Apparatus and methods for sculpting carpet

Information

  • Patent Grant
  • 6640680
  • Patent Number
    6,640,680
  • Date Filed
    Friday, November 15, 2002
    22 years ago
  • Date Issued
    Tuesday, November 4, 2003
    21 years ago
Abstract
Apparatus and methods for cutting carpet pile are disclosed as including a clipper having a driver, a reciprocating blade and a fixed blade. The fixed blade and the reciprocating blade define an area there between. The fixed blade has a bore passing through the blade and into the area. A fluid supply, connected to the bore, supplies fluid through the fixed blade and into the area. A manifold, attached to the fixed blade, can be used to pass fluid through the fixed blade into the chamber. In such an embodiment, the manifold includes a passage communicating with the bore and the fluid supply. In another embodiment, an orientation mechanism is used to orient the carpet clipping head. In this embodiment, the orientation mechanism includes a base bracket and a pivot bracket. The pivot bracket is pivotally attached to the base bracket at a pivot point. The carpet clipping head is attached to the pivot bracket so that movement of the pivot bracket causes the carpet clipping head to pivot about the lead prong. In yet another embodiment, the carpet trimmer is attached to a computer controlled carrier platform. In such an embodiment, the carpet trimmer is spaced from the point at which the clipping blade contacts the pile before cutting the pile. In yet another embodiment, a pile orientation member is provided for orienting pile in the path of the clipper head so that the pile is oriented in a plane substantially perpendicular to the cutting plane.
Description




FIELD OF THE INVENTION




The present invention relates to the field of carpet manufacture, and more particularly to methods and apparatus for sculpting patterns in carpet pile.




BACKGROUND OF THE INVENTION




As has been recognized in the past, designers and artisans have employed various design treatments with respect to carpeting used on both floors and walls. In particular, decorative designs have been sculpted in the carpet pile using hand-held electric or air powered carpet shears or clippers. In the past, to cut decorative designs in carpet pile, it had been suggested to use templates, to pre-mark the carpet and manually cut a pattern in the pile and to use automated, computer controlled cutting tables. Since sculptured effects can involve complex, intricate decorative designs, computer controlled equipment is preferred, not only for purposes of reliability and repeatability, but also to reduce the cost of having a highly skilled artisan engage in such a time consuming task.




One such computer controlled device, disclosed in U.S. Pat. No. 4,793,033—Schneider, et al. and incorporated herein by reference, includes a carriage mechanism adapted to move a clipping mechanism in two dimensions, i.e., to move the clipping mechanism in X and Y directions. This movement is said to be controlled by a computer having a memory into which desired patterns have been stored. In particular, the carriage mechanism includes a table on which a first pulley system moves a wheeled gantry-like structure in one direction and on which a second pulley system located on the gantry moves a wheeled platform in a second perpendicular direction. The clipping mechanism is said to be attached to the platform via a manually adjustable tripod mount which is said to permit variation of the angular orientation of the clipping mechanism. It is asserted that other disclosed mechanisms can move the clipping mechanism vertically as well as rotationally.




Unfortunately, such a computer controlled device suffers from several problems. First, because the clipping mechanism is moved via a tripod mount, setting or making changes to the angular orientation of the clipping blades will result in a relocation of the leading edge or leading prongs, i.e., the beginning cutting point will be offset from the pivot point in the mount. Since the angular setting or adjustment is manually achieved, it will be necessary, if even possible, to align/calibrate or re-align/calibrate the computer program and the clipper blades after each manual adjustment to allow for the relocation of the leading edge, so that the clipping blades cut in the exact locations specified by the computer. Second, because the device is automated, the clipping blades will be moving relative to one another for extended periods of time. The friction forces generated during the clipping operation will lead to elevated temperatures of the clipping blades. It has been found that such elevated temperatures cause the clipping blades to become dull faster, requiring replacement, thereby adding to the cost of operations. Although Schneider et al. suggests providing a lubricant drip to the blades and a vacuum operation, these features are not believed sufficient to maintain acceptable blade temperature for extended periods.




In addition, the Schneider et al. device does not account for pile deflection. It has been found that when a clipping mechanism is brought into contact with the carpet pile, the bottom of the clipping mechanism tends to compress or deflect the pile directly under the clipping blades. This deflection or compression can cause unwanted imperfections, i.e., tufts. Moreover, for direction changes where a clipping blade would be moved away from and then onto the pile, the tuft imperfection itself can be deflected or compressed, making matters worse. The presence of such tuft imperfections will require a manual finishing operation in order to achieve the desired appearance. Moreover, carpet pile over an extended area can have a random angle, bias or direction. During manual sculpting operations, the artisan will frequently brush the pile with a hand in order to orient the pile in a desired direction before clipping. The Schneider et al. device makes no mention, nor does it suggest a solution to this problem.




