine discharged from the penis to be received into the cavity, through the membrane, through the support, and into the reservoir.


The method 600 also includes, at 610, allowing the received urine to be withdrawn from the reservoir via the tube and out of the fluid discharge end of the tube.


The method 600 optionally includes, at 612, allowing the withdrawn urine to be collected in the fluid receptacle.


The method 600 optionally includes, at 614, removing the urine collecting apparatus from the penis of the user. Thus, the urine collecting apparatus can capture and transport urine from a user without having to attach a catheter to the urethral opening of the user's penis. In some implementations, the urine can flow against gravity during collection.


Finally, the method 600 optionally includes, at 616, disposing a second urine collecting apparatus in operative relationship with the urethral opening of the user, with the head of the penis of the user disposed through the opening and into the cavity of the urine collecting apparatus.


While various embodiments of the system, methods and devices have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps may be modified and such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. The embodiments have been particularly shown and described, but it will be understood that various changes in form and details may be made.


For example, although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having any combination or sub-combination of any features and/or components from any of the embodiments described herein. In addition, the specific configurations of the various components can also be varied. For example, the size and specific shape of the various components can be different than the embodiments shown, while still providing the functions as described herein.

Claims
  • 1. A urinary device assembly, comprising: a first assembly including: a first layer having a guide that at least partially extends about an opening disposed through a portion of the first layer;at least one second layer disposed in at least partial contact with the first layer; anda collector separate from and disposed between the first layer and the second layer in at least partial alignment with the opening, the collector at least partially defining an aperture and a completely enclosed channel in fluid communication with the opening and configured to receive fluid through the opening, wherein the channel includes an enclosed chamber within the collector and at least one of the channel or the collector form a circular or ovular ring; anda tube secured to the collector and in fluid communication with the aperture in the collector to direct the fluid away from the collector.
  • 2. The urinary device assembly of claim 1, wherein the guide includes a generally convex outer surface.
  • 3. The urinary device assembly of claim 1, wherein at least a portion of the guide is arced around the opening.
  • 4. The urinary device assembly of claim 1, wherein the first assembly is sized and dimensioned to be disposed between at least one of legs or labia of a female user over a urethral opening of the female user.
  • 5. The urinary device assembly of claim 4, wherein the opening is positioned on the first assembly to receive urine discharged from the urethral opening of the female user.
  • 6. The urinary device assembly of claim 1, wherein the tube includes a first end in fluid communication with the channel.
  • 7. The urinary device assembly of claim 1, wherein the collector in at least partial alignment with the opening at least partially overlaps with the opening.
  • 8. A urinary device assembly, comprising: a first assembly sized and dimensioned to be positioned between the legs of a female user over a urethral opening of the female user, the first assembly including: a first layer having a guide that at least partially extends about an opening disposed through a portion of the first layer;a second layer disposed in at least partial engagement with the first layer; anda collector separate from and disposed at least partially between the first layer and the second layer in at least partial alignment with the opening, the collector at least partially defining an aperture and a completely enclosed channel in fluid communication with the opening and configured to receive fluid through the opening, wherein the collector forms a circular or ovular ring; anda tube secured to the collector and in fluid communication with the aperture to direct fluid away from the collector.
  • 9. The urinary device assembly of claim 8, wherein the guide includes a generally convex outer surface.
  • 10. The urinary device assembly of claim 8, wherein at least a portion of the guide is arced around the opening.
  • 11. The urinary device assembly of claim 8, wherein the tube includes a first end in fluid communication with the channel of the collector.
  • 12. The urinary device assembly of claim 8, wherein the collector in at least partial alignment with the opening at least partially overlaps with the opening.
  • 13. The urinary device assembly of claim 8, further comprising: a fluid permeable layer disposed along a portion of the first layer over at least a portion of the opening; anda fabric layer that extends over the fluid permeable layer with the fluid permeable layer disposed between at least a portion of the first assembly and the fabric layer.
  • 14. A method of collecting urine from a female user, the method including: disposing a urine collecting assembly in operative relationship with a urethral opening of the female user with urine collecting assembly between legs of the female user;receiving urine discharged from the urethral opening through an opening in a first layer of the urine collecting assembly and into a completely enclosed channel at least partially defined by a collector of the urine collecting assembly, the collector including a circular or ovular ring having an aperture; andwithdrawing the urine from the channel through the aperture in the circular or ovular ring via a tube secured to the collector.
  • 15. The method of claim 14, further comprising: fluidically coupling a fluid discharge end of the tube to a fluid receptacle;fluidically coupling the fluid discharge end of the tube to a source of vacuum to assist in withdrawing urine via the tube from a reservoir of the urine collecting apparatus; andcollecting the urine withdrawn from the reservoir in the fluid receptacle.
  • 16. The method of claim 14, further comprising guiding the urine to the channel with a guide on the first layer that is arced around the opening of the first layer.
  • 17. The method of claim 14, further comprising securing the urine collecting assembly against the urethral opening of the female user with an undergarment worn by the female user.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 15/612,325, filed Jun. 2, 2017, entitled “Apparatus and Methods for Receiving Discharged Urine, which application is a continuation-in-part of and claims priority to and the benefit of U.S. patent application Ser. No. 15/221,106, filed Jul. 27, 2016, entitled “Male Urine Collection Device Using Wicking Material,” and also a continuation-in-part of and claims priority to and the benefit of U.S. patent application Ser. No. 15/238,427, filed Aug. 16, 2016, entitled “Using Wicking Material to Collect Urine From a Male for Transport,” the disclosures of all of which are incorporated herein by reference in their entirety.

