Claims
- 1. An annuloplasty ring for repairing a cardiac valve, said annuloplasty ring comprising:
an expandable support member having oppositely disposed proximal and distal end portions and a main body portion between said end portions, said proximal end portion of said support member comprising a plurality of wing members that extend from said main body portion; and each of said wing members including at least one hook member for embedding into a cardiac wall and the annulus of the cardiac valve to secure said annuloplasty ring in the annulus.
- 2. The annuloplasty ring of claim 1 wherein said hook members, when embedded into the cardiac wall and the valve annulus, extend distally from said wing members.
- 3. The annuloplasty ring of claim 1 wherein said main body portion has a concave cross-sectional shape for conforming to the convex shape of the valve annulus.
- 4. The annuloplasty ring of claim 3 wherein each of said wing members has a concave cross-sectional shape for conforming to the convex shape of the valve annulus.
- 5. The annuloplasty ring of claim 4 wherein said main body portion and said wing members are resiliently bendable from said concave cross-sectional shapes into flatter cross-sectional shapes for delivery and placement of said annuloplasty ring.
- 6. The annuloplasty ring of claim 5 further comprising a constraining wire for temporarily holding said wing members in said flatter cross-sectional shape, said hook members extending generally radially when said wing members are being held in said flatter cross-sectional shape by said constraining wire.
- 7. The annuloplasty ring of claim 6 wherein said hook members are resiliently bendable to extend proximally inside a delivery capsule during delivery of said annuloplasty ring into the valve annulus.
- 8. The annuloplasty ring of claim 1 further comprising a layer of biocompatible material covering at least a portion of said distal end portion and said main body portion of said support member.
- 9. The annuloplasty ring of claim 1 wherein said support member is made from a shape memory material that is responsive to changes in temperature above and below a predetermined temperature transition range, said support member having a first configuration when the temperature is below said predetermined temperature transition range, said support member having a second configuration when heated above said predetermined temperature transition range.
- 10. The annuloplasty ring of claim 9 wherein said support member is insertable into the annulus of the cardiac valve in said first configuration and is thereafter heatable above said predetermined temperature transition range to change said support member into said second configuration, wherein movement of said support member into said second configuration causes a reduction in size of the opening defined by the valve annulus.
- 11. The annuloplasty ring of claim 1 wherein said support member is expandable by an inflatable balloon so that said annuloplasty ring engages the annulus of the cardiac valve.
- 12. An apparatus for repairing a cardiac valve, said apparatus comprising:
an annuloplasty ring including an expandable support member having oppositely disposed proximal and distal end portions and a main body portion between said end portions, said proximal end portion of said support member comprising a plurality of wing members that extend from said main body portion; each of said wing members including at least one hook member for embedding into a cardiac wall and the valve annulus to secure said annuloplasty ring in the annulus of the cardiac valve; and an inflatable balloon for expanding said support member so that said annuloplasty ring engages the annulus of the cardiac valve.
- 13. The annuloplasty ring of claim 12 wherein said hook members, when embedded into the cardiac wall and the valve annulus, extend distally from said wing members.
- 14. The apparatus of claim 12 wherein said main body portion has a concave cross-sectional shape for conforming to the convex shape of the valve annulus.
- 15. The apparatus of claim 14 wherein each of said wing members has a concave cross-sectional shape for conforming to the convex shape of the valve annulus.
- 16. The apparatus of claim 15 where said main body portion and said wing members are resiliently bendable from said concave cross-sectional shapes into flatter cross-sectional shapes for delivery and placement of said annuloplasty ring.
- 17. The apparatus of claim 16 further comprising a constraining wire for temporarily holding said wing members in said flatter cross-sectional shape, said hook members extending generally radially when said wing members are being held in said flatter cross-sectional shape by said constraining wire.
- 18. The apparatus of claim 17 wherein said hook members are resiliently bendable to extend proximally inside a delivery capsule during delivery of said annuloplasty ring into the valve annulus.
- 19. The apparatus of claim 12 further comprising a layer of biocompatible material covering at least a portion of said distal end portion and said main body portion of said support member.
- 20. The apparatus of claim 12 wherein said support member is made from a shape memory material that is responsive to changes in temperature above and below a predetermined temperature transition range, said support member having a first configuration when the temperature is below said predetermined temperature transition range, said support member having a second configuration when heated above said predetermined temperature transition range.
- 21. The apparatus of claim 20 wherein said support member is insertable into the annulus of the cardiac valve in said first configuration and is thereafter heatable above said predetermined temperature transition range to change said support member into said second configuration, wherein movement of said support member into said second configuration causes a reduction in size of the opening defined by the valve annulus.
