The present inventions relate to apparatus and methods for retracting an ablation balloon within the distal end of a sheath.
Atrial fibrillation is a condition in which the upper chambers of the heart beat rapidly and irregularly. The current standard of care for treating atrial fibrillation is to administer drugs in order to maintain normal sinus rhythm and/or to decrease ventricular rhythm. Drug treatments, however, may not be sufficiently effective or tolerated by AF patients, warranting additional measures such as cardiac tissue ablation to mitigate the arrhythmia.
Known ablation procedures for treating atrial fibrillation include performing catheter ablation to electrically isolate (i.e. disconnect) the pulmonary veins from the left atrium (LA), create linear lesions (lines of block) in the LA, and target sites of complex fractionation-using radio frequency (RF) energy. Transmural ablation involves ablating cardiac tissue, thereby forming lesions to eliminate the triggers for AF and to break up circuits believed to maintain atrial fibrillation. Such transmural ablation procedures may be endocardial, i.e., performed from inside the atria or ventricles accessed through the veins or arteries of the patient, or epicardial, i.e., performed in the pericardial space through the external surface of the heart using devices introduced through ports in the patient's chest.
While RF transmural ablation has been used effectively in the past, cryogenic ablation has received increased attention for treatment of atrial fibrillation because of the safety benefits of this energy source. Such safety benefits include reduced risk of thrombus/char, reduced risk of damage to collateral structures such as the esophagus, reduced risk of PV stenosis, and the like. One known endocardial cryo-ablation procedure involves inserting a point cryo-ablation catheter through a delivery sheath and into the heart, e.g., delivered percutaneously through the leg of the patient into the femoral vein. Once properly positioned, the tip of the catheter is cooled to a sufficiently low temperature by use of a liquid coolant or refrigerant such as nitrous oxide, e.g., to sub-zero temperatures of about −75° C., in order to freeze tissue believed to conduct signals that cause atrial fibrillation. The frozen tissue eventually dies so that the ablated tissue no longer conducts electrical impulses that are believed to cause or conduct atrial fibrillation signals.
Certain known endocardial cryo-ablation devices include expandable balloons, which are inflated with the liquid coolant or refrigerant. After the ablation is performed, and before the device is withdrawn from the patient, the balloon may be deflated and retracted into the delivery sheath. However, after inflating the balloon, performing the ablation procedure, and deflating the balloon, a user may encounter difficulties in retracting the deflated balloon into the sheath due to the balloon having a profile that is too large to re-enter the sheath. In particular, prior to inflation, the balloon profile is at its smallest, but after inflation, the balloon may deflate into an unpredictable profile and may bunch up at the tip of the sheath during attempts to retract the balloon into the sheath. Thus, increased force is required to retract the deflated balloon, thereby potentially damaging the balloon during the retraction procedure.
In one embodiment of the inventions disclosed herein, a tissue ablation system includes a catheter. An elongated member (e.g., a guide wire shaft defining its own lumen) extends through the catheter, with a distal end of the elongated member extending out of a distal end opening of the catheter. An expandable balloon, e.g., a cryo-ablation balloon, has a proximal end fixed to the distal end of the catheter (surrounding the distal end opening), and a distal end fixed to the elongated member, such that rotation of the elongated member relative to the catheter causes the expandable balloon to wrap around the elongated member.
A proximal end of the catheter is preferably coupled to a handle having actuator mechanism, e.g., a slidable knob or thumb ring, mounted thereto, wherein movement of the actuator causes corresponding rotation of the elongated member relative to the catheter. For example, the actuator may be configured for being rotationally displaced relative to the handle and/or axially displaced relative to the handle. The actuator may be directly coupled to the elongated member, or indirectly coupled through a planetary gear system or a set of beveled gears, by way of non-limiting examples. An automatic return mechanism (e.g., a spring) may optionally be associated with the actuator and configured for causing the actuator to return the elongated member to a certain position relative to the catheter in the absence of any external force being applied to the actuator.
