The present invention relates generally to communication networks and specifically to optimizing bandwidth utilization in a coordinated network based on a coaxial cable backbone.
Many structures, including homes, have networks based on coaxial cable (“coax”).
The Multimedia over Coax Alliance (“MoCA™”), provides at its website (www.mocalliance.org) an example of a specification (viz., that available under the trademark MoCA), which is hereby incorporated herein by reference in its entirety, for networking of digital information, including video information, through coaxial cable. The specification has been distributed to an open membership.
Technologies available under the trademark MoCA, and other specifications and related technologies (collectively, with MoCA, “the existing technologies”), often utilize unused bandwidth available on the coax. For example, coax has been installed in more than 70% of homes in the United States. Some homes have existing coax in one or more primary entertainment consumption locations such as family rooms, media rooms and master bedrooms. The existing technologies allow homeowners to utilize installed coax as a networking system for the acquisition and use of information with high quality of service (“QoS”).
The existing technologies may provide high speed (270 mbps), high QoS, and the innate security of a shielded, wired connection combined with packet-level encryption. Coax is designed for carrying high bandwidth video. Today, it is regularly used to securely deliver millions of dollars of pay-per-view and video content on a daily basis.
Existing technologies provide throughput through the existing coaxial cables to the places where the video devices are located in a structure without affecting other service signals that may be present on the cable.
The existing technologies work with access technologies such as asymmetric digital subscriber lines (“ADSL”), very high speed digital subscriber lines (“VDSL”), and Fiber to the Home (“FTTH”), which provide signals that typically enter the structure on a twisted pair or on an optical fiber, operating in a frequency band from a few hundred kilohertz to 8.5 MHz for ADSL and 12 MHz for VDSL. As services reach such a structure via any type of digital subscriber line (“xDSL”) or FTTH, they may be routed via the existing technologies and the coax to the video devices. Cable functionalities, such as video, voice and Internet access, may be provided to the structure, via coax, by cable operators, and use coax running within the structure to reach individual cable service consuming devices in the structure. Typically, functionalities of the existing technologies run along with cable functionalities, but on different frequencies.
The coax infrastructure inside the structure typically includes coax, splitters and outlets. Splitters typically have one input and two or more outputs and are designed to transmit signals in the forward direction (input to output), in the backward direction (output to input), and to isolate outputs from different splitters, thus preventing signals from flowing from one coax outlet to another. Isolation is useful in order to a) reduce interference from other devices and b) maximize power transfer from Point Of Entry (“POE”) to outlets for best TV reception.
Elements of the existing technologies are specifically designed to propagate backward through splitters (“insertion”) and from output to output (“isolation”). One outlet in a structure can be reached from another by a single “isolation jump” and a number of “insertion jumps.” Typically isolation jumps have an attenuation of 5 to 40 dB and each insertion jump attenuates approximately 3 dB. MoCA™-identified technology has a dynamic range in excess of 55 dB while supporting 200 Mbps throughput. Therefore MoCA™-identified technology can work effectively through a significant number of splitters.
Networks based on the existing technologies are often coordinated networks, in which a processing unit serves as a network coordinator. The coordinator defines medium access plan (“MAP”) cycles, prospectively assigns data transmission events to the cycles, and serially processes the cycles by executing or coordinating the events in each cycle. Coordinated network schemes, such as MoCA™-identified technology, may be used for transmission of streaming video and thus data throughput between outlets is desirable.
Data flow 100 has an average latency of three MAP cycles between the receipt of an Ethernet packet by transmitting node 104 and reception of the packet at receiving node 112. In existing technologies such as that identified by MoCA™ the nominal MAP cycle duration is 1 millisecond (“ms”), yielding a temporal latency of 3 ms. Such latency may limit the ability of the existing technologies to support time sensitive applications such as Ethernet AV (audiovisual) Bridging, including class 5 AVB data transfer.
It therefore would be desirable to provide systems and methods for reducing latency in coordinated networks.
It therefore also would be desirable to provide systems and methods for Ethernet AV bridging using shared media networks.