Although not resolving any of the above described problems, U.S. Pat. No. 5,285,558—Carder et al., incorporated herein by reference, discloses a hand operated device, containing a clipping mechanism, which is moved manually to trim carpet pile or to bevel the edge of the pile. In relation to the beveling operation, Carder et al. disclose a mounting bracket which permits pivoting of the clipping mechanism. Unfortunately, this pivoting movement also results in a relocation of the leading edge or leading prongs.




Additionally, the assignee of the present invention sells a carpet design and cutting system which incorporates a computer controlled cutting table. In this device, a desired pattern is entered into the computer and the computer causes the cutting table to cut the desired design into a piece of carpet held in place by a vacuum. Since this pattern cutting device has not heretofore been adapted to sculpt carpet, it too has not solved any of the above described problems.




Consequently, a need still exists for a carpet clipping device which controls clipping blade temperature during extended clipping operation, provides accurate angled orientation of the clipping blades, accounts for pile compression/deflection whenever the clipping blade is moved against the pile and which accounts for random pile direction.




SUMMARY OF THE INVENTION




It has been noted that many of the above described problems can be resolved and other advantages achieved in a carpet pile cutter which includes a clipper having a driver, a reciprocating blade and a fixed blade. The fixed blade and the reciprocating blade define an area there between. The fixed blade has a bore passing through the blade and into the area. A fluid supply, connected to the bore, supplies fluid through the fixed blade and into the area. A manifold, attached to the fixed blade, can be used to pass fluid through the fixed blade into the chamber. In such an embodiment, the manifold includes a passage communicating with the bore and the fluid supply.




In another embodiment, an orientation mechanism is used to orient the carpet clipping head. In this embodiment, the orientation mechanism includes a base bracket and a pivot bracket. The pivot bracket is pivotally attached to the base bracket at a pivot point. The carpet clipping head is attached to the pivot bracket so that movement of the pivot bracket causes the carpet clipping head to pivot about the lead prong. In such an embodiment, it is preferred for the base bracket to have a first pivot bore and for the pivot bracket to have a second pivot bore. It is especially preferred for the first and second pivot bores and the lead prong to lie substantially along a pivot axis. It is also preferred for the base bracket to include a threaded receptacle and for the pivot bracket to include an arcuate slot oriented to pass proximate the receptacle. In such an embodiment, a locking bolt is passed through the slot to engaging the receptacle and hold the pivot bracket in place by frictionally locking the pivot bracket to the base bracket.




In yet another embodiment, the carpet trimmer is attached to a computer controlled carrier platform. In such an embodiment, the carpet trimmer is spaced from the point at which the clipping blade contacts the pile before cutting the pile.




In a still further embodiment, a pile orientation member is provided for orienting pile in the path of the clipper head so that the pile is oriented in a plane substantially perpendicular to the cutting plane. In such an embodiment, the pile orientation member includes a friction engaging member for frictionally engaging and orienting the pile. The friction engaging member can take many forms such as a roller or belt arrangement rotating in a direction which urges the pile toward the clipper head.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be better understood and its numerous objects and advantages will become apparent by reference to the following detailed description of the invention when taken in conjunction with the following drawings, in which:





FIG. 1

is a perspective view generally depicting a carpet sculpting table constructed in accordance with the present invention;





FIG. 2

is a plan view of the sculpting table depicted in

FIG. 1

;





FIG. 3

is a side view of a tool platform attached to a carriage of the carving table of

FIGS. 1 and 2

;





FIG. 4

is a diagrammatical perspective of a clipping head assembly constructed in accordance with the present invention;





FIG. 5

is an isolated view of the base bracket depicted in

FIG. 4

;





FIG. 6

is an isolated view of the pivot bracket depicted in

FIG. 4

;





FIG. 7

is an isolated view of the fixed blade depicted in

FIG. 4

;





FIG. 8

is an isolated view of the manifold depicted in

FIG. 4

;





FIG. 9

is a plan view of the manifold depicted in

FIG. 8

;





FIG. 10

is a partial side elevation view of the clipping blades and manifold assembly;





FIG. 11

is a diagrammatic view of a clipping head assembly constructed in accordance with the present invention, including a pile orientation mechanism; and





FIG. 12

is a diagrammatic view of a clipping head assembly constructed in accordance with the present invention, including an alternative embodiment of the pile orientation mechanism depicted in FIG.


11


.











DETAILED DESCRIPTION OF THE INVENTION




A carpet pile cutting device


10


, constructed in accordance with the present invention, is generally depicted in FIG.