US Referenced Citations (630)
Number Name Date Kind
670602 Baker Mar 1901 A
1032841 Koenig Jul 1912 A
1742080 Jones Dec 1929 A
1979899 Obrien et al. Nov 1934 A
2326881 Packer Aug 1943 A
2613670 Edward Oct 1952 A
2644234 Earl Jul 1953 A
2859786 Tupper Nov 1958 A
2968046 Duke Jan 1961 A
2971512 Reinhardt Feb 1961 A
3032038 Swinn May 1962 A
3077883 Hill Feb 1963 A
3087938 Hans et al. Apr 1963 A
3198994 Hildebrandt et al. Aug 1965 A
3221742 Egon Dec 1965 A
3312981 Mcguire et al. Apr 1967 A
3349768 Keane Oct 1967 A
3362590 Gene Jan 1968 A
3366116 Huck Jan 1968 A
3398848 Donovan Aug 1968 A
3400717 Bruce et al. Sep 1968 A
3406688 Bruce Oct 1968 A
3425471 Yates Feb 1969 A
3511241 Lee May 1970 A
3512185 Ellis May 1970 A
3520300 Flower Jul 1970 A
3528423 Lee Sep 1970 A
3613123 Langstrom Oct 1971 A
3648700 Warner Mar 1972 A
3651810 Ormerod Mar 1972 A
3699815 Holbrook Oct 1972 A
3726277 Hirschman Apr 1973 A
3757355 Allen et al. Sep 1973 A
3843016 Bornhorst et al. Oct 1974 A
3863798 Kurihara et al. Feb 1975 A
3915189 Holbrook et al. Oct 1975 A
3998228 Poidomani Dec 1976 A
3999550 Martin Dec 1976 A
4015604 Csillag Apr 1977 A
4020843 Kanall May 1977 A
4022213 Stein May 1977 A
4027776 Douglas Jun 1977 A
4180178 Turner Dec 1979 A
4187953 Turner Feb 1980 A
4194508 Anderson Mar 1980 A
4200102 Duhamel et al. Apr 1980 A
4202058 Anderson May 1980 A
4233025 Larson et al. Nov 1980 A
4233978 Hickey Nov 1980 A
4246901 Frosch et al. Jan 1981 A
4257418 Hessner Mar 1981 A
4270539 Frosch et al. Jun 1981 A
4292916 Bradley et al. Oct 1981 A
4352356 Tong Oct 1982 A
4360933 Kimura et al. Nov 1982 A
4365363 Windauer Dec 1982 A
4387726 Denard Jun 1983 A
4425130 Desmarais Jan 1984 A
4446986 Bowen et al. May 1984 A
4453938 Brendling Jun 1984 A
4457314 Knowles Jul 1984 A
4476879 Jackson Oct 1984 A
4526688 Schmidt et al. Jul 1985 A
4528703 Kraus Jul 1985 A
D280438 Wendt Sep 1985 S
4553968 Komis Nov 1985 A
4581026 Schneider Apr 1986 A
4610675 Triunfol Sep 1986 A
4620333 Ritter Nov 1986 A
4626250 Schneider Dec 1986 A
4627846 Ternstroem Dec 1986 A
4631061 Martin Dec 1986 A
4650477 Johnson Mar 1987 A
4656675 Fajnsztajn Apr 1987 A
4681570 Dalton Jul 1987 A
4692160 Nussbaumer Sep 1987 A
4707864 Ikematsu et al. Nov 1987 A
4713066 Komis Dec 1987 A
4747166 Kuntz May 1988 A
4752944 Conrads et al. Jun 1988 A
4769215 Ehrenkranz Sep 1988 A
4772280 Rooyakkers Sep 1988 A
4790830 Hamacher Dec 1988 A
4790835 Elias Dec 1988 A
4791686 Taniguchi et al. Dec 1988 A
4795449 Schneider et al. Jan 1989 A
4799928 Crowley Jan 1989 A
4804377 Hanifl et al. Feb 1989 A
4812053 Bhattacharjee Mar 1989 A
4820297 Kaufman et al. Apr 1989 A
4846818 Keldahl et al. Jul 1989 A
4846909 Klug et al. Jul 1989 A
4865595 Heyden Sep 1989 A
4882794 Stewart Nov 1989 A
4883465 Brennan Nov 1989 A
4886508 Washington Dec 1989 A
4886509 Mattsson Dec 1989 A
4889533 Beecher Dec 1989 A
4903254 Haas Feb 1990 A
4905692 More Mar 1990 A
4955922 Terauchi Sep 1990 A
4965460 Tanaka et al. Oct 1990 A
4987849 Sherman Jan 1991 A
5002541 Conkling et al. Mar 1991 A
5004463 Nigay Apr 1991 A
5031248 Kemper Jul 1991 A
5045077 Blake Sep 1991 A
5045283 Patel Sep 1991 A
5049144 Payton Sep 1991 A
5053339 Patel Oct 1991 A
5058088 Haas et al. Oct 1991 A
5071347 Mcguire Dec 1991 A
5084037 Barnett Jan 1992 A
5100396 Zamierowski Mar 1992 A
5147301 Ruvio Sep 1992 A
5195997 Carns Mar 1993 A
5203699 Mcguire Apr 1993 A
5244458 Takasu Sep 1993 A
5267988 Farkas Dec 1993 A
5275307 Freese Jan 1994 A
5294983 Ersoz et al. Mar 1994 A
5295983 Kubo Mar 1994 A
5300052 Kubo Apr 1994 A
5318550 Cermak et al. Jun 1994 A
5382244 Telang Jan 1995 A
5423784 Metz Jun 1995 A
5466229 Elson et al. Nov 1995 A
5478334 Bernstein Dec 1995 A
5499977 Marx Mar 1996 A
5543042 Filan et al. Aug 1996 A
D373928 Green Sep 1996 S
5618277 Goulter Apr 1997 A
5628735 Skow May 1997 A
5636643 Argenta et al. Jun 1997 A
5637104 Ball et al. Jun 1997 A
5674212 Osborn et al. Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5678654 Uzawa Oct 1997 A
5687429 Rahlff Nov 1997 A
5695485 Duperret et al. Dec 1997 A
5752944 Dann et al. May 1998 A
5772644 Bark et al. Jun 1998 A
5827243 Palestrant Oct 1998 A
5827247 Kay Oct 1998 A
5827250 Fujioka et al. Oct 1998 A
5827257 Fujioka et al. Oct 1998 A
D401699 Herchenbach et al. Nov 1998 S
5865378 Hollinshead et al. Feb 1999 A
5887291 Bellizzi Mar 1999 A
5894608 Birbara Apr 1999 A
D409303 Oepping May 1999 S
5911222 Lawrence et al. Jun 1999 A
5957904 Holland Sep 1999 A
5972505 Phillips et al. Oct 1999 A
6015627 Hirafune et al. Jan 2000 A
6059762 Boyer et al. May 2000 A
6063064 Tuckey et al. May 2000 A
6098625 Winkler Aug 2000 A
6105174 Karlsten et al. Aug 2000 A
6113582 Dwork Sep 2000 A
6117163 Bierman Sep 2000 A
6123398 Arai et al. Sep 2000 A
6129718 Wada et al. Oct 2000 A
6131964 Sareshwala Oct 2000 A
6152902 Christian et al. Nov 2000 A
6164569 Hollinshead et al. Dec 2000 A
6177606 Etheredge et al. Jan 2001 B1
6209142 Mattsson et al. Apr 2001 B1
6248096 Dwork et al. Jun 2001 B1
6263887 Dunn Jul 2001 B1
6311339 Kraus Nov 2001 B1
6336919 Davis et al. Jan 2002 B1
6338729 Wada et al. Jan 2002 B1
6352525 Wakabayashi Mar 2002 B1
6406463 Brown Jun 2002 B1
6409712 Dutari et al. Jun 2002 B1
6416500 Wada et al. Jul 2002 B1
6428521 Droll Aug 2002 B1
6475198 Lipman et al. Nov 2002 B1
6479726 Cole et al. Nov 2002 B1
6491673 Palumbo et al. Dec 2002 B1
6508794 Palumbo et al. Jan 2003 B1
6512301 Palanisamy Jan 2003 B1
6540729 Wada et al. Apr 2003 B1
6547771 Robertson et al. Apr 2003 B2
6569133 Cheng et al. May 2003 B2
D476518 Doppelt Jul 2003 S
6586583 Vierling, Jr. et al. Jul 2003 B1
6592560 Snyder Jul 2003 B2
6618868 Minnick Sep 2003 B2
6620142 Flueckiger Sep 2003 B1
6629651 Male et al. Oct 2003 B1
6635038 Scovel Oct 2003 B2
6652495 Walker Nov 2003 B1
6685684 Falconer Feb 2004 B1
6702793 Sweetser et al. Mar 2004 B1
6706027 Harvie et al. Mar 2004 B2
6732384 Scott May 2004 B2
6736977 Hall et al. May 2004 B1
6740066 Wolff et al. May 2004 B2
6764477 Chen et al. Jul 2004 B1
6783519 Samuelsson Aug 2004 B2
6796974 Palumbo et al. Sep 2004 B2
6814547 Childers et al. Nov 2004 B2
6849065 Schmidt et al. Feb 2005 B2
6857137 Otto Feb 2005 B2
6885690 Aggerstam et al. Apr 2005 B2
6888044 Fell et al. May 2005 B2
6893425 Dunn et al. May 2005 B2
6912737 Ernest et al. Jul 2005 B2
6918899 Harvie Jul 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7018366 Easter Mar 2006 B2
7066411 Male et al. Jun 2006 B2
7125399 Miskie Oct 2006 B2
7131964 Harvie Nov 2006 B2
7135012 Harvie Nov 2006 B2
7141043 Harvie Nov 2006 B2
D533972 La Dec 2006 S
7160273 Greter et al. Jan 2007 B2
7171699 Ernest et al. Feb 2007 B2
7171871 Kozak Feb 2007 B2
7179951 Krishnaswamy-mirle et al. Feb 2007 B2
7181781 Trabold Feb 2007 B1
7186245 Cheng et al. Mar 2007 B1
7192424 Cooper Mar 2007 B2
7220250 Suzuki et al. May 2007 B2
D562975 Otto Feb 2008 S
7335189 Harvie Feb 2008 B2
7358282 Krueger et al. Apr 2008 B2
7390320 Machida et al. Jun 2008 B2
7438706 Koizumi et al. Oct 2008 B2
7488310 Yang Feb 2009 B2
7491194 Oliwa Feb 2009 B1
D591106 Dominique et al. Apr 2009 S
7513381 Heng et al. Apr 2009 B2
7520872 Biggie et al. Apr 2009 B2
D593801 Wilson et al. Jun 2009 S
7540364 Sanderson Jun 2009 B2
7588560 Dunlop Sep 2009 B1
7665359 Barber Feb 2010 B2
7682347 Parks et al. Mar 2010 B2
7687004 Allen Mar 2010 B2
7695459 Gilbert et al. Apr 2010 B2
7695460 Wada et al. Apr 2010 B2
7699818 Gilbert Apr 2010 B2