Systems and methods for reducing latency in coordinated networks, and for performing Ethernet AV bridging, are provided substantially as shown in and/or described in connection with at least one of the figures, and as set forth more completely in the claims.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, and in which:
Apparatus and methods for reducing latency in coordinated networks are provided in accordance with the principles of the invention. The apparatus and methods relate to a protocol that may be referred to herein as the Persistent Reservation Request (“p-RR”), which may be viewed as a type of RR (reservation request). In some embodiments of the invention, p-RR can reduce latencies, on average, to one MAP cycle or less. In some embodiments of the invention, a persistent reservation request may be used to facilitate Ethernet audiovisual bridging. Apparatus and methods of the invention may be used in connection with networks that are described in one or more of MoCA® Specifications v10, February 2006; MoCA® Specifications v1.1 Extensions, May 2007; and IEEE802.1 AVB WG Specifications, all of which are incorporated by reference herein in their entireties.
Methods in accordance with the principles of the invention may include a method for managing transmission of data over a shared media communication network. The method may include receiving from a node a first reservation request. The reservation request may request allocation of network resources for transmitting the data. The method may further include establishing a data flow based on the request, wherein the node transmits at least two data frames before a second reservation request is received. The flow may have a duration that is greater than the duration of one medium access plan cycle. The reservation request may include a traffic specification (“TSPEC”). Some embodiments of the invention may include canceling the flow based on information included in the traffic specification and/or canceling the flow based on the execution of a link maintenance operation (“LMO”) process. Some embodiments of the invention may include managing jitter by allocating network resources during only a portion of one or more MAP cycles.
An exemplary device in accordance with the principles of the invention may be configured to manage transmission of data over a shared media communication network. The device may include a receiver module configured to receive a first reservation request from a node in communication with the network; a processor module configured to allocate network resources based on the request; and a transmitter module configured to inform the node about a grant of the request. The grant may authorize the node to transmit at least two data frames before the node transmits a second reservation request.
Some methods in accordance with the principles of the invention may include providing Ethernet AV bridging using coordinated shared media networks. Those methods may include transmitting multicast information from a first node to a second node. The first node may reside in a packet mode network and the second node may reside in a packet-switched network. The method may include receiving at the first node a registration request from the second node. The registration request may request receipt of the multicast information and may include a TSPEC. The method may further include transmitting, via the first node, a reservation request to a network coordinator residing in the packet mode network. The reservation request may conform to the traffic specification.
Some methods for Ethernet AV bridging in accordance with the principles of the invention may include using a packet mode network to transmit data from a first packet-switched network segment to a second packet-switched network segment. The methods may include receiving the data from the first segment using a packet mode network ingress port and transmitting the data to the second segment using a packet mode network egress port.
The aforementioned MoCA 1.1 specification includes protocol pQoS (parameterized QoS), which supports parameterized QoS (Quality of Service) flow transactions over a network. In pQoS flow, a transmitting node sends a TSPEC admission request to a receiving node, as described in MoCA 1.1 section 4.2. After the request is accepted, a flow is created and data transmission between the transmitting and receiving nodes occurs in accordance with the protocol described above in connection with
In some embodiments of the invention, after a pQoS flow is created, the transmitting node may use the flow's TSPEC to generate a p-RR for the flow and send the p-RR to the network coordinator (“NC”). Table 1 shows illustrative information that may be included in the p-RR
In some embodiments, after the NC receives the p-RR, it can allocate to the transmitting node network resources for the flow based on the p-RR information, such as the leased time. In some embodiments, the p-RR may be allowed to persist (and is thus referred to as a “persistent grant” or “PG”) until a new p-RR for the same flow is received. When a node transmits exclusively audiovisual bridge traffic, and is operating under a persistent grant, there is no need to poll it frequently (every or almost every MAP CYCLE) as is usually done in MoCA 1.0 networks. This may reduce overhead and improve network throughput.