- 22. The apparatus of claim 12 wherein said balloon has an hourglass shape defined by first and second bulb sections connected by a center section having a smaller diameter than said bulb sections, said annuloplasty ring being positioned about said center section.
- 23. A method for repairing a cardiac valve, said method comprising the steps of:
providing an annuloplasty ring having an expandable support member; placing the annuloplasty ring around an inflatable balloon in a secured manner; inserting the balloon and annuloplasty ring into an atrial chamber; advancing the balloon until the annuloplasty ring is positioned within the annulus of the cardiac valve to be repaired; expanding the support member with the balloon so that the annuloplasty ring engages the annulus of the cardiac valve to secure the annuloplasty ring in the annulus; securing the annuloplasty ring in the valve annulus; collapsing the balloon; and removing the balloon from the atrial chamber.
- 24. The method of claim 23 wherein the balloon has an hourglass shape defined by first and second bulb sections connected by a center section having a smaller diameter than the bulb sections, said step of placing the annuloplasty ring around the balloon further comprising the step of positioning the annuloplasty ring about the center section.
- 25. The method of claim 24 wherein said step of advancing the balloon until the annuloplasty ring is positioned within the valve annulus further includes the step of positioning the first bulb section within the leaflets of the native valve so that when the balloon is inflated the first bulb pushes the valve leaflets back to protect the leaflets during expansion of the support member.
- 26. The method of claim 23 wherein said support member has oppositely disposed proximal and distal end portions connected by a main body portion that has a concave cross-sectional shape, said step of expanding the support member with the balloon so that the annuloplasty ring engages the annulus of the cardiac valve includes the step of conforming the concave main body portion to the convex shape of the valve annulus to help locate and secure the annuloplasty ring in the valve annulus.
- 27. The method of claim 26 wherein the proximal end portion of the support member comprises a plurality of wing members that extend from the main body portion, each of the wing members including at least one resiliently bendable hook member extending from each of the wing members, said method further including the step of embedding the hook members into a cardiac wall and the valve annulus to further secure the annuloplasty ring in the valve annulus.
- 28. The method of claim 27 wherein each of the wing members has a concave cross-sectional shape for conforming to the convex shape of the valve annulus, said method further comprising the step of pulling the wing members into a flatter cross-sectional shape with a constraining wire for placement of the annuloplasty ring, the hook members extending generally radially when the wing members are being held by the constraining wire.
- 29. The method of claim 28 further comprising the step of bending the hook members to extend proximally inside a delivery capsule for delivery of the annuloplasty ring.
- 30. The method of claim 28 further comprising the step of releasing the constraining wire after said step of expanding the support member with the balloon so that the wing members bend radially outward to position the hook members above the valve annulus for embedding into the cardiac wall and the valve annulus.
- 31. The method of claim 30 wherein said step of releasing the constraining wire causes the hook members to embed into the cardiac wall in the distal direction.
- 32. The method of claim 23 wherein the support member is made from a shape memory material that is responsive to changes in temperature above and below a predetermined temperature transition range, the support member having a first configuration when the temperature is below the predetermined temperature transition range and a second configuration when heated above the predetermined temperature transition range, said method further including the step of cooling the support member prior to inserting the annuloplasty ring into the annulus of the cardiac valve in order to place the support in the first configuration.
- 33. The method of claim 32 further comprising the step of heating the support member above the predetermined temperature transition range so that the support member changes into the second configuration.
- 34. The method of claim 33 wherein said step of heating the support member is done following said step of expanding the support member with the balloon, said step of heating the support member contracts the annuloplasty ring and thereby restricts the valve annulus to support the annulus and correct valvular insufficiency.
- 35. The method of claim 33 wherein said step of heating is accomplished by exposing the support member to body temperature.
- 36. The method of claim 23 wherein said step of inserting the balloon and annuloplasty ring into the atrial chamber is done percutaneously via an intravascular catheter.
RELATED APPLICATIONS
[0001] This application claims priority from U.S. provisional patent application Ser. No. 60/472,030, filed on May 20, 2003, and U.S. provisional patent application Ser. No. 60/547,416, filed on Feb. 26, 2004. The subject matter of the above-listed provisional patent applications is incorporated herein by reference.
Provisional Applications (2)
|
Number |
Date |
Country |
|
60472030 |
May 2003 |
US |
|
60547416 |
Feb 2004 |
US |