1


. As shown, device


10


includes a two axis positioning table


12


which is controlled by computer


14


. Table


12


includes a first motor assembly


16


for moving bridge structure


18


along the length axis. A second motor


20


(shown in

FIG. 2

) moves a carrier platform across bridge structure


18


, i.e., along the width axis. In this manner, motors


16


and


18


cause table


12


to act as an X-Y plotter, positioning the carrier platform at any desired X-Y coordinate. Because such motors and the computers and software for operating same are known, they will not be discussed in any greater detail herein. It is noted that computer


14


includes a memory sufficient to store those commands necessary to cause table


12


to move the carrier platform in a desired pattern.




It is preferred for table


12


to include an integral vacuum feature for holding carpet to be sculpted securely to table


12


during any such sculpting operation. Again because such vacuum feature is known from the cutting table product currently sold by the assignee of the present invention, it will not be described in any detail herein.




Referring now to

FIG. 2

, table


12


is depicted from above. It will be appreciated that motor


20


serves to move carrier platform


22


across bridge


18


, thereby traversing the width axis of table


12


. The details of carrier platform


22


are depicted in

FIG. 3

As shown in

FIG. 3

, carrier platform


22


includes base


24


to which piston assembly


26


is rotatingly attached via bearing assembly


28


. Piston assembly


26


is attached so that rod


30


passes through as opening or bore in base


24


. The movement of rod


30


is controlled by computer


14


. As will be seen in connection with

FIG. 4

, movement of rod


30


causes the clipping mechanism to be moved toward or away from the carpet pile. Since no particular piston assembly is necessary to practice the invention, it is not further described. However, it is noted that any piston assembly selected must be capable of moving the clipping assembly and must be capable of reliable operation when subjected to rotational movement.




Piston assembly


26


is rotated by motor


32


. Motor


32


is mechanically coupled to piston assembly


26


via assembly


34


. Assembly


34


may include any appropriate gear or belt based mechanism by which the rotational movement of the shaft of motor


32


can be transmitted to the structure of piston assembly


26


. Similar to motors


16


and


22


, motor


32


is controlled by computer


14


. Again, because such the positioning motors and the computers and software for controlling same are known, as evidenced by the previous description of prior devices, that subject will not be discussed in any greater detail herein. Similarly, the details necessary for generating a control signal sufficient to cause piston assembly


26


to move rod


30


should also be known.




Referring now to

FIG. 4

, clipping head assembly


36


will be described. Clipping head


36


is shown to be attached to rod


30


. Consequently, operation of motor


32


will cause clipper head


36


to rotate. Likewise, movement of rod


30


will cause clipper head


36


to move towards and away from the carpet pile (not shown).




Clipper head


36


includes a base bracket


38


, which in turn is formed from two members, namely rod connecting member


40


and a pivot connecting member


42


. Bracket


44


is pivotally connected to member


42


via pivot connector


46


. In the preferred embodiment, connector


46


is a nut and bolt assembly. Bracket


44


pivots about an axis


48


, which axis passes through connector


46


and through the leading prong of the clipper blades. An air actuated clipping mechanism


50


is securely held by bracket


44


. As will be appreciated from a description of

FIGS. 5 and 6

, pivotal movement of bracket


44


will result in movement of clipping mechanism


50


. However, unlike prior structures, because pivot axis


48


does not pass through the body of clipper mechanism


50


, but rather, passes through the leading prong of the clipping blades, the leading prong will remain relatively stationary alleviating the necessity for any software modifications in the control of motors


16


,


20


and


32


.




Referring now to

FIG. 5

, member


42


will be described in greater detail. Member


42


generally includes two arms


52


and


54


. Arm


52


is provided with two bores


56


and


58


for attaching member


42


to member


40


. Such attachment can be by bolts, screws or any other suitable means. A further bore


60


, preferably formed with threads or containing a threaded insert, thereby defining a threaded receptacle, functions to secure bracket


44


in a desired angular orientation. Arm


54


extends away from arm


52


thereby defining an area between the arms. Such area need be sufficient to permit the rotational movement clipper mechanism


50


. A bore


62


is formed at the free end of arm


54


. It is again noted that axis


48


passes through bore


62


.




Referring now to

FIG. 6

, member


44


will now be described. Member


44


includes two halves


64


and


66


. Member


46


has an arcuate slot


68


formed therein and an opening


70


. Member


66


also includes an opening


72


. It is noted that while openings


70


and


72


are depicted as being semi-circular in shape they are not so limited. The only limitation for openings


70


and


72


is that they be appropriately shaped to firmly grip the body of clipping mechanism


50


. Member


66


also has a bore


74


formed therein. This is the pivot point through which axis


48


passes and about which bracket


44


, and thereby clipping mechanism


50


, rotates. When member


44


is attached to member


42


, via a bole or other suitable pivot pin, it is possible to pivot bracket


44


, thereby pivoting mechanism


50


, and maintain the relative position of the lead prong of the clipping blades. A bolt


76


is provided to hold bracket


44


in place against bracket


42


. Bolt


76


passes through arcuate slot


68


and into the threaded receptacle


60


.