In response to the p-RR, the NC may allocate to the transmitting node a time-limited transmission opportunity. The time interval between consecutive transmission opportunities (viz., the “transmission (‘Tx’) service time”), could be significantly smaller than the MAP cycle duration to accommodate the requirements of specific time sensitive traffic moving over the network. In some embodiments, a maximum Tx service time may be 100 μs when the MAP cycle duration is 1 ms.
If an LMO process (MoCA 1.0 section 3.7) causes a change in the connection profile associated with the transmitting and receiving nodes, the transmitting node may send an updated p-RR. If the data rate between the transmitting and receiving nodes changes, for example, as a result of an LMO process, the transmitting node may renew its p-RR. If the transmitting node fails to renew its p-RR, the NC may, after a predetermined number of MAP cycles, discontinue p-RR grants for the flow and send to the transmitting node a new p-RR opportunity. The NC may allocate a p-RR opportunity to the transmitting node after each LMO process between the transmitting and the receiving nodes. The allocation of a p-RR opportunity after each LMO process may be conditioned on the time remaining before the leased time expires.
Packet switched network data streaming protocols (such as the stream reservation protocol (“SRP”) defined by IEEE standard 802.1Qat) often require registration by a listener node. The registration identifies to a talker node that the listener node desires to receive a data stream. After registration, such protocols require that the talker node transmit a reservation to reserve network resources along a path from talker to listener.
From bridge 412, registration 450 is propagated to talker 418. It will be appreciated that inter-node communications regarding registration, notification, reservation and other information may require suitable modification of the communications, but for the sake of clarity, such modifications are ignored in
When bridge 412 receives reservation message 470 from switch 416 (in packet switched network segment 406), bridge 412 may reject or accept reservation message 470. Bridge 412 may do so based on the availability of bridge 412 resources. Bridge 412 may query network coordinator 408 regarding the availability of resources in packet mode network segment 404. Network coordinator 408 may communicate reservation message 470 to bridge 410 along path 476. Bridge 410 may then propagate reservation message 470, via switch 414, to listener node 420.
The P802.1Qat SRP is a one-way declarative protocol with reservation messages propagated from the talker towards listeners. It typically contains no backward propagated acknowledgement or status report messages. If needed, a talker node could leverage higher layer applications for getting feedback from listeners. A talker can also simply initiate the reservation message and then wait enough time before starting data transmission to ensure that the stream data can be served appropriately.
A registration event may be initiated by a listener and passed by intermediate bridges, such as those of network segment 404. The talker node may be triggered by the registration event, which indicates that the listener node desires to establish a stream (data flow). Upon the registration event, the talker node may attempt to reserve the required resources in the local node and, for a shared media LAN, the talker may attempt to reserve resources on the LAN to which the talker node's egress port is attached. The talker may configure itself appropriately according to the local and LAN reservation message results. It then may record the result into the status information field of an updated reservation message and send the message toward the listener node.
SRP assumes that an admission control policy (which governs the disposition of a request by a node that resides in one network segment for network resources that reside in a different network segment) is implemented by a network segment egress port (e.g., switch 416, shown in
Reservation messages may be propagated over a subtree (e.g., a virtual LAN) by which the talker and listeners are connected. For each receiving bridge along the path from the talker to listeners, reservation messages can convey the result of resource reservation of the upstream bridges, and may trigger any necessary local or shared media LAN resource reservation operations.
In certain embodiments of the invention, a talker node, such as 418, may refresh a reservation message on a regular basis. Each listener, such as 420, may keep a timer which will timeout the registration request if there is no corresponding reservation message received during the timer period.
On receiving the first reservation message of a stream, some embodiments of the invention may allow a bridge to create a reservation record for the reservation message. The reservation record may contain information obtained from the reservation message. This information can include stream identifier, talker MAC address, traffic specification, upstream reservation status, reservation message inbound port and any other suitable information.