The elongated member and catheter body may also be configured for relative axial displacement in addition to (or as an alternative to) rotational displacement, so that the balloon is elongated or compressed by moving the elongated member axially relative to the catheter. For example, the proximal end of the catheter may be fixed to a handle, and the proximal end of the elongated member may be threadedly engaged within the handle, such that rotation of the elongated member relative to the catheter axially displaces the elongated member relative to catheter. In one embodiment, a threaded boss may be mounted to the proximal end of the elongated body, and a threaded collar may be mounted within the handle around the threaded boss. Alternatively, the proximal end of the elongated member may be affixed to the handle, and the proximal end of the catheter may be threadedly engaged within the handle.
The tissue ablation system includes or is otherwise used with a delivery sheath having a lumen through which the catheter is deployed into the patient's heart, with the (deflated) balloon sized and configured for being extended out of, and retracted back into, a distal end opening of the sheath. In use, the catheter is advanced through the delivery sheath lumen until the (deflated) balloon is deployed out of the distal sheath opening, e.g., into a heart chamber. The balloon is then expanded and used to perform the tissue ablation procedure, e.g., ablating one or more target tissue sites in the heart chamber. Thereafter, the balloon is deflated, and the elongated member is rotated relative to the catheter so that the balloon is at least partially wrapped around the elongated member, allowing the balloon to be withdrawn back into the distal opening of the delivery sheath. In some embodiments, the collapsed balloon is elongated axially as an alternative to, or in addition, being wrapped about the elongated member prior to retraction back into the sheath.
Other and further aspects and features of the disclosed embodiments will be evident from reading the following detailed description in view of the accompanying drawings, which are provided for purposes of illustration, and not for purposes of limitation.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout and in which:
Embodiments relate to apparatus and methods for folding a deflated balloon to a smaller profile such that the balloon may easily be retracted into a sheath and safely removed from a patient's body. In this manner, embodiments advantageously rotate, or rotate and elongate, the balloon during or after deflation such that the deflated balloon has a smaller profile than that of conventional devices, which conventional devices may encounter difficulty in retracting the deflated balloon.
Referring to
The lumen 28 of the catheter 20 includes an elongated member, or guide wire shaft 16 (shown in phantom in
It should be noted that, although the balloon folding mechanisms discussed herein are described as being particularly useful in folding an expandable cryogenic ablation balloon 40, the balloon folding mechanisms can also be used in other balloon catheters where it is desirable to rotate, or rotate and elongate, the balloon prior to retracting the balloon into the sheath 30.
As depicted in
The balloon 40 is shown in the inflated state in
The guide wire shaft 16 extends through the lumen 28 of the catheter body 22, and the distal end of the guide wire shaft 16 extends distally beyond the distal end 24 of the catheter body 22. The distal ends 42a, 44a of the balloon walls 42, 44 are fixedly attached to the distal end of the guide wire shaft 16, and the proximal ends 42b, 44b of the balloon walls 42 and 44 are fixedly attached to the distal end 24 of the catheter body 22. The guide wire shaft 16 is configured to rotate within the catheter lumen 28 relative to the catheter body 22, thereby causing the balloon 40 to wrap around the distal end of the guide wire shaft 16.
The catheter body 22 and the guide wire shaft 16 are laterally flexible, yet torsionally rigid. Torque applied to the proximal end of the guide wire shaft 16 through the balloon folding mechanism in the handle 10 is efficiently translated to the distal end of the guide wire shaft 16 in order to rotate the distal ends 42a, 44a of the balloon walls 42, 44 relative to the proximal ends 42b, 44b of the balloon walls 42, 44. Similarly, the catheter body 22 has enough torsional rigidity to avoid twisting when the distal ends 42a, 44a of the balloon walls 42, 44 are rotated relative to the catheter body 22.
The catheter 20 includes a coolant inlet lumen 74 and an exhaust lumen 72, shown here as concentric lumens, disposed within the lumen 28 of the catheter 20, and configured for transporting liquid coolant between the proximal end of the catheter 20 and the balloon 40 on the distal end of the catheter 20. It should be well understood that the coolant lumen 74 and exhaust lumen 72 may have other configurations and may be arranged for more uniform dispersal of the coolant within the balloon 40.
