This invention concerns devices for use in repairing aneurysms, especially of the abdominal aorta.
An aneurysm occurs when an arterial wall becomes weakened to the extent that the weakened section balloons under pressure from the blood flowing through the artery. An aneurysm can lead to fatality if it ruptures causing rapid loss of blood.
An aortic aneurysm can be repaired by an endovascular repair procedure, in which a graft is inserted into the aneurysm via the femoral artery effectively to take the blood flow and to isolate the aneurysm. There are three forms of aortic endograft in current usage. The first is a straight stented tube graft. This may be used when there are adequate proximal and distal aortic necks for graft implantation. The tube may be stented at each end for support and to provide pins or hooks for embedding into the arterial wall to secure the tube in place. Alternatively, the tube may be stented throughout its length, such as by means of a metal wire stent. This form of endograft is used most commonly to repair aneurysms of the thoracic aorta.
An alternative construction of graft is a bifurcated tube for use in a patient with an abdominal aortic aneurysm where there is inadequate distal aortic neck but appropriate iliac artery configurations.
The third variation of endovascular graft is an aortouniliac graft, in which the tube extends from the proximal aortic neck into one of the iliac arteries. With this configuration an extraanatomic femofemoral bypass graft with a contralateral occlusion device in the common iliac artery is required. This device may be used when significant aneurismal disease is present in the contralateral iliac artery, precluding successful bifurcated graft placement.
A problem with such grafts is that over time, even over a period of two years, the graft can slip due to wear and tear on the stents, the effect of pulsatile blood flow through the tube and changes in the morphology of the arteries. The blood flow effect can be exaggerated as the graft slips and is able to bend and flex. Thus over time the integrity of the graft and isolation of the aneurysm can be compromised.
Another problem with stented grafts is that the twisting or flexing of the graft can cause fatigue in the metal stent. Such fatigue leads to fracturing of the stent wire and the resultant wire ends can pierce the graft material. Holes in the graft material mean that the aneurysm is no longer isolated from the blood flow.
Such grafts are generally used in a planned manner with the graft being selected for a specific patient according to precise pre-operative measurement of the aorta and adjacent arteries. Therefore, such grafts are not readily suited for use in repairing a ruptured aneurysm, where an emergency procedure is required simply to prevent death.
An object of this invention is to provide a device for use in repairing aneurysms that does not suffer from the above-mentioned disadvantages.
According to this invention there is provided a device for repairing an aneurysm by deployment within the aneurysm, the device comprising a graft tube, at least part thereof having an inflatable wall, whereby the tube can be deployed in an artery and be inflated to contact at least part of the arterial wall.
The term arterial wall may include arterial wall that is undamaged and/or aneurysm wall.
Graft tubes of the invention may be made of any suitable biologically compatible material and especially of plastics material.
Graft devices of the invention may be straight tubes or bifurcated tubes for use depending on the position and size of the aneurysm, i.e. for deployment in a similar manner to conventional endograft graft tubes. The graft tube of this embodiment may be one that narrows from one end to the other for use in aortouniliac grafting. The device of the invention may have an inflatable wall along its entire length or the device may have one or more discrete inflatable sections, especially at one or more ends of the tube.
Preferably the inflatable wall of the graft tube has an inner wall and an outer wall that is expandable in preference to the inner wall. The inner wall may be reinforced compared to the outer wall. Reinforcements of the inner wall may be, for example, by means of hoops, cages or mesh. Reinforcements may be of metal or plastics. Suitable metal reinforcement materials include stainless steel and nickel-titanium alloy. Suitable plastics reinforcement materials include inert polymers, such as, for example, polytetrafluoroethylene. Alternatively, the inner wall may be of a different material to the outer wall or may be of the same material but of different thickness to achieve the desired effect of the outer wall expanding upon inflation in preference to the inner wall with the inner wall substantially retaining its shape. The inflatable wall of the tube is preferably inflated by insertion of a settable material. Preferably the material is introduced as a liquid and sets to a solid or semi-solid state. The inflating material used will be biologically compatible and may, for example, be based on collagen or temperature/pH sensitive hydrogels, such as N-isopropyl acrylamide. It is possible that for stented graft tubes the inflating material need only set to a pliable condition. However, if the graft tube of the invention is to be deployed using a balloon to prevent an un-reinforced inner wall collapsing while the inflatable wall is being inflated, the inflating material may need to set to a relatively rigid condition.