7699831 Bengtson et al. Apr 2010 B2
7722584 Tanaka et al. May 2010 B2
7727206 Gorres Jun 2010 B2
7740620 Gilbert et al. Jun 2010 B2
7749205 Tazoe et al. Jul 2010 B2
7755497 Wada et al. Jul 2010 B2
7766887 Burns et al. Aug 2010 B2
D625407 Koizumi et al. Oct 2010 S
7806879 Brooks et al. Oct 2010 B2
7815067 Matsumoto et al. Oct 2010 B2
7833169 Hannon Nov 2010 B2
7857806 Karpowicz et al. Dec 2010 B2
7866942 Harvie Jan 2011 B2
7871385 Levinson et al. Jan 2011 B2
7875010 Frazier et al. Jan 2011 B2
7901389 Mombrinie Mar 2011 B2
7927320 Goldwasser et al. Apr 2011 B2
7927321 Marland Apr 2011 B2
7931634 Swiecicki et al. Apr 2011 B2
7939706 Okabe et al. May 2011 B2
7946443 Stull et al. May 2011 B2
7947025 Buglino et al. May 2011 B2
7963419 Burney et al. Jun 2011 B2
7976519 Bubb et al. Jul 2011 B2
7993318 Olsson et al. Aug 2011 B2
8028460 Williams Oct 2011 B2
8047398 Dimartino et al. Nov 2011 B2
8083094 Caulfield et al. Dec 2011 B2
8128608 Thevenin Mar 2012 B2
8181651 Pinel May 2012 B2
8181819 Burney et al. May 2012 B2
8211063 Bierman et al. Jul 2012 B2
8221369 Parks et al. Jul 2012 B2
8241262 Mahnensmith Aug 2012 B2
8277426 Wilcox et al. Oct 2012 B2
8287508 Sanchez Oct 2012 B1
8303554 Tsai et al. Nov 2012 B2
8322565 Caulfield et al. Dec 2012 B2
8337477 Parks et al. Dec 2012 B2
D674241 Bickert et al. Jan 2013 S
8343122 Gorres Jan 2013 B2
8353074 Krebs Jan 2013 B2
8353886 Bester et al. Jan 2013 B2
D676241 Merrill Feb 2013 S
8388588 Wada et al. Mar 2013 B2
D679807 Burgess et al. Apr 2013 S
8425482 Khoubnazar Apr 2013 B2
8449510 Martini et al. May 2013 B2
D684260 Lund et al. Jun 2013 S
8470230 Caulfield et al. Jun 2013 B2
8479941 Matsumoto et al. Jul 2013 B2
8479949 Henkel Jul 2013 B2
8529530 Koch et al. Sep 2013 B2
8535284 Joder et al. Sep 2013 B2
8546639 Wada et al. Oct 2013 B2
8551075 Bengtson Oct 2013 B2
8568376 Delattre et al. Oct 2013 B2
D694404 Burgess et al. Nov 2013 S
8585683 Bengtson et al. Nov 2013 B2
8652112 Johannison et al. Feb 2014 B2
D702973 Norland et al. Apr 2014 S
8703032 Menon et al. Apr 2014 B2
D704330 Cicatelli May 2014 S
D704510 Mason et al. May 2014 S
D705423 Walsh Cutler May 2014 S
D705926 Burgess et al. May 2014 S
8714394 Wulf May 2014 B2
8715267 Bengtson et al. May 2014 B2
8757425 Copeland Jun 2014 B2
8777032 Biesecker et al. Jul 2014 B2
8808260 Koch et al. Aug 2014 B2
8864730 Conway et al. Oct 2014 B2
8881923 Higginson Nov 2014 B2
8936585 Carson et al. Jan 2015 B2
D729581 Boroski May 2015 S
9028460 Medeiros May 2015 B2
9056698 Noer Jun 2015 B2
9078792 Ruiz Jul 2015 B2
9173602 Gilbert Nov 2015 B2
9173799 Tanimoto et al. Nov 2015 B2
9187220 Biesecker et al. Nov 2015 B2
9199772 Krippendorf Dec 2015 B2
9248058 Conway et al. Feb 2016 B2
9308118 Dupree et al. Apr 2016 B1
9309029 Incorvia et al. Apr 2016 B2
9333281 Giezendanner et al. May 2016 B2
9382047 Schmidtner et al. Jul 2016 B2
9456937 Ellis Oct 2016 B2
9480595 Baham et al. Nov 2016 B2
9517865 Albers et al. Dec 2016 B2
D777941 Piramoon Jan 2017 S
9533806 Ding et al. Jan 2017 B2
9550611 Hodge Jan 2017 B2
9555930 Campbell et al. Jan 2017 B2
D789522 Burgess et al. Jun 2017 S
9687849 Bruno et al. Jun 2017 B2
9694949 Hendricks et al. Jul 2017 B2
9788992 Harvie Oct 2017 B2
D804907 Sandoval Dec 2017 S
9868564 Mcgirr et al. Jan 2018 B2
D814239 Arora Apr 2018 S
D817484 Lafond May 2018 S
10037640 Gordon Jul 2018 B2
10058470 Phillips Aug 2018 B2
10098990 Koch et al. Oct 2018 B2
D835264 Mozzicato et al. Dec 2018 S
D835779 Mozzicato et al. Dec 2018 S
D840533 Mozzicato et al. Feb 2019 S
D840534 Mozzicato et al. Feb 2019 S
10225376 Martinez Mar 2019 B2
10226376 Sanchez et al. Mar 2019 B2
D848612 Mozzicato et al. May 2019 S
10307305 Hodges Jun 2019 B1
10335121 Desai Jul 2019 B2
D856512 Cowart et al. Aug 2019 S
10376406 Newton Aug 2019 B2
10376407 Newton Aug 2019 B2
10390989 Sanchez et al. Aug 2019 B2
D858144 Fu Sep 2019 S
10406039 Villarreal Sep 2019 B2
10407222 Allen Sep 2019 B2
10478356 Griffin Nov 2019 B2
10538366 Pentelovitch et al. Jan 2020 B2
10569938 Zhao et al. Feb 2020 B2
10577156 Dagnelie et al. Mar 2020 B2
10618721 Vazin Apr 2020 B2
D884390 Wang May 2020 S
10669079 Freedman et al. Jun 2020 B2
D892315 Airy Aug 2020 S
10730672 Bertram et al. Aug 2020 B2
10737848 Philip et al. Aug 2020 B2
10765854 Law et al. Sep 2020 B2
10766670 Kittmann Sep 2020 B2
D901214 Hu Nov 2020 S
10865017 Cowart et al. Dec 2020 B1
10889412 West et al. Jan 2021 B2
10913581 Stahlecker Feb 2021 B2
D912244 Rehm et al. Mar 2021 S
10952889 Newton et al. Mar 2021 B2
10973678 Newton et al. Apr 2021 B2
10974874 Ragias et al. Apr 2021 B2
11000401 Ecklund et al. May 2021 B2
D923365 Wang Jun 2021 S
11027900 Liu Jun 2021 B2
11045346 Argent et al. Jun 2021 B2
D928946 Sanchez et al. Aug 2021 S
11179506 Barr et al. Nov 2021 B2
11226376 Yamauchi et al. Jan 2022 B2
20010037097 Cheng et al. Nov 2001 A1
20010054426 Knudson et al. Dec 2001 A1
20020019614 Woon Feb 2002 A1
20020026161 Grundke Feb 2002 A1
20020087131 Wolff et al. Jul 2002 A1
20020189992 Schmidt et al. Dec 2002 A1
20030004436 Schmidt et al. Jan 2003 A1
20030120178 Heki Jun 2003 A1
20030157859 Ishikawa Aug 2003 A1
20030181880 Schwartz Sep 2003 A1
20030195484 Harvie Oct 2003 A1
20030233079 Parks et al. Dec 2003 A1
20040006321 Cheng et al. Jan 2004 A1
20040056122 Male et al. Mar 2004 A1
20040084465 Luburic May 2004 A1
20040127872 Petryk et al. Jul 2004 A1
20040128749 Scott Jul 2004 A1
20040143229 Easter Jul 2004 A1
20040176731 Cheng et al. Sep 2004 A1
20040191919 Unger et al. Sep 2004 A1
20040207530 Nielsen Oct 2004 A1
20040236292 Tazoe et al. Nov 2004 A1
20040254547 Okabe et al. Dec 2004 A1
20050010182 Parks et al. Jan 2005 A1
20050033248 Machida et al. Feb 2005 A1
20050070861 Okabe Mar 2005 A1
20050070862 Tazoe et al. Mar 2005 A1
20050082300 Modrell et al. Apr 2005 A1
20050097662 Leimkuhler et al. May 2005 A1
20050101924 Elson et al. May 2005 A1
20050137557 Swiecicki et al. Jun 2005 A1
20050177070 Levinson et al. Aug 2005 A1
20050197639 Mombrinie Sep 2005 A1
20050273920 Marinas Dec 2005 A1
20050277904 Chase et al. Dec 2005 A1
20050279359 LeBlanc et al. Dec 2005 A1
20060004332 Marx Jan 2006 A1
20060015080 Mahnensmith Jan 2006 A1
20060015081 Suzuki et al. Jan 2006 A1
20060016778 Park Jan 2006 A1
20060111648 Vermaak May 2006 A1
20060155214 Wightman Jul 2006 A1
20060200102 Cooper Sep 2006 A1
20060229576 Conway et al. Oct 2006 A1
20060231648 Male et al. Oct 2006 A1
20060235359 Marland Oct 2006 A1
20070006368 Key et al. Jan 2007 A1
20070038194 Wada et al. Feb 2007 A1
20070117880 Elson et al. May 2007 A1
20070135786 Schmidt et al. Jun 2007 A1
20070149935 Dirico Jun 2007 A1
20070191804 Coley Aug 2007 A1
20070214553 Carromba et al. Sep 2007 A1
20070225666 Otto Sep 2007 A1
20070225668 Otto Sep 2007 A1
20070266486 Ramirez Nov 2007 A1
20080004576 Tanaka et al. Jan 2008 A1
20080015526 Reiner et al. Jan 2008 A1
20080015527 House Jan 2008 A1
20080033386 Okabe et al. Feb 2008 A1
20080041869 Backaert Feb 2008 A1
20080091153 Harvie Apr 2008 A1
20080091158 Yang Apr 2008 A1
20080234642 Patterson et al. Sep 2008 A1
20080281282 Finger et al. Nov 2008 A1
20080287894 Van Den Heuvel Nov 2008 A1
20090025717 Pinel Jan 2009 A1
20090056003 Ivie et al. Mar 2009 A1
20090192482 Dodge et al. Jul 2009 A1
20090234312 Otoole et al. Sep 2009 A1
20090251510 Noro et al. Oct 2009 A1
20090264840 Virginio Oct 2009 A1
20090270822 Medeiros Oct 2009 A1
20090281510 Fisher Nov 2009 A1
20100004612 Thevenin Jan 2010 A1
20100058660 Williams Mar 2010 A1