As discussed briefly above, the balloon folding mechanism disposed in the handle may be configured for rotating and elongating the balloon 40. One exemplary embodiment of such a balloon folding mechanism is depicted in
Although it should be well understood that any mechanism for fixedly coupling the guide wire shaft 16 and the actuator 115 may be employed, in the illustrated embodiment, the attaching member 124 and annular ring 126 form a fixed, direct attachment between the rotating member 112 and the guide wire shaft 16. The attaching member 124 passes through a slot 130 in the housing 132. The slot 130 extends annularly around a portion of the circumference of the housing 132 in order to allow sufficient rotational movement of the attaching member 124 within the slot 130. In addition, the slot 130 is wide enough to allow sufficient axial movement of the attaching member 124 within the slot 130.
The guide wire shaft 16 is fixedly coupled to an externally threaded boss 122 and the housing 132 includes an internally threaded collar 120. Due to the threaded engagement between the boss 122 and the threaded collar 120, rotational movement of the guide wire shaft 16 also causes axial displacement of the guide wire shaft 16 and the rotating member 112. While the axial path of the guide wire shaft 16 is defined by the threaded boss 122 and the threaded collar 120 of the housing 132, the attaching member 124 attached to the rotating member 112 is free to move axially within the slot 130.
The balloon folding mechanism may also include an automatic return mechanism coupled to the rotating member 112. Thus, when the rotating member 112 is rotated and then released, the rotating member 112 will automatically return to the neutral position shown in
In one embodiment, the automatic return mechanism includes a spring 128 disposed within the housing 132. The distal end of the spring 128 engages an inner wall of the housing 132 and remains stationary. Meanwhile, the proximal end of the spring 128 abuts the attaching member 124, and, thus, moves towards the distal end of spring 128 when the actuator 115 is actuated. In a relaxed configuration, shown in
When the actuator 115 is in the rotated and distally advanced position, shown in
During operation of the balloon folding mechanism shown in
Another exemplary embodiment of a balloon folding mechanism configured for rotating and elongating the balloon 40 is depicted in
In particular, the actuator 215 protrudes from an opening 230 in the housing 232, and includes an external portion 214 configured for being distally advanced, and an inwardly extending portion 213 configured for pushing the vertical beveled gear 226 forward as the actuator 215 is advanced. The spur gear 222 meshes with a static rack gear 220 and is rotatably coupled to the actuator 215 such that the spur gear 222 is distally advanced and rotated along the static rack gear 220 as the actuator 215 is distally advanced. The bottom of the spur gear 222 is fixedly coupled to the horizontal beveled gear 224, such that rotation and axial displacement of the spur gear 222 causes simultaneous rotation and axial displacement of the horizontal beveled gear 224. The horizontal beveled gear 224 meshes with the vertical beveled gear 226 such that horizontal rotation of the horizontal beveled gear 224 causes simultaneous vertical rotation of the vertical beveled gear 226. The vertical beveled gear 226 is fixedly attached to the guide wire shaft 16 such that rotation of the vertical beveled gear 226 causes simultaneous rotation of the guide wire shaft 16.
With this balloon folding mechanism arrangement, rotation and elongation of the balloon 40 is achieved by distally advancing the actuator 215. The ratio between the distal advancement of the actuator 215 and the rotation of the guide wire shaft 16 is dependent upon the gear ratio between the horizontal beveled gear 224 and the vertical beveled gear 226. Thus, the gear ratio can be selected to achieve a desired amount of rotational output at the distal end of the guide wire shaft 16.