The tube may be deployed in an aneurysm by inflating the tube, so that at least at the proximal artery position and ideally also at the distal artery position the tube grips the walls of the artery where there is no wall damage and between those positions the outer wall of the tube expands to contact the walls of the aneurysm and thereby support the aneurysm against flexing.
In one embodiment of the invention, a graft tube for use in repairing arterial aneurysms may have a first part with an inflatable wall to fit into the neck of the artery above an aneurysm. The remainder of the graft can be a straight, tapered or bifurcated tube.
Grafts of the invention may be deployed in an aortic aneurysm by means of conventional endovascular techniques. Typically, a guide wire is inserted through the femoral artery to extend beyond the aneurysm and the graft is guided into position along the wire. A narrow tube for inflating the twin walled part of the graft will be incorporated into the graft, one end of which will be accessible for the purpose of injection within the access wound in the groin. Once inflated to a desired extent the inflation tube is sealed.
Additionally or alternatively, a graft according to the invention may be deployed with the aid of an inflatable deployment balloon. Thus, a graft of the invention may be positioned in an aneurysm in collapsed form mounted on a deflated deployment balloon. The deployment balloon can then be inflated to seal the graft to the arterial wall above and below the aneurysm before the outer part of the graft is inflated by means of the settable material to conform to the anatomy of the aneurysm. Finally, the deployment balloon is deflated and withdrawn.
This invention will now be further described, by way of example only, with reference to the accompanying drawings, in which:
Referring to
When there is inadequate aortic tissue below an aortic aneurysm for attachment of a graft as shown in
If there is significant aneurismal disease in the contralateral iliac artery, which precludes use of a bifurcated graft of the type shown in
Turning now to
The outer wall 104 is relatively expandable compared to the inner wall 102. Both walls may be of the same material but the inner wall reinforced, so that upon inflation, the outer wall expands to contact the aneurysm wall, as shown in
The graft 100 can be deployed in a similar manner to the graft shown in
The inflating material is preferably a biocompatible material and may, for example, be based on collagen or temperature/pH sensitive hydrogels, such as N-isopropyl acrylamide. Preferably the inflating material is one that can be introduced as a liquid but which sets to from a pliable mass, such as in the nature of a gel. Once sufficient inflating material is introduced into the graft, possibly through a valve, the inflated graft is sealed.
In
In
Turning to
The endograft 200 is delivered into aorta 206 in a collapsed state mounted over an inflatable deployment balloon 208. Once the endograft is in position, the deployment balloon is inflated to expand the graft to form seals at the anastomoses 210, 212 and 214 of the aorta and iliac arteries (see
Fixation of the endograft can then be enhanced by placement of stents (with or without barbs or hooks), which secure the upper and lower extremities of the graft to the surrounding arterial wall.
Advantages of grafts according to the invention include the possibility of rapid deployment, which, in the case of a ruptured aneurysm is vital, because the graft does not have to be designed for a particular patient. The ability to inflate the graft to fix it in place means that the same type of graft can be used in a variety of cases. The gel material used to inflate the device, by filling the aneurysm sac, will stabilize the endograft and prevent buckling, migration and leaking over time. The effects of post-operative changes in the morphology of the aneurysm sac and adjacent blood vessels will also be minimized with improved long-term stability of the repair.
Another possible advantage of graft devices of the invention is that they can be deployed without the need for stents, which means that the stent fatigue problem can be avoided.
The endografts of the invention are primarily intended for planned treatment of aneurysms but may also be used for emergency sealing of a ruptured aneurysm as a holding maneuver to stabilize a critically ill patient. Extensions and modifications may be made at a later date using additional inflatable or conventional endografts overlapping within the lumen of the first inflatable endograft using the “trombone” technique.
Inflated devices of the invention can seal aortic side branches and thereby completely isolate an aneurysm from systemic blood pressure.