If a bridge, such as 412 (shown in
Because SRP is a one way declarative protocol, a failed reservation in an intermediate bridge will not influence any reservation that has been made upstream. Relevant listeners can receive reservation messages with negative reservation status. For example, a listener could choose to either withdraw the registration (e.g., by sending an update message corresponding to the registration), therefore releasing any unnecessary reserved resources, or keep the registration. By keeping the registration, the stream reservation can be made along the whole path when all necessary resources become available.
If the received reservation message carries a negative reservation status, the bridge can preferably configure its forwarding resources appropriately, update the per-hop resource details information in the reservation message, and then transmit the reservation message out of each registered egress port.
After a reservation record has been created, a bridge could later receive a reservation message that is inconsistent with the reservation record. While a discrepancy in the talker MAC address may be reported as an error and the reservation message rejected, a discrepancy in traffic specification, upstream reservation status, and reservation message inbound port may be accepted or rejected by the bridge based on predetermined policy.
For the sake of clarity, the foregoing description, including specific examples of parameters or parameter values, is sometimes specific to certain protocols such as those identified with the name MoCA™ and/or Ethernet protocols. However, this is not intended to be limiting and the invention may be suitably generalized to other protocols and/or other packet protocols. The use of terms that may be specific to a particular protocol such as that identified by the name MoCA™ or Ethernet to describe a particular feature or embodiment is not intended to limit the scope of that feature or embodiment to that protocol specifically; instead the terms are used generally and are each intended to include parallel and similar terms defined under other protocols.
It will be appreciated that software components of the present invention including programs and data may, if desired, be implemented in ROM (read only memory) form, including CD-ROMs, EPROMs and EEPROMs, or may be stored in any other suitable computer-readable medium such as but not limited to discs of various kinds, cards of various kinds and RAMs. Components described herein as software may, alternatively, be implemented wholly or partly in hardware, if desired, using conventional techniques.
Thus, systems and methods for compensating for managing transmission of data over a shared media communication network and for facilitating Ethernet audiovisual bridging have been provided. Persons skilled in the art will appreciate that the present invention can be practiced using embodiments of the invention other than those described, which are presented for purposes of illustration rather than of limitation. The present invention is limited only by the claims which follow.
This is a nonprovisional of U.S. Application No. 60/941,020, filed on May 31, 2007, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3836888 | Boenke et al. | Sep 1974 | A |