Similar to the embodiment shown in
As shown in
An exemplary embodiment of a balloon folding mechanism configured for rotating the balloon 40 is depicted in
Due to the overall gear ratio in the planetary gear system 312, a small amount of rotation of the actuator 315 results in a large amount of rotation of the guide wire shaft 16. For example, the ratio of input rotation of the actuator 315 to output rotation of the guide wire shaft 16 may be between 1:4 and 1:400. That is, one degree of rotation of the actuator 315 may produce between 4 and 400 degrees of rotation of the guide wire shaft 16. Because such a large amount of rotational output is sufficient for achieving a reduced profile of the deflated balloon 40, the balloon folding mechanism illustrated in
In the illustrated embodiment, there are three sets of planetary gears 312a, 312b, 312c in the planetary gear system 312. The sets of planetary gears 312a, 312b, 312c are conventional planetary gear sets that each include a center sun gear, planet gears meshed with the sun gear, a planet gear carrier, and an outer annulus with inward-facing teeth that mesh with the planet gears. The gear sets 312a, 312b, 312c are arranged in series such that a common longitudinal axis passes through the center of each of the sun gears. In this manner, the output of the first gear set 312a is coupled to the input of the second gear set 312b, the output of the second gear set 312b is coupled to the input of the third gear set 312c, and the output of the third gear set 312c is coupled to the output shaft 316.
Any one of the components of each of the gear sets 312a, 312b, 312c may be chosen as the input and any one of the other components may be chose as the output. In one example, the annulus of each of the gear sets 312a, 312b, 312c remains stationary, the planet gear carrier is the input of each set, and the sun gear is the output of each set. In particular, the actuator 315 is coupled, through the input shaft 314, to the planet gear carrier of the first gear set 312a, the sun gears of the first and second gear sets 312a, 312b are coupled to the planet gear carriers of the second and third gear sets 312b, 312c, respectively, and the sun gear of the third gear set 312c is coupled to the output shaft 316. However, it should be well understood by one of ordinary skill in the art that any planetary gear system arrangement could be used to achieve the desired output rotation. For example, there may be more or less than three sets of planetary gears, the ratio of input rotation to output rotation can be chosen to achieve a desired folded profile of the deflated balloon, the input component of each gear set could alternatively be the sun gear or the annulus, and the output component of each gear set could alternatively be the planet gear carrier or the annulus.
It should be understood that, for the sake of clarity, several elements of the handles 110, 210 and 310 are not shown in
Having described the structure and operation of different embodiments of the balloon folding mechanism, the operation of the medical kit assembly 100 in performing an exemplary therapeutic ablation procedure within a left atrium will now be described with reference to
First, with reference to
Although the illustrated embodiment depicts a transeptal approach for entering the left atrium 206, it should be well understood that a conventional retrograde approach, i.e., through the respective aortic and mitral valves of the heart, may alternatively be used for entering the left atrium 206. In addition, it should be well understood that, although the illustrated embodiment depicts the catheter 20 passing through the atrial septum 208, the sheath 30 may also traverse the atrial septum 208 in the method of using the medical kit 100.
After the ablation procedure is completed and the liquid coolant is discharged from the balloon 40 through the discharge lumen 72 (see
Thus, one of the balloon folding mechanisms described above may advantageously be employed to minimize the profile of the deflated balloon 40, thereby facilitating withdrawal of the balloon 40 back into the sheath 30 and/or back through the atrial septum 208. Folding the balloon 40 may include rotating the balloon 40 (i.e., using the folding mechanism depicted in
As depicted in
Although particular embodiments have been shown and described, it should be understood that the above discussion is not intended to limit the scope of these embodiments. Various changes and modifications may be made without departing from the scope of the claims. For example, the catheter may include types of balloons other than cryo-ablation balloons. Further, the balloon folding mechanism may be configured for rotating the catheter body 22 about the guide wire shaft 16 (rather than the guide wire shaft 16 being rotated within the catheter body 22). Further, in the embodiment illustrated in
Thus, embodiments are intended to cover alternatives, modifications, and equivalents that may fall within the scope of the claims.
The present application claims the benefit under 35 U.S.C. §119 to U.S. Provisional Patent Application Ser. No. 61/052,979, filed May 13, 2008. The foregoing application is hereby incorporated by reference into the present application in its entirety.
Number | Date | Country | |
---|---|---|---|
61052979 | May 2008 | US |