Number | Date | Country | Kind |
---|---|---|---|
0114918.6 | Jun 2001 | GB | national |
This application is a continuation of prior U.S. patent application Ser. No. 12/616,928 filed Nov. 12, 2009, which is a continuation of prior U.S. patent application Ser. No. 10/481,386 filed Dec. 19, 2003, which claims priority from International Application No. PCT/GB02/02750 filed Jun. 17, 2002 and from Great Britain patent application No. 0114918.6 filed Jun. 19, 2001, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5122154 | Rhodes | Jun 1992 | A |
5330528 | Lazim | Jul 1994 | A |
5534024 | Rogers et al. | Jul 1996 | A |
5665117 | Rhodes | Sep 1997 | A |
5693088 | Lazarus | Dec 1997 | A |
5785679 | Abolfathi et al. | Jul 1998 | A |
5827321 | Roubin et al. | Oct 1998 | A |
6312462 | McDermott et al. | Nov 2001 | B1 |
6312463 | Rourke et al. | Nov 2001 | B1 |
6319276 | Holman | Nov 2001 | B1 |
6827735 | Greenberg | Dec 2004 | B2 |
7481821 | Fogarty | Jan 2009 | B2 |
7530988 | Evans et al. | May 2009 | B2 |
7682383 | Robin | Mar 2010 | B2 |
8231665 | Kim | Jul 2012 | B2 |
8231666 | Kim | Jul 2012 | B2 |
8262686 | Fogarty | Sep 2012 | B2 |
8535367 | Kim | Sep 2013 | B2 |
8562636 | Fogarty | Oct 2013 | B2 |
8562662 | Kim et al. | Oct 2013 | B2 |
8647377 | Kim | Feb 2014 | B2 |
8814928 | Robin | Aug 2014 | B2 |
8936633 | Kim et al. | Jan 2015 | B2 |
9005235 | Fogarty et al. | Apr 2015 | B2 |
20020026217 | Baker et al. | Feb 2002 | A1 |
20030220666 | Mirigian et al. | Nov 2003 | A1 |
20040210249 | Fogarty et al. | Oct 2004 | A1 |
20060292206 | Kim et al. | Dec 2006 | A1 |
20070050008 | Kim et al. | Mar 2007 | A1 |
20070055355 | Kim et al. | Mar 2007 | A1 |
20070061005 | Kim et al. | Mar 2007 | A1 |
20090105748 | Fogarty et al. | Apr 2009 | A1 |
20120303108 | Fogarty et al. | Nov 2012 | A1 |
20120330343 | Kim et al. | Dec 2012 | A1 |
20130261724 | Kim et al. | Oct 2013 | A1 |
20140081374 | Kim et al. | Mar 2014 | A1 |
20140088690 | Fogarty et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 9107927 | Jun 1991 | WO |
WO 9709008 | Mar 1997 | WO |
WO 9719653 | Jun 1997 | WO |
WO-0051522 | Sep 2000 | WO |
WO 0121107 | Mar 2001 | WO |
WO 0121108 | Mar 2001 | WO |
WO-0166038 | Sep 2001 | WO |
WO-2004043241 | May 2004 | WO |
WO-2004045393 | Jun 2004 | WO |
Entry |
---|
WO 01/21108 A1, Dehdashtian et al, Mar. 2001. |
European Search Opinion dated Mar. 20, 2013 for European Patent Application No. 10 011 024.6. |
European Search Report dated Mar. 12, 2013 for European Patent Application No. 10 011 024.6. |
Examination Report dated Jun. 9, 2015 for European Patent Application No. 10 011 024.6. |
International Preliminary Examination Report dated Jun. 8, 2003 for PCT Application No. PCT/GB02/02750. |
International Search Report dated Jul. 11, 2002 for PCT Application No. PCT/GB02/02750. |
Notice of Allowance dated Apr. 23, 2014 for U.S. Appl. No. 12/616,928. |
Notice of Allowance dated Jul. 24, 2009 for U.S. Appl. No. 10/481,386. |
Response to First Written Opinion dated Jul. 2, 2003 for PCT/GB02/02750. |
U.S. Office Action dated Aug. 20, 2007 for U.S. Appl. No. 10/481,386. |
U.S. Office Action dated Jan. 17, 2014 for U.S. Appl. No. 12/616,928. |
U.S. Office Action dated Jun. 13, 2013 for U.S. Appl. No. 12/616,928. |
U.S. Office Action dated Jun. 8, 2012 for U.S. Appl. No. 12/616,928. |
U.S. Office Action dated May 26, 2006 for U.S. Appl. No. 10/481,386. |
U.S. Office Action dated Sep. 19, 2005 for U.S. Appl. No. 10/481,386. |
Written Opinion dated Apr. 3, 2003 for PCT Application No. PCT/GB02/02750. |
European Examination Report for EP Application No. 02 730 505.1, dated Oct. 14, 2015. |
Piechota-Polanczyk, Aleksandra et al., “The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment,” Frontiers in Cardiovascular Medicine, vol. 2, Article 19, May 26, 2015. |
Summons to attend oral proceedings dated Jul. 1, 2016, from EP application No. 02730505.1. |
Number | Date | Country | |
---|---|---|---|
20150012081 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12616928 | Nov 2009 | US |
Child | 14330812 | US | |
Parent | 10481386 | US | |
Child | 12616928 | US |