4413229 | Grant | Nov 1983 | A |
4536875 | Kume et al. | Aug 1985 | A |
4608685 | Jain et al. | Aug 1986 | A |
4893326 | Duran et al. | Jan 1990 | A |
5052029 | James et al. | Sep 1991 | A |
5170415 | Yoshida et al. | Dec 1992 | A |
5343240 | Yu | Aug 1994 | A |
5421030 | Baran | May 1995 | A |
5440335 | Beveridge | Aug 1995 | A |
5570355 | Dail et al. | Oct 1996 | A |
5638374 | Heath | Jun 1997 | A |
5671220 | Tonomura | Sep 1997 | A |
5796739 | Kim et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5805591 | Naboulsi et al. | Sep 1998 | A |
5805806 | McArthur | Sep 1998 | A |
5815662 | Ong | Sep 1998 | A |
5822677 | Peyrovian | Oct 1998 | A |
5822678 | Evanyk | Oct 1998 | A |
5845190 | Bushue et al. | Dec 1998 | A |
5850400 | Eames et al. | Dec 1998 | A |
5854887 | Kindell et al. | Dec 1998 | A |
5856975 | Rostoker et al. | Jan 1999 | A |
5877821 | Newlin et al. | Mar 1999 | A |
5886732 | Humpleman | Mar 1999 | A |
5896556 | Moreland et al. | Apr 1999 | A |
5917624 | Wagner | Jun 1999 | A |
5930493 | Ottesen et al. | Jul 1999 | A |
5963844 | Dail | Oct 1999 | A |
5982784 | Bell | Nov 1999 | A |
6009465 | Decker et al. | Dec 1999 | A |
6028860 | Laubach et al. | Feb 2000 | A |
6055242 | Doshi et al. | Apr 2000 | A |
6069588 | O'Neill, Jr. | May 2000 | A |
6081519 | Petler | Jun 2000 | A |
6081533 | Laubach et al. | Jun 2000 | A |
6111911 | Sanderford, Jr. et al. | Aug 2000 | A |
6118762 | Nomura et al. | Sep 2000 | A |
6157645 | Shobatake | Dec 2000 | A |
6167120 | Kikinis | Dec 2000 | A |
6192070 | Poon et al. | Feb 2001 | B1 |
6219409 | Smith et al. | Apr 2001 | B1 |
6229818 | Bell | May 2001 | B1 |
6243413 | Beukema | Jun 2001 | B1 |
6304552 | Chapman et al. | Oct 2001 | B1 |
6307862 | Silverman | Oct 2001 | B1 |
6434151 | Caves et al. | Aug 2002 | B1 |
6466651 | Dailey | Oct 2002 | B1 |
6481013 | Dinwiddie et al. | Nov 2002 | B1 |
6526070 | Bernath | Feb 2003 | B1 |
6553568 | Fijolek et al. | Apr 2003 | B1 |
6563829 | Lyles et al. | May 2003 | B1 |
6567654 | Coronel Arredondo et al. | May 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6622304 | Carhart | Sep 2003 | B1 |
6637030 | Klein | Oct 2003 | B1 |
6650624 | Quigley et al. | Nov 2003 | B1 |
6745392 | Basawapatna et al. | Jun 2004 | B1 |
6763032 | Rabenko et al. | Jul 2004 | B1 |
6785296 | Bell | Aug 2004 | B1 |
6816500 | Mannette et al. | Nov 2004 | B1 |
6831899 | Roy | Dec 2004 | B1 |
6836515 | Kay et al. | Dec 2004 | B1 |
6859899 | Shalvi et al. | Feb 2005 | B2 |
6862270 | Ho | Mar 2005 | B1 |
6877043 | Mallory et al. | Apr 2005 | B2 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6898210 | Cheng et al. | May 2005 | B1 |
6930989 | Jones, IV et al. | Aug 2005 | B1 |
6940833 | Jonas et al. | Sep 2005 | B2 |
6950399 | Bushmitch et al. | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6996198 | Cvetkovic | Feb 2006 | B2 |
7035270 | Moore et al. | Apr 2006 | B2 |
7065779 | Crocker et al. | Jun 2006 | B1 |
7089580 | Vogel et al. | Aug 2006 | B1 |
7116685 | Brown et al. | Oct 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7133697 | Judd et al. | Nov 2006 | B2 |
7142553 | Ojard et al. | Nov 2006 | B1 |
7146632 | Miller | Dec 2006 | B2 |