20100121289 Parks et al. May 2010 A1
20100158168 Murthy et al. Jun 2010 A1
20100185168 Graauw et al. Jul 2010 A1
20100198172 Wada et al. Aug 2010 A1
20100211032 Tsai et al. Aug 2010 A1
20100234820 Tsai et al. Sep 2010 A1
20100241104 Gilbert Sep 2010 A1
20100263113 Shelton et al. Oct 2010 A1
20100310845 Bond et al. Dec 2010 A1
20110028922 Kay et al. Feb 2011 A1
20110034889 Smith Feb 2011 A1
20110036837 Shang Feb 2011 A1
20110040267 Wada et al. Feb 2011 A1
20110040271 Rogers et al. Feb 2011 A1
20110054426 Stewart et al. Mar 2011 A1
20110060300 Weig et al. Mar 2011 A1
20110077495 Gilbert Mar 2011 A1
20110077606 Wilcox et al. Mar 2011 A1
20110137273 Muellejans et al. Jun 2011 A1
20110172620 Khambatta Jul 2011 A1
20110172625 Wada et al. Jul 2011 A1
20110202024 Cozzens Aug 2011 A1
20110240648 Tucker Oct 2011 A1
20110265889 Tanaka et al. Nov 2011 A1
20120035577 Tomes et al. Feb 2012 A1
20120041400 Christensen Feb 2012 A1
20120059328 Dikeman et al. Mar 2012 A1
20120066825 Birbara et al. Mar 2012 A1
20120103347 Wheaton et al. May 2012 A1
20120137420 Gordon et al. Jun 2012 A1
20120165768 Sekiyama et al. Jun 2012 A1
20120165786 Chappa et al. Jun 2012 A1
20120210503 Anzivino et al. Aug 2012 A1
20120233761 Huang Sep 2012 A1
20120245542 Suzuki et al. Sep 2012 A1
20120245547 Wilcox et al. Sep 2012 A1
20120253303 Suzuki et al. Oct 2012 A1
20120330256 Wilcox et al. Dec 2012 A1
20130006206 Wada et al. Jan 2013 A1
20130045651 Esteves et al. Feb 2013 A1
20130053804 Soerensen et al. Feb 2013 A1
20130096523 Chang et al. Apr 2013 A1
20130245496 Wells et al. Sep 2013 A1
20130245586 Jha Sep 2013 A1
20130292537 Dirico Nov 2013 A1
20140031774 Bengtson Jan 2014 A1
20140157499 Suzuki et al. Jun 2014 A1
20140182051 Tanimoto et al. Jul 2014 A1
20140196189 Lee et al. Jul 2014 A1
20140276501 Cisko Sep 2014 A1
20140316381 Reglin Oct 2014 A1
20140325746 Block Nov 2014 A1
20140348139 Gomez Martinez Nov 2014 A1
20140352050 Yao et al. Dec 2014 A1
20140371628 Desai Dec 2014 A1
20150045757 Lee et al. Feb 2015 A1
20150047114 Ramirez Feb 2015 A1
20150048089 Robertson Feb 2015 A1
20150135423 Sharpe et al. May 2015 A1
20150157300 Ealovega et al. Jun 2015 A1
20150209194 Heyman Jul 2015 A1
20150290425 Macy et al. Oct 2015 A1
20150320583 Harvie Nov 2015 A1
20150329255 Rzepecki Nov 2015 A1
20150359660 Harvie Dec 2015 A1
20150366699 Nelson Dec 2015 A1
20160029998 Brister et al. Feb 2016 A1
20160038356 Yao et al. Feb 2016 A1
20160058322 Brister et al. Mar 2016 A1
20160060001 Wada et al. Mar 2016 A1
20160100976 Conway et al. Apr 2016 A1
20160106604 Timm Apr 2016 A1
20160113809 Kim Apr 2016 A1
20160183689 Miner Jun 2016 A1
20160278662 Brister et al. Sep 2016 A1
20160366699 Zhang et al. Dec 2016 A1
20160367226 Newton et al. Dec 2016 A1
20160367411 Justiz et al. Dec 2016 A1
20160367726 Gratzer Dec 2016 A1
20160374848 Sanchez et al. Dec 2016 A1
20170007438 Harvie Jan 2017 A1
20170128638 Giezendanner et al. May 2017 A1
20170143534 Sanchez May 2017 A1
20170165405 Muser et al. Jun 2017 A1
20170189225 Voorhees et al. Jul 2017 A1
20170202692 Laniado Jul 2017 A1
20170216081 Accosta Aug 2017 A1
20170246026 Laniado Aug 2017 A1
20170252014 Siller Gonzalez et al. Sep 2017 A1
20170252202 Sanchez et al. Sep 2017 A9
20170266031 Sanchez et al. Sep 2017 A1
20170266658 Bruno et al. Sep 2017 A1
20170281399 Vanmiddendorp et al. Oct 2017 A1
20170312116 Laniado Nov 2017 A1
20170325788 Ealovega et al. Nov 2017 A1
20170333244 Laniado Nov 2017 A1
20170042748 Griffin Dec 2017 A1
20170348139 Newton et al. Dec 2017 A1
20170354532 Holt Dec 2017 A1
20170367873 Grannum Dec 2017 A1
20180002075 Lee Jan 2018 A1
20180008451 Stroebech Jan 2018 A1
20180008804 Laniado Jan 2018 A1
20180028349 Newton et al. Feb 2018 A1
20180037384 Archeny et al. Feb 2018 A1
20180049910 Newton Feb 2018 A1
20180064572 Wiltshire Mar 2018 A1
20180104131 Killian Apr 2018 A1
20180127187 Sewell May 2018 A1
20180200101 Su Jul 2018 A1
20180228642 Davis et al. Aug 2018 A1
20190021899 Viet Jan 2019 A1
20190038451 Harvie Feb 2019 A1
20190046102 Kushnir et al. Feb 2019 A1
20190100362 Meyers et al. Apr 2019 A1
20190133814 Tammen et al. May 2019 A1
20190142624 Sanchez et al. May 2019 A1
20190224036 Sanchez et al. Jul 2019 A1
20190247222 Ecklund et al. Aug 2019 A1
20190282391 Johannes et al. Sep 2019 A1
20190314189 Acosta Oct 2019 A1
20190314190 Sanchez et al. Oct 2019 A1
20190344934 Faerber et al. Nov 2019 A1
20190365307 Laing et al. Dec 2019 A1
20190365561 Newton et al. Dec 2019 A1
20200046544 Godinez et al. Feb 2020 A1
20200055638 Lau et al. Feb 2020 A1
20200070392 Huber et al. Mar 2020 A1
20200085610 Cohn et al. Mar 2020 A1
20200171217 Braga et al. Jun 2020 A9
20200229964 Staali et al. Jul 2020 A1
20200231343 Freedman et al. Jul 2020 A1
20200232841 Satish et al. Jul 2020 A1
20200255189 Liu Aug 2020 A1
20200276046 Staali et al. Sep 2020 A1
20200331672 Bertram et al. Oct 2020 A1
20200345332 Duval Nov 2020 A1
20200353135 Gregory et al. Nov 2020 A1
20200367677 Silsby et al. Nov 2020 A1
20200369444 Silsby et al. Nov 2020 A1
20200385179 Mccourt Dec 2020 A1
20200390592 Merrill Dec 2020 A1
20200405521 Glasroe Dec 2020 A1
20210008771 Huber et al. Jan 2021 A1
20210009323 Markarian et al. Jan 2021 A1
20210061523 Bytheway Mar 2021 A1
20210069005 Sanchez et al. Mar 2021 A1
20210069008 Blabas et al. Mar 2021 A1
20210121318 Pinlac Apr 2021 A1
20210137724 Ecklund et al. May 2021 A1
20210154055 Villarreal May 2021 A1
20210170079 Radl et al. Jun 2021 A1
20210220162 Jamison Jul 2021 A1
20210220163 Mayrand Jul 2021 A1
20210229877 Ragias et al. Jul 2021 A1
20210267787 Nazemi Sep 2021 A1
20210386925 Hartwell et al. Dec 2021 A1
20220023091 Ecklund et al. Jan 2022 A1
20220066825 Saraf et al. Mar 2022 A1
20220248836 Cagle et al. Aug 2022 A1
Foreign Referenced Citations (265)
Number Date Country
2165286 Sep 1999 CA
2354132 Jun 2000 CA
3098571 Nov 2019 CA
2269203 Dec 1997 CN
1332620 Jan 2002 CN
1533755 Oct 2004 CN
1602825 Apr 2005 CN
1720888 Jan 2006 CN
101262836 Sep 2008 CN
102159159 Aug 2011 CN
202184840 Apr 2012 CN
103717180 Apr 2014 CN
204562697 Aug 2015 CN
105451693 Mar 2016 CN
205849719 Jan 2017 CN
107847384 Mar 2018 CN
107920912 Apr 2018 CN
209285902 Aug 2019 CN
79818 Oct 1893 DE
1516466 Jun 1969 DE
2721330 Nov 1977 DE
2742298 Mar 1978 DE
9407554.9 May 1995 DE
4443710 Jun 1995 DE
19619597 Nov 1997 DE
102011103783 Dec 2012 DE
202015104597 Jul 2016 DE
9600118 Nov 1996 DK
0032138 Jul 1981 EP
0066070 Dec 1982 EP
0119143 Nov 1988 EP
0610638 Aug 1994 EP
0613355 Sep 1994 EP
0613355 Jan 1997 EP
1332738 Aug 2003 EP
1382318 Jan 2004 EP
1089684 Oct 2004 EP
1616542 Jan 2006 EP
1382318 May 2006 EP
1063953 Jan 2007 EP
1872752 Jan 2008 EP
2180907 May 2010 EP
2380532 Oct 2011 EP
2389908 Nov 2011 EP
2676643 Dec 2013 EP
2997950 Mar 2016 EP
2879534 Mar 2017 EP
3424471 Jan 2019 EP
3169292 Nov 2019 EP
3752110 Mar 2022 EP
4025163 Jul 2022 EP
1011517 Dec 1965 GB
1467144 Mar 1977 GB
2106395 Apr 1983 GB
2171315 Aug 1986 GB
2148126 Jul 1987 GB
2191095 Dec 1987 GB
2199750 Jul 1988 GB
2260907 May 1993 GB
2462267 Feb 2010 GB
2469496 Oct 2010 GB
2507318 Apr 2014 GB
201800009129 Apr 2020 IT
S5410596 Jan 1979 JP
S5410596 May 1979 JP
S55155618 Dec 1980 JP
S63107780 Jul 1988 JP
H0267530 Mar 1990 JP
H02103871 Apr 1990 JP
H02131422 May 1990 JP
H0460220 Feb 1992 JP
H05123349 May 1993 JP
H1040141 Feb 1998 JP
H11113946 Apr 1999 JP
H11290365 Oct 1999 JP
2000185068 Jul 2000 JP
3087938 Sep 2000 JP
2001054531 Feb 2001 JP
2001070331 Mar 2001 JP
2001276107 Oct 2001 JP
2001276108 Oct 2001 JP