7149220 | Beukema et al. | Dec 2006 | B2 |
7194041 | Kadous | Mar 2007 | B2 |
7292527 | Zhou et al. | Nov 2007 | B2 |
7296083 | Barham et al. | Nov 2007 | B2 |
7327754 | Mills et al. | Feb 2008 | B2 |
7372853 | Sharma et al. | May 2008 | B2 |
7460543 | Malik et al. | Dec 2008 | B2 |
7487532 | Robertson et al. | Feb 2009 | B2 |
7532642 | Peacock | May 2009 | B1 |
7532693 | Narasimhan | May 2009 | B1 |
7555064 | Beadle | Jun 2009 | B2 |
7574615 | Weng et al. | Aug 2009 | B2 |
7606256 | Vitebsky et al. | Oct 2009 | B2 |
7652527 | Ido et al. | Jan 2010 | B2 |
7653164 | Lin et al. | Jan 2010 | B2 |
7664065 | Lu | Feb 2010 | B2 |
7675970 | Nemiroff et al. | Mar 2010 | B2 |
7697522 | Kliger et al. | Apr 2010 | B2 |
7742495 | Kliger et al. | Jun 2010 | B2 |
7782850 | Kliger et al. | Aug 2010 | B2 |
7783259 | Dessert et al. | Aug 2010 | B2 |
7817642 | Ma et al. | Oct 2010 | B2 |
7860092 | Yoon et al. | Dec 2010 | B2 |
7916756 | Atsumi et al. | Mar 2011 | B2 |
8090043 | Levi et al. | Jan 2012 | B2 |
8098770 | Shusterman | Jan 2012 | B2 |
8146125 | Grinkemeyer et al. | Mar 2012 | B2 |
8184550 | Beck et al. | May 2012 | B2 |
20010039660 | Vasilevsky | Nov 2001 | A1 |
20020010562 | Schleiss et al. | Jan 2002 | A1 |
20020021465 | Moore et al. | Feb 2002 | A1 |
20020059623 | Rodriguez et al. | May 2002 | A1 |
20020059634 | Terry et al. | May 2002 | A1 |
20020069417 | Kliger et al. | Jun 2002 | A1 |
20020078247 | Lu et al. | Jun 2002 | A1 |
20020078249 | Lu et al. | Jun 2002 | A1 |
20020097821 | Hebron et al. | Jul 2002 | A1 |
20020105970 | Shvodian | Aug 2002 | A1 |
20020136231 | Leathurbury | Sep 2002 | A1 |
20020141347 | Harp et al. | Oct 2002 | A1 |
20020150155 | Florentin et al. | Oct 2002 | A1 |
20020166124 | Gurantz et al. | Nov 2002 | A1 |
20020174423 | Fifield et al. | Nov 2002 | A1 |
20020194605 | Cohen et al. | Dec 2002 | A1 |
20030013453 | Lavaud et al. | Jan 2003 | A1 |
20030016751 | Vetro et al. | Jan 2003 | A1 |
20030022683 | Beckmann et al. | Jan 2003 | A1 |
20030060207 | Sugaya et al. | Mar 2003 | A1 |
20030063563 | Kowalski | Apr 2003 | A1 |
20030066082 | Kliger et al. | Apr 2003 | A1 |
20030099253 | Kim | May 2003 | A1 |
20030152059 | Odman | Aug 2003 | A1 |
20030169769 | Ho et al. | Sep 2003 | A1 |
20030193619 | Farrand | Oct 2003 | A1 |
20030198244 | Ho et al. | Oct 2003 | A1 |
20040004934 | Zhu et al. | Jan 2004 | A1 |
20040037366 | Crawford | Feb 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040107445 | Amit | Jun 2004 | A1 |
20040163120 | Rabenko et al. | Aug 2004 | A1 |
20040172658 | Rakib et al. | Sep 2004 | A1 |
20040177381 | Kliger et al. | Sep 2004 | A1 |
20040224715 | Rosenlof et al. | Nov 2004 | A1 |
20040258062 | Narvaez | Dec 2004 | A1 |
20050015703 | Terry et al. | Jan 2005 | A1 |
20050036466 | Malik et al. | Feb 2005 | A1 |
20050097196 | Wronski et al. | May 2005 | A1 |
20050152350 | Sung et al. | Jul 2005 | A1 |
20050152359 | Giesberts et al. | Jul 2005 | A1 |
20050175027 | Miller et al. | Aug 2005 | A1 |
20050204066 | Cohen et al. | Sep 2005 | A9 |
20050213405 | Stopler | Sep 2005 | A1 |
20060059400 | Clark et al. | Mar 2006 | A1 |
20060062250 | Payne, III | Mar 2006 | A1 |
20060078001 | Chandra et al. | Apr 2006 | A1 |
20060104201 | Sundberg et al. | May 2006 | A1 |