2003180722 Jul 2003 JP
2004130056 Apr 2004 JP
2004267530 Sep 2004 JP
2005066011 Mar 2005 JP
2005066325 Mar 2005 JP
2005518237 Jun 2005 JP
2006026108 Feb 2006 JP
3123547 Jun 2006 JP
2006204868 Aug 2006 JP
3132659 May 2007 JP
4039641 Nov 2007 JP
2009509570 Mar 2009 JP
2010081981 Apr 2010 JP
2010536439 Dec 2010 JP
4747166 May 2011 JP
2011087823 May 2011 JP
4801218 Aug 2011 JP
2011224070 Nov 2011 JP
2012523869 Oct 2012 JP
2015092945 May 2015 JP
3198994 Jul 2015 JP
2019525811 Sep 2019 JP
20030047451 Jun 2003 KR
20140039485 Apr 2014 KR
101432639 Aug 2014 KR
20180106659 Oct 2018 KR
20180108774 Oct 2018 KR
2068717 Jun 2013 PT
8101957 Jul 1981 WO
8804558 Jun 1988 WO
9104714 Apr 1991 WO
9104714 Jun 1991 WO
9220299 Feb 1993 WO
9309736 May 1993 WO
9309736 Jun 1993 WO
9514448 Jun 1995 WO
9600096 Jan 1996 WO
9634636 Nov 1996 WO
9817211 Apr 1998 WO
9830336 Jul 1998 WO
0000112 Jan 2000 WO
0000113 Jan 2000 WO
0033773 Jun 2000 WO
0057784 Oct 2000 WO
0145618 Jun 2001 WO
0145621 Jun 2001 WO
02094160 Nov 2002 WO
03013967 Feb 2003 WO
03024824 Mar 2003 WO
03055423 Jul 2003 WO
03071931 Sep 2003 WO
03079942 Oct 2003 WO
03071931 Feb 2004 WO
2004019836 Mar 2004 WO
2004024046 Mar 2004 WO
2005074571 Sep 2005 WO
2005089687 Sep 2005 WO
2005107661 Nov 2005 WO
2007007845 Jan 2007 WO
2007042823 Apr 2007 WO
2007055651 May 2007 WO
2006098950 Nov 2007 WO
2007134608 Nov 2007 WO
2007128156 Feb 2008 WO
2008078117 Jul 2008 WO
2008104019 Sep 2008 WO
2008141471 Nov 2008 WO
2009004368 Jan 2009 WO
2009004369 Jan 2009 WO
2009052496 Apr 2009 WO
2009007702 Jul 2009 WO
2009101738 Aug 2009 WO
2010058192 May 2010 WO
2010030122 Jul 2010 WO
2010101915 Jan 2011 WO
2011018132 Feb 2011 WO
2011018133 Feb 2011 WO
2011024864 Mar 2011 WO
2011054118 May 2011 WO
2011079132 Jun 2011 WO
2011107972 Sep 2011 WO
2011108972 Sep 2011 WO
2011117292 Sep 2011 WO
2011123219 Oct 2011 WO
2011132043 Oct 2011 WO
2012012908 Feb 2012 WO
2012065274 May 2012 WO
2012097462 Jul 2012 WO
2012098796 Jul 2012 WO
2012101288 Aug 2012 WO
2012175916 Dec 2012 WO
2013018435 Feb 2013 WO
2013033429 Mar 2013 WO
2013055434 Apr 2013 WO
2013103291 Jul 2013 WO
2013131109 Sep 2013 WO
2013167478 Nov 2013 WO
2013177716 Dec 2013 WO
2014041534 Mar 2014 WO
2014046420 Mar 2014 WO
2014118518 Aug 2014 WO
2014160852 Oct 2014 WO
2015023599 Feb 2015 WO
2015052348 Apr 2015 WO
2015068384 May 2015 WO
2015169403 Nov 2015 WO
2015170307 Nov 2015 WO
2015197462 Dec 2015 WO
2016051385 Apr 2016 WO
2016055989 Apr 2016 WO
2016071894 May 2016 WO
2016103242 Jun 2016 WO
2016116915 Jul 2016 WO
2016124203 Aug 2016 WO
2016139448 Sep 2016 WO
2016166562 Oct 2016 WO
2016167535 Oct 2016 WO
2016191574 Dec 2016 WO
2016200088 Dec 2016 WO
2016200361 Dec 2016 WO
2016204731 Dec 2016 WO
2017001846 Jan 2017 WO
2017152198 Sep 2017 WO
2017162559 Sep 2017 WO
2017205446 Nov 2017 WO
2017209779 Dec 2017 WO
2017210524 Dec 2017 WO
2018022414 Feb 2018 WO
2018044781 Mar 2018 WO
2018056953 Mar 2018 WO
2018090550 May 2018 WO
2018138513 Aug 2018 WO
2018144318 Aug 2018 WO
2018144463 Aug 2018 WO
2018150263 Aug 2018 WO
2018150268 Aug 2018 WO
2018152156 Aug 2018 WO
2018183791 Oct 2018 WO
2018150267 Nov 2018 WO
2018235026 Dec 2018 WO
2018235065 Dec 2018 WO
2019004404 Jan 2019 WO
2019065541 Apr 2019 WO
2019096845 May 2019 WO
2019161094 Aug 2019 WO
2019188566 Oct 2019 WO
2019190593 Oct 2019 WO
2019212949 Nov 2019 WO
2019212950 Nov 2019 WO
2019212951 Nov 2019 WO
2019212952 Nov 2019 WO
2019212954 Nov 2019 WO
2019212955 Nov 2019 WO
2019212956 Nov 2019 WO
2019214787 Nov 2019 WO
2019214788 Nov 2019 WO
2020000994 Jan 2020 WO
2020020618 Jan 2020 WO
2020038822 Feb 2020 WO
2020088409 May 2020 WO
2020049394 Jun 2020 WO
2020120657 Jun 2020 WO
2020152575 Jul 2020 WO
2020182923 Sep 2020 WO
2020204967 Oct 2020 WO
2020209898 Oct 2020 WO
2020242790 Dec 2020 WO
2020251893 Dec 2020 WO
2020256865 Dec 2020 WO
2021007144 Jan 2021 WO
2021007345 Jan 2021 WO
2021010844 Jan 2021 WO
2021016026 Jan 2021 WO
2021016300 Jan 2021 WO
2021034886 Feb 2021 WO
2021041123 Mar 2021 WO
2021094352 May 2021 WO
2021155206 Aug 2021 WO
2021173436 Sep 2021 WO
2021207621 Oct 2021 WO
2021257202 Dec 2021 WO
2022006256 Jan 2022 WO
2022140545 Jun 2022 WO
2022150360 Jul 2022 WO
Non-Patent Literature Citations (437)
Entry
US 9,908,683 B2, 03/2018, Sandhausen et al. (withdrawn)
Advisory Action for U.S. Appl. No. 14/722,613 dated Mar. 4, 2019.
Advisory Action for U.S. Appl. No. 14/952,591 dated Jun. 1, 2018.
Advisory Action for U.S. Appl. No. 15/238,427 dated Apr. 10, 2019.
AMXDmax In-Flight Bladder Relief; Omni Medical 2015; Omni Medical Systems, Inc.
Corrected International Search Report and Written Opinion for International Application No. PCT/US2017/043025 dated Jan. 11, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 15/221,106 dated Jul. 2, 2019.
Final Office Action for U.S. Appl. No. 14/722,613 dated Nov. 29, 2018.
Final Office Action for U.S. Appl. No. 14/947,759 dated Apr. 8, 2016.
Final Office Action for U.S. Appl. No. 14/952,591 dated Feb. 23, 2018.
Final Office Action for U.S. Appl. No. 14/952,591 dated Nov. 1, 2019.
Final Office Action for U.S. Appl. No. 15/171,968 dated Feb. 14, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 dated Mar. 19, 2019.
Final Office Action for U.S. Appl. No. 15/221,106 dated Jan. 23, 2019.
Final Office Action for U.S. Appl. No. 15/238,427 dated Jan. 2, 2019.
Final Office Action for U.S. Appl. No. 15/260,103 dated Feb. 14, 2019.
Final Office Action for U.S. Appl. No. 29/624,661 dated Feb. 18, 2020.
International Search Report and Written Opinion for International Application No. PCT/US2017/043025 dated Oct. 18, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2018/015968 dated Apr. 6, 2018.
International Search Report and Written Opinion for International Patent Application No. PCT/US16/49274, dated Dec. 1, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2017/035625 dated Aug. 15, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2019/029608 dated Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029609 dated Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029610 dated Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029611 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029613 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029614 dated Sep. 26, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029616 dated Aug. 30, 2019.
Issue Notification for U.S. Appl. No. 15/221,106 dated Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/238,427 dated Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/260,103 dated Aug. 7, 2019.
Issue Notification for U.S. Appl. No. 15/611,587 dated Feb. 20, 2019.
Non-Final Office Action for U.S. Appl. No. 14/722,613 dated Jun. 13, 2019.
Non-Final Office Action for U.S. Appl. No. 14/947,759, dated Mar. 17, 2016.
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Aug. 1, 2017.
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Mar. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Sep. 28, 2018.
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated May 11, 2020.
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated Aug. 20, 2019.
Non-Final Office Action for U.S. Appl. No. 15/221,106 dated Jun. 5, 2018.
Non-Final Office Action for U.S. Appl. No. 15/238,427 dated Aug. 8, 2018.
Non-Final Office Action for U.S. Appl. No. 15/260,103 dated Sep. 26, 2018.
Non-Final Office Action for U.S. Appl. No. 15/611,587 dated Dec. 29, 2017.
Non-Final Office Action for U.S. Appl. No. 15/611,587 dated Jul. 13, 2018.
Non-Final Office Action for U.S. Appl. No. 15/612,325 dated Mar. 19, 2020.
Non-Final Office Action for U.S. Appl. No. 29/624,661 dated Jul. 18, 2019.
Notice of Allowance for U.S. Appl. No. 15/221,106 dated May 1, 2019.
Notice of Allowance for U.S. Appl. No. 15/238,427 dated May 23, 2019.
Notice of Allowance for U.S. Appl. No. 15/260,103 dated Jun. 7, 2019.
Notice of Allowance for U.S. Appl. No. 15/611,587 dated Dec. 21, 2018.
Notice of Allowance for U.S. Appl. No. 29/624,661 dated May 14, 2020.
U.S. Appl. No. 15/171,968, filed Jun. 2, 2016.
U.S. Appl. No. 15/221,106, filed Jul. 27, 2016.
U.S. Appl. No. 16/369,676, filed Mar. 29, 2019.
U.S. Appl. No. 16/433,773, filed Jun. 6, 2019.
U.S. Appl. No. 16/449,039, filed Jun. 21, 2019.
U.S. Appl. No. 16/452,145, filed Jun. 25, 2019.
U.S. Appl. No. 16/452,258, filed Jun. 25, 2019.
U.S. Appl. No. 16/478,180, filed Jul. 16, 2019.
U.S. Appl. No. 62/452,437, filed Jan. 31, 2017.
U.S. Appl. No. 62/665,297, filed May 1, 2018.
U.S. Appl. No. 62/665,302, filed May 1, 2018.
U.S. Appl. No. 62/665,317, filed May 1, 2018.
U.S. Appl. No. 62/665,321, filed May 1, 2018.
U.S. Appl. No. 62/665,331, filed May 1, 2018.
U.S. Appl. No. 62/665,335, filed May 1, 2018.
U.S. Appl. No. 62/994,912, filed Mar. 26, 2020.
U.S. Appl. No. 63/011,445, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,487, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,571, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,657, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,760, filed Apr. 17, 2020.
U.S. Appl. No. 63/012,347, filed Apr. 20, 2020.
U.S. Appl. No. 63/012,384, filed Apr. 20, 2020.
Defendant and Counterclaim Plaintiff Sage Products, LLC'S Answer, Defenses, and Counterclaims To Plaintiff'S Amended Complaint, Nov. 1, 2019.
“Male Urinary Pouch External Collection Device”, http://www.hollister.com/en/products/Continence-Care-Products/Urine-Collectors/Urine-Collection-Accessories/Male-Urinary-Pouch-External-Collection-Device, last accessed Feb. 8, 2018.
“Step by Step How Ur24 WorksHome”, http://medicalpatentur24.com, last accessed Dec. 6, 2017, Aug. 30, 2017, 4 pages.
Parmar, “10 Finalists Chosen for Dare-to-Dream Medtech Design Challenge (PureWick),” Design Services, Nov. 10, 2014 (3 pages).
Purewick, “Incontinence Relief for Women” Presentation, (7 pages), Sep. 23, 2015.
Pytlik, “Super Absorbent Polymers,” University of Buffalo http://www.courses.sens.buffalo.edu/ce435/Diapers/Diapers.html, accessed on Feb. 17, 2017.
Final Office Action for U.S. Appl. No. 14/952,591 dated Nov. 27, 2020.
Final Office Action for U.S. Appl. No. 15/612,325 dated Sep. 17, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/023572 dated Jul. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/040860 dated Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041242 dated Nov. 17, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041249 dated Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/042262 dated Oct. 14, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/043059 dated Oct. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/044024 dated Nov. 12, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/046914 dated Dec. 1, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/055680 dated Dec. 15, 2020.
Issue Notification for U.S. Appl. No. 15/171,968 dated Mar. 3, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 dated Nov. 25, 2020.
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Dec. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 17/088,272 dated Jan. 25, 2021.
Non-Final Office Action for U.S. Appl. No. 29/694,002 dated Jun. 24, 2020.
Notice of Allowance for U.S. Appl. No. 15/171,968 dated Feb. 16, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 dated Nov. 6, 2020.
Notice of Allowance for U.S. Appl. No. 15/612,325 dated Feb. 19, 2021.
Notice of Allowance for U.S. Appl. No. 15/612,325 dated Jan. 21, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Jul. 10, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Sep. 29, 2020.
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Jan. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Oct. 16, 2020.
Notice to File Missing Parts for U.S. Appl. No. 17/179,116 dated Mar. 3, 2021.
U.S. Appl. No. 15/260,103, filed Sep. 8, 2016.
U.S. Appl. No. 15/611,587, filed Jun. 1, 2017.
U.S. Appl. No. 16/904,868, filed Jun. 18, 2020.
U.S. Appl. No. 16/905,400, filed Jun. 18, 2020.
U.S. Appl. No. 17/051,550, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,554, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,585, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,600, filed Oct. 29, 2020.
U.S. Appl. No. 17/088,272, filed Nov. 3, 2020.
U.S. Appl. No. 17/179,116, filed Feb. 18, 2021.
U.S. Appl. No. 29/741,751, filed Jul. 15, 2020.
U.S. Appl. No. 62/853,889, filed May 29, 2019.
U.S. Appl. No. 62/873,045, filed Jul. 11, 2019.
U.S. Appl. No. 62/873,048, filed Jul. 11, 2019.
U.S. Appl. No. 62/876,500, filed Jul. 19, 2019.
U.S. Appl. No. 62/889,149, filed Aug. 20, 2019.
U.S. Appl. No. 62/949,187, filed Dec. 17, 2019.
U.S. Appl. No. 62/956,756, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,767, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,770, filed Jan. 3, 2020.
U.S. Appl. No. 63/061,241, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,244, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,834, filed Aug. 6, 2020.
U.S. Appl. No. 63/064,017, filed Aug. 11, 2020.
U.S. Appl. No. 63/064,126, filed Aug. 11, 2020.
U.S. Appl. No. 63/071,438, filed Aug. 28, 2020.
U.S. Appl. No. 63/074,051, filed Sep. 3, 2020.
U.S. Appl. No. 63/074,066, filed Sep. 3, 2020.
U.S. Appl. No. 63/076,032, filed Sep. 9, 2020.
U.S. Appl. No. 63/076,474, filed Sep. 10, 2020.
U.S. Appl. No. 63/076,477, filed Sep. 10, 2020.
U.S. Appl. No. 63/082,261, filed Sep. 23, 2020.
U.S. Appl. No. 63/088,506, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,511, filed Oct. 7, 2020.
U.S. Appl. No. 63/094,464, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,498, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,594, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,608, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,626, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,066, filed Nov. 3, 2020.
U.S. Appl. No. 63/112,417, filed Nov. 11, 2020.
U.S. Appl. No. 63/119,161, filed Nov. 30, 2020.
U.S. Appl. No. 63/134,287, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,450, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,631, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,632, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,754, filed Jan. 7, 2021.
U.S. Appl. No. 63/147,013, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,299, filed Feb. 9, 2021.
U.S. Appl. No. 63/148,723, filed Feb. 12, 2021.
U.S. Appl. No. 63/154,248, filed Feb. 26, 2021.
U.S. Appl. No. 63/155,395, filed Mar. 2, 2021.
U.S. Appl. No. 63/157,007, filed Mar. 5, 2021.
U.S. Appl. No. 63/157,014, filed Mar. 5, 2021.
U.S. Appl. No. 63/159,142, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,210, filed Mar. 10, 2021.
Sage's Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; and 10,390,989, May 29, 2020, 193 pages.
Sage's Supplemental and Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; 10,390,989 and Initial Invalidity Contentions Regarding U.S. Pat. No. 10,376,407, Aug. 21, 2020, 277 pages.
Sage's Second Supplemental Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508, 10,226,375, 10,390,989, and 10,376,407, 292 pages.
Excerpts from the 508 (U.S. Pat. No. 8,278,508) Patent's Prosecution History, 2020, 99 pages.
Plaintiff's Opening Claim Construction Brief, Case No. 19-1508-MN, Oct. 16, 2020, 26 pages.
Plaintiff's Identification of Claim Terms and Proposed Constructions, Case No. 19-1508-MN, 3 pages.
PureWick's Response to Interrogatory No. 9 in PureWick, LLC v. Sage Products, LLC, Case No. 19-1508-MN, Mar. 23, 2020, 6 pages.
Sage's Preliminary Identification of Claim Elements and Proposed Constructions for U.S. Pat. Nos. 8,287,508, 10,226,376, 10,390,989 and 10,376,407, Case No. 19-1508-MN, 7 pages.
Decision Granting Institution of Inter Partes Review for U.S. Pat. No. 8,287,508, Case No. 2020-01426, Feb. 17, 2021, 39 pages.
Corrected Certificate of Service, Case No. IPR2020-01426, U.S. Pat. No. 8,287,508, 2020, 2 pages.
“3 Devices Take Top Honors in Dare-To-Dream Medtech Design Contest”, R+D Digest, Nov. 2013, 1 page.
“Advanced Mission Extender Device (AMDX) Products”, Omni Medical Systems, Inc., 15 pages.
“AMXD Control Starter Kit Brochure”, https://www.omnimedicalsys.com/index.php?page=products, Omni Medical, 8 pages.
“AMXDX—Advanced Mission Extender Device Brochure”, Omni Medical, Omni Brochure—http://www.omnimedicalsys.com/uploads/AMXDFixedWing.pdf, 2 pages.
“External Urine Management for Female Anatomy”, https://www.stryker.com/us/en/sage/products/sage-primafit.html, Jul. 2020, 4 pages.
“High Absorbancy Cellulose Acetate Electrospun Nanofibers for Feminine Hygiene Application”, https://www.sciencedirect.com/science/article/abs/pii/S2352940716300701?via%3Dihub, Jul. 2016, 3 pages.