20060256799 | Eng | Nov 2006 | A1 |
20060256818 | Shvodian et al. | Nov 2006 | A1 |
20060268934 | Shimizu et al. | Nov 2006 | A1 |
20060280194 | Jang et al. | Dec 2006 | A1 |
20070025317 | Bolinth et al. | Feb 2007 | A1 |
20070040947 | Koga | Feb 2007 | A1 |
20070127373 | Ho et al. | Jun 2007 | A1 |
20070160213 | Un et al. | Jul 2007 | A1 |
20070171919 | Godman et al. | Jul 2007 | A1 |
20070183786 | Hinosugi et al. | Aug 2007 | A1 |
20070206551 | Moorti et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070253379 | Kumar et al. | Nov 2007 | A1 |
20070286121 | Kolakowski et al. | Dec 2007 | A1 |
20080037487 | Li et al. | Feb 2008 | A1 |
20080037589 | Kliger et al. | Feb 2008 | A1 |
20080080369 | Sumioka et al. | Apr 2008 | A1 |
20080089268 | Kinder et al. | Apr 2008 | A1 |
20080178229 | Kliger et al. | Jul 2008 | A1 |
20080189431 | Hyslop et al. | Aug 2008 | A1 |
20080212591 | Wu et al. | Sep 2008 | A1 |
20080225832 | Kaplan et al. | Sep 2008 | A1 |
20080238016 | Chen et al. | Oct 2008 | A1 |
20080271094 | Kliger et al. | Oct 2008 | A1 |
20080273591 | Brooks et al. | Nov 2008 | A1 |
20080279219 | Wu et al. | Nov 2008 | A1 |
20090063878 | Schmidt et al. | Mar 2009 | A1 |
20090092154 | Malik et al. | Apr 2009 | A1 |
20090106801 | Horii | Apr 2009 | A1 |
20090122901 | Choi et al. | May 2009 | A1 |
20090165070 | McMullin et al. | Jun 2009 | A1 |
20090217325 | Kliger et al. | Aug 2009 | A1 |
20090252172 | Hare | Oct 2009 | A1 |
20090254794 | Malik et al. | Oct 2009 | A1 |
20090257483 | French et al. | Oct 2009 | A1 |
20090285212 | Chu et al. | Nov 2009 | A1 |
20090296578 | Bernard et al. | Dec 2009 | A1 |
20090316589 | Shafeeu | Dec 2009 | A1 |
20100031297 | Klein et al. | Feb 2010 | A1 |
20100080312 | Moffatt et al. | Apr 2010 | A1 |
20100150016 | Barr | Jun 2010 | A1 |
20100158013 | Kliger et al. | Jun 2010 | A1 |
20100158015 | Wu | Jun 2010 | A1 |
20100158021 | Kliger et al. | Jun 2010 | A1 |
20100158022 | Kliger et al. | Jun 2010 | A1 |
20100162329 | Ford et al. | Jun 2010 | A1 |
20100174824 | Aloni et al. | Jul 2010 | A1 |
20100185731 | Wu | Jul 2010 | A1 |
20100185759 | Wu | Jul 2010 | A1 |
20100238932 | Kliger et al. | Sep 2010 | A1 |
20100246586 | Ohana et al. | Sep 2010 | A1 |
20100254278 | Kliger et al. | Oct 2010 | A1 |
20100254402 | Kliger et al. | Oct 2010 | A1 |
20100281195 | Daniel et al. | Nov 2010 | A1 |
20100284474 | Kliger et al. | Nov 2010 | A1 |
20100290461 | Kliger et al. | Nov 2010 | A1 |
20100322134 | Wu | Dec 2010 | A1 |
20110013633 | Klein et al. | Jan 2011 | A1 |
20110080850 | Klein et al. | Apr 2011 | A1 |
20110205891 | Kliger et al. | Aug 2011 | A1 |
20110310907 | Klein et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1422043 | Jun 2003 | CN |
1588827 | Aug 2004 | CN |
0 385695 | Sep 1990 | EP |
0 622926 | Nov 1994 | EP |
1501326 | Jan 2005 | EP |
60160231 | Aug 1985 | JP |
WO 9827748 | Jun 1998 | WO |
WO 9831133 | Jul 1998 | WO |
WO 9935753 | Jul 1999 | WO |
WO 9946734 | Sep 1999 | WO |
WO 0031725 | Jun 2000 | WO |
WO 0055843 | Sep 2000 | WO |
WO 0180030 | Oct 2001 | WO |
WO 0219623 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080298241 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60941020 | May 2007 | US |