“How Period Panties Work”, www.shethinx.com/pages/thinx-itworks, 2020, 10 pages.
“Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers”, https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra07514a#!divAbstract, 2015, 5 pages.
“In Flight Bladder Relief”, Omni Medical, Omni Presentation https://www.omnimedicalsys.com/uploads/AMXDmax_HSD.pdf, 14 pages.
“Making Women's Sanitary Products Safer and Cheaper”, https://www.elsevier.com/connect/making-womens-sanitary-products-safer-and-cheaper, Sep. 2016, 10 pages.
“Novel Nanofibers Make Safe and Effective Absorbent for Sanitary Products”, https://www.materialstoday.com/nanomaterials/news/nanofibers-make-safe-and-effective-absorbent/, Oct. 2016, 3 pages.
“Research and Development Work Relating to Assistive Technology Jun. 2005”, British Department of Health, Nov. 2006, 40 pages.
“Underwear that absorbs your period”, Thinx!, https://www.shethinx.com/pages/thinx-it-works last accessed Jun. 24, 2020, 7 pages.
“User & Maintenance Guide”, Omni Medical, 2007, 16 pages.
“Winners Announced for Dare-to-Dream Medtech Design Challenge”, https://www.mddionline.com/design-engineering/winners-announced-dare-dream-medtech-design-challenge, MD&DI, 2014, 4 pages.
Hollister, Female Urinary and Pouch and Male Urinary Pouch Brochure, 2011, 1 page.
Macaulay, et al., “A Noninvasive Continence Management System: Development and Evaluation of a Novel Toileting Device for Women”, The Wound, Ostomy and Continence Nurses Society, vol. 34 No. 6, 2007, pp. 641-648.
Newman, et al., “The Urinary Incontinence Sourcebook”, Petition for Interparties Review, 1997, 23 pages.
Newton, et al., “Measuring Safety, Effectiveness and Ease of Use of PureWick in the Management of Urinary Incontinence in Bedbound Women: Case Studies”, Jan. 8, 2016, 11 pages.
Sachtman, “New Relief for Pilots? It Depends”, Wired, https://www.wired.com/2008/05/pilot-relief/, 2008, 2 pages.
Advisory Action for U.S. Appl. No. 16/899,956 dated Jul. 9, 2021.
Advisory Action for U.S. Appl. No. 16/904,868 dated Jul. 2, 2021.
Advisory Action for U.S. Appl. No. 16/905,400 dated Jun. 9, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 15/612,325 dated Mar. 17, 2021.
Final Office Action for U.S. Appl. No. 16/904,868 dated Mar. 26, 2021.
Final Office Action for U.S. Appl. No. 16/905,400 dated Apr. 6, 2021.
Final Office Action for U.S. Appl. No. 17/088,272 dated May 25, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/061563 dated Feb. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/065234 dated Apr. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067451 dated Mar. 25, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067454 dated Mar. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067455 dated Mar. 26, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015787 dated May 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/023001 dated Jun. 21, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027061 dated Jul. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027104 dated Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027314 dated Jul. 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027913 dated Jul. 12, 2021.
Issue Notification for U.S. Appl. No. 14/952,591 dated Jul. 28, 2021.
Issue Notification for U.S. Appl. No. 15/612,325 dated Mar. 24, 2021.
Issue Notification for U.S. Appl. No. 29/624,661 dated Aug. 4, 2021.
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Jul. 22, 2021.
Notice of Allowance for U.S. Appl. No. 14/952,591 dated Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 14/952,591 dated Jul. 8, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Aug. 5, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Apr. 28, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Apr. 29, 2021.
Restriction Requirement for U.S. Appl. No. 16/478,180 dated May 25, 2021.
U.S. Appl. No. 17/330,657, filed May 26, 2021.
U.S. Appl. No. 17/378,015, filed Jul. 16, 2021.
U.S. Appl. No. 17/444,825, filed Aug. 10, 2021.
U.S. Appl. No. 62/938,447, filed Nov. 21, 2019.
U.S. Appl. No. 63/067,542, filed Aug. 19, 2020.
U.S. Appl. No. 63/165,273, filed Mar. 24, 2021.
U.S. Appl. No. 63/165,384, filed Mar. 24, 2021.
U.S. Appl. No. 63/171,165, filed Apr. 6, 2021.
U.S. Appl. No. 63/172,975, filed Apr. 9, 2021.
U.S. Appl. No. 63/181,695, filed Apr. 29, 2021.
U.S. Appl. No. 63/192,274, filed May 24, 2021.
U.S. Appl. No. 63/193,235, filed May 26, 2021.
U.S. Appl. No. 63/193,406, filed May 26, 2021.
U.S. Appl. No. 63/214,551, filed Jun. 24, 2021.
U.S. Appl. No. 63/214,570, filed Jun. 24, 2021.
U.S. Appl. No. 63/228,252, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,258, filed Aug. 2, 2021.
U.S. Appl. No. 63/230,894, filed Aug. 9, 2021.
Memorandum Order, Feb. 2021, 14 pgs.
Boehringer CareDry System—Second Generation for Non-lnvasive Urinary Management for Females, Mar. 2021, 3 pgs.
Hollister, “Retracted Penis Pouch by Hollister”, Vitality Medical.com, https://www.vitalitymedical.com/hollister-retracted-penis-pouch.html last accessed Jun. 24, 2020, 6 pages.
International Search Report and Written Opinion from International Application No. PCT/US2021/027422 dated Aug. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027425 dated Aug. 11, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027917 dated Aug. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/035181 dated Sep. 16, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,145 dated Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,258 dated Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/478,180 dated Oct. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 dated Oct. 5, 2021.
Non-Final Office Action for U.S. Appl. No. 17/330,657 dated Aug. 11, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Nov. 24, 2021.
Notice of Allowance for U.S. Appl. No. 17/330,657 dated Nov. 26, 2021.
U.S. Appl. No. 14/625,469, filed Feb. 28, 2015.
U.S. Appl. No. 14/947,759, filed Nov. 20, 2015.
U.S. Appl. No. 14/952,591, filed Nov. 25, 2015.
U.S. Appl. No. 15/612,325, filed Jun. 2, 2017.
U.S. Appl. No. 16/245,726, filed Jan. 11, 2019.
U.S. Appl. No. 17/446,256, filed Aug. 27, 2021.
U.S. Appl. No. 17/446,654, filed Sep. 1, 2021.
U.S. Appl. No. 17/447,123 filed Sep. 8, 2021.
U.S. Appl. No. 17/450,864, filed Oct. 14, 2021.
U.S. Appl. No. 17/451,345, filed Oct. 19, 2021.
U.S. Appl. No. 17/451,354, filed Oct. 19, 2021.
U.S. Appl. No. 17/453,560, filed Nov. 4, 2021.
U.S. Appl. No. 17/461,036, filed Aug. 30, 2021.
U.S. Appl. No. 17/501,591, filed Oct. 14, 2021.
U.S. Appl. No. 17/595,747, filed Nov. 23, 2021.
U.S. Appl. No. 61/955,537, filed Mar. 19, 2014.
U.S. Appl. No. 62/082,279, filed Nov. 20, 2014.
U.S. Appl. No. 62/084,078, filed Nov. 25, 2014.
U.S. Appl. No. 62/414,963, filed Oct. 31, 2016.
U.S. Appl. No. 62/485,578, filed Apr. 14, 2017.
U.S. Appl. No. 62/877,558, filed Jul. 23, 2019.
U.S. Appl. No. 63/047,374, filed Jul. 2, 2020.
U.S. Appl. No. 63/073,545, filed Sep. 2, 2020.
U.S. Appl. No. 63/238,457, filed Aug. 30, 2021.
U.S. Appl. No. 63/238,477, filed Aug. 30, 2021.
U.S. Appl. No. 63/241,562, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,564, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,575, filed Sep. 8, 2021.
U.S. Appl. No. 63/247,491, filed Sep. 23, 2021.
Advisory Action for U.S. Appl. No. 16/905,400 dated Feb. 16, 2022.
Corrected Notice of Allowability for U.S. Appl. No. 17/330,657 dated Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 16/904,868 dated Mar. 10, 2022.
Final Office Action for U.S. Appl. No. 16/905,400 dated Dec. 9, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/033064 dated Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033122 dated Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2021/015024 dated May 18, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/024162 dated Jul. 8, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/043893 dated Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/044699 dated Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/045188 dated Jan. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/047536 dated Dec. 23, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048661 dated Feb. 14, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/056566 dated Feb. 11, 2022.
Non-Final Office Action for U.S. Appl. No. 16/245,726 dated Jan. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/449,039 dated Dec. 8, 2021.
Non-Final Office Action for U.S. Appl. No. 29/741,751 dated Jan. 18, 2022.
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Mar. 4, 2022.
Notice of Allowance for U.S. Appl. No. 17/330,657 dated Mar. 16, 2022.
Restriction Requirement for U.S. Appl. No. 16/433,773 dated Dec. 7, 2021.
U.S. Appl. No. 15/384,196, filed Dec. 19, 2016.
U.S. Appl. No. 17/597,408, filed Jan. 5, 2022.
U.S. Appl. No. 17/597,673, filed Jan. 18, 2022.
U.S. Appl. No. 17/614,173, filed Nov. 24, 2021.
U.S. Appl. No. 17/631,619, filed Jan. 31, 2022.
U.S. Appl. No. 17/645,821, filed Dec. 23, 2021.
U.S. Appl. No. 17/646,771, filed Jan. 3, 2022.
U.S. Appl. No. 17/653,314, filed Mar. 3, 2022.
U.S. Appl. No. 17/653,920, filed Mar. 8, 2022.
U.S. Appl. No. 17/655,464, filed Mar. 18, 2022.
U.S. Appl. No. 62/853,279, filed May 28, 2019.
U.S. Appl. No. 62/864,656, filed Jun. 21, 2019.
U.S. Appl. No. 62/883,172, filed Aug. 6, 2019.
U.S. Appl. No. 62/935,337, filed Nov. 14, 2019.
U.S. Appl. No. 63/030,685, filed May 27, 2020.
U.S. Appl. No. 63/073,553, filed Sep. 2, 2020.
U.S. Appl. No. 63/124,271, filed Dec. 11, 2020.
U.S. Appl. No. 63/133,892, filed Jan. 5, 2021.
U.S. Appl. No. 63/138,878, filed Jan. 19, 2021.
U.S. Appl. No. 63/146,946, filed Feb. 8, 2021.
U.S. Appl. No. 63/159,186, filed Mar. 10, 2021.
U.S. Appl. No. 63/193,891, filed May 27, 2021.
U.S. Appl. No. 63/208,262, filed Jun. 8, 2021.
U.S. Appl. No. 63/215,017, filed Jun. 25, 2021.
U.S. Appl. No. 63/228,244, filed Aug. 2, 2021.
U.S. Appl. No. 63/246,972, filed Sep. 22, 2021.
U.S. Appl. No. 63/247,375, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,478, filed Sep. 23, 2021.
“Rising Warrior Insulated Gallon Jug Cover”, https://www.amazon.com/Rising-Warrior-Insulated-Sleeve, 2021, 2 pages.
“Urine Bag Cover-Catheter Bag Cover 2000 ml vol. Medline Style-Multiple Sclerosis-Spine Injury-Suprapublic Catheter-Bladder Incontinence”, https://www.etsy.eom/listing/1142934658/urine-bag-cover-caatheter-bag-cover-2000, 2022, 1 page.
“Vinyl Dust Cover, Janome #741811000, Janome, Sewing Parts Online”, https://www.sewingpartsonline.connivinyl-dust-cover-janonne-74181000, 2020, 2 pages.
Ali, “Sustainability Assessment: Seventh Generation Diapers versus gDiapers”, The University of Vermont, Dec. 6, 2011, pp. 1-31.
Advisory Action for U.S. Appl. No. 16/904,868 dated Jun. 15, 2022.
Final Office Action for U.S. Appl. No. 16/452,145 dated Mar. 25, 2022.
Final Office Action for U.S. Appl. No. 16/452,258 dated Jun. 14, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 dated Jun. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2020/057562 dated Jan. 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/026607 dated Jul. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048211 dated Dec. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/049404 dated Jan. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/051456 dated Jan. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/053593 dated Apr. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/055515 dated Jan. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/060993 dated Mar. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/062440 dated Mar. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011108 dated Apr. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011281 dated Apr. 25, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011419 dated Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/012794 dated May 3, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015471 dated May 16, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/016942 dated Jun. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018170 dated May 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019254 dated Jun. 7, 2022.
Issue Notification for U.S. Appl. No. 17/088,272 dated Jun. 15, 2022.
Issue Notification for U.S. Appl. No. 17/330,657 dated Jun. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 16/369,676 dated Mar. 31, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 dated Apr. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Apr. 27, 2022.
Notice of Allowance for U.S. Appl. No. 29/741,751 dated Jun. 9, 2022.
U.S. Appl. No. 17/394,055, filed Aug. 4, 2021.
U.S. Appl. No. 17/412,864, filed Aug. 26, 2021.
U.S. Appl. No. 17/453,260, filed Nov. 2, 2021.
U.S. Appl. No. 17/494,578, filed Oct. 5, 2021.
U.S. Appl. No. 17/654,156, filed Mar. 9, 2022.
U.S. Appl. No. 17/657,474, filed Mar. 31, 2022.
U.S. Appl. No. 17/661,090, filed Apr. 28, 2022.
U.S. Appl. No. 17/662,700, filed May 10, 2022.
U.S. Appl. No. 17/663,046, filed May 12, 2022.
U.S. Appl. No. 17/664,914 filed May 25, 222.
U.S. Appl. No. 17/749,340, filed May 20, 2022.
U.S. Appl. No. 17/754,736, filed Apr. 11, 2022.
U.S. Appl. No. 17/756,201, filed May 19, 2022.
U.S. Appl. No. 17/758,152, filed Jun. 29, 2022.
U.S. Appl. No. 17/758,316, filed Jul. 1, 2022.
U.S. Appl. No. 62/923,279, filed Oct. 18, 2019.
U.S. Appl. No. 62/926,767, filed Oct. 28, 2019.
U.S. Appl. No. 62/967,977, filed Jan. 30, 2020.
U.S. Appl. No. 63/008,112, filed Apr. 10, 2020.
U.S. Appl. No. 63/033,310, filed Jun. 2, 2020.
U.S. Appl. No. 63/071,821, filed Aug. 28, 2020.
U.S. Appl. No. 63/088,539, filed Oct. 7, 2020.
U.S. Appl. No. 63/094,646, filed Oct. 21, 2020.
U.S. Application No. 63/109,084 filed Nov. 3, 2020.
U.S. Application No. 63/159,280 filed Mar. 10, 2021.
U.S. Application No. 63/191,558 filed May 21, 2021.
U.S. Application No. 63/192,289 filed May 24, 2021.
U.S. Application No. 63/230,897 filed Aug. 9, 2021.
U.S. Application No. 63/299,208 filed Jan. 13, 2022.
Autumn, et al., “Frictional adhesion: a new angle on gecko attachment”, The Journal of Experimental Biology, 2006, pp. 3569-3579.
Cañas, et al., “Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces”, Acta Biomaterialia 8, 2012, pp. 282-288.
Chaudhary, et al., “Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes”, European Polymer Journal, 2015, pp. 432-440.
Dai, et al., “Non-sticky and Non-slippery Biomimetic Patterned Surfaces”, Journal of Bionic Engineering, Mar. 2020, pp. 326-334.
Espinoza-Ramirez, “Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application”, Journal of Biomaterials and Nanobiotechnology, pp. 78-101, 2019.
Hwang , et al., “Multifunctional Smart Skin Adhesive Patches for Advanced Health Care”, Adv. Healthcare Mater, 2018, pp. 1-20.
Jagota , et al., “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces”, Materials Science and Engineering, 2011, pp. 253-292.
Jeong , et al., “A nontransferring dry adhesive with hierarchical polymer nanohairs”, Pnas, Apr. 7, 2009, pp. 5639-5644.
Jeong , et al., “Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives”, Science Direct, 2009, pp. 335-346.
Karp , et al., “Dry solution to a sticky problem”, Nature., 2011, pp. 42-43.
Lee , et al., “Continuous Fabrication of Wide-Tip Microstructures for Bio-Inspired Dry Adhesives via Tip Inking Process”, Journal of Chemistry, Jan. 2, 2019, pp. 1-5.
Parness , et al., “A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality”, J.R. Soc. Interface, 2009, pp. 1223-1232.
Tsipenyuk , et al., “Use of biomimetic hexagonal surface texture in friction against lubricated skin”, Journal of the Royal Society—Interface, 2014, pp. 1-6.
Advisory Action for U.S. Appl. No. 16/452,258 dated Oct. 26, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 dated Sep. 21, 2022.
Final Office Action for U.S. Appl. No. 16/433,773 dated Oct. 25, 2022.
Final Office Action for U.S. Appl. No. 16/449,039 dated Aug. 1, 2022.
Final Office Action for U.S. Appl. No. 17/662,700 dated Sep. 30, 2022.
International Search Report and Written Opinion from International Application No. PCT/IB2021/057173 dated Nov. 5, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/039866 dated Oct. 7, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2022/011421 dated Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014285 dated Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015073 dated Sep. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015492 dated Apr. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015781 dated May 5, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019480 dated Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/021103 dated Jun. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/026667 dated Aug. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 17/662,700 dated Jul. 22, 2022.
Notice of Allowance for U.S. Appl. No. 16/905,400 dated Aug. 17, 2022.
Notice of Allowance for U.S. Appl. No. 17/461,036 dated Oct. 6, 2022.
U.S. Appl. No. 14/433,773, filed Apr. 3, 2020.
U.S. Appl. No. 17/759,697, filed Jul. 28, 2022.
U.S. Appl. No. 17/878,268, filed Aug. 1, 2022.
U.S. Appl. No. 17/907,125, filed Sep. 23, 2022.
U.S. Appl. No. 17/912,147, filed Sep. 16, 2022.
U.S. Appl. No. 17/929,887, filed Sep. 6, 2022.
U.S. Appl. No. 17/930,238, filed Sep. 7, 2022.
U.S. Appl. No. 17/933,590, filed Sep. 20, 2022.
U.S. Appl. No. 17/996,064, filed Oct. 12, 2022.
U.S. Appl. No. 17/996,155, filed Oct. 13, 2022.
U.S. Appl. No. 17/996,253, filed Oct. 14, 2022.
U.S. Appl. No. 17/996,468, filed Oct. 18, 2022.
U.S. Appl. No. 17/996,556, filed Oct. 19, 2022.
U.S. Appl. No. 62/967,158, filed Jan. 26, 2020.
U.S. Appl. No. 62/991,754, filed Mar. 19, 2020.
U.S. Appl. No. 63/241,328, filed Sep. 7, 2021.
Related Publications (1)
Number Date Country
20200306075 A1 Oct 2020 US
Continuations (1)
Number Date Country
Parent 15612325 Jun 2017 US
Child 16899956 US
Continuation in Parts (2)
Number Date Country
Parent 15238427 Aug 2016 US
Child 15612325 US
Parent 15221106 Jul 2016 US
Child 15238427 US