Referring now to

FIGS. 7-10

, another aspect of the invention will be explained. As discussed above, one of the problems facing the automation of carpet pile carving was the undesirable temperatures the cutting blades would reach after extended use. This problem has been solved in the invention by a novel cooling structure. The cutting blade assembly


78


includes three basic components, a reciprocating blade


80


, a fixed blade


82


and a manifold


84


. The reciprocating action of blade


80


relative to blade


82


causes prongs


86


, including leading prong


88


, to cut carpet pile. Friction forces generated at contacting surfaces in the areas


90


and


92


cause heat to be generated. It is noted that blades


80


and


82


define an area or chamber


94


between them.




A number of bores


96


have been formed in fixed blade


82


. Bores


96


are positioned to communicate with area or chamber


94


, i.e, bores


96


establish fluid communication with chamber


94


. Manifold


84


has a number of passages


98


formed therein. The ends of passages


98


are positioned to correspond with bores


96


when manifold


84


is mounted adjacent or on fixed blade


82


. The end


100


of passages


98


is attached to a fluid supply (not shown). It is within the scope of the invention for a valve to be positioned between the fluid supply and end


100


. It is also within the scope of the invention for such valve to be controlled by computer


14


.




In the preferred embodiment, clipper mechanism


50


is a standard, hand operated air driven clipper. In such an embodiment a tap mechanism


102


(

FIG. 4

) bleeds a small amount of air from an air supply and diverts that air through appropriate hosing


104


and into end


100


in manifold


84


. Air then passes though passages


98


, through bores


96


and into area or chamber


94


. Since the ends of chamber


94


are open, as shown in

FIG. 10

, the air passes out and away from the clipping blades. It has been found that such movement of air, between the clipping blades, removes excess heat generated as a result of the previously described friction forces.




Another aspect of the invention deals with the problem of tufts created due to deflection or compression of pile when the cutting blades are moved against the pile. It will be recalled from the above that the carrier platform is moved to desired locations in response to a control signal generated by computer


14


. In addition, clipper head


50


is moved by the carrier platform onto the carpet pile so that the clipper head can be moved in a desired direction. Computer


14


in such instances is programmed to generate the control signals necessary for slightly moving the carrier platform, so that the control signals initially cause the clipper head to be moved a distance away from the point where the lead prongs are against the pile in a direction other than the intended direction of movement. As used herein the term slight is relative to the depth of the pile. The amount of movement needs to be sufficient to allow the pile to return to its natural shape, i.e., extending out. It is envisioned that such movement will total between ¼ to 1 inch. It is especially preferred for the clipper head to move a distance away in a direction substantially 180 degrees from the desired direction of movement.




A still further aspect of the invention, addresses the problem identified above regarding random pile angle. Referring now to

FIG. 11

, an alternative embodiment of the invention is shown. A pile orientation member


106


is depicted for orienting pile in the path of the clipper head so that the pile is oriented in a plane substantially perpendicular to the cutting plane, i.e., the plane in which the cutting blades are cutting. As shown a friction engaging member, in this case a roller


108


frictionally engages the pile and orients it for the cutting blades. It is noted that roller


108


is driven by driver


110


to turn in a direction which pushes the pile towards the cutting blades. As shown in

FIG. 12

, the friction engaging member is belt assembly


112


, wherein the assembly includes a pair of rollers


114


,


116


about which extends a belt


118


. Although two specific embodiments are shown, friction engaging member


106


can take any number of forms, for example, a drum, a brush, a elastic wheel or even a jet or flow of fluid.




While the invention has been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that modification and variations may be made without departing from the principles of the invention as described herein above and set forth in the following claims.



Claims
  • 1. A method of sculpting carpet by cutting carpet pile, wherein the cutting of said carpet pile is to begin at a point on said carpet pile and commence from the beginning point in a first direction, said method comprising:providing a positioning carriage for positioning a carrier platform at desired locations in response to a control signal; providing a carpet trimmer, attached to said carrier platform, wherein said carpet trimmer has a clipper head, wherein said clipper head is moved by said carrier platform onto said carpet pile so that said clipper head can be moved in a desired direction in response to the control signal; and providing a computer, and using said computer to control the carrier platform to: position the clipper head to begin the cutting of said carpet pile at a point on said carpet pile, where the cutting is to commence from the beginning point in a first direction, said positioning causing the deflection or compression of said carpet pile; firstly moving said positioned clipper head at the beginning point a distance away from said beginning point in a second direction in a plane generally parallel to said carpet and different from said first direction, said distance and the orientation of said second distance being selected to return said carpet pile to its original non-deflected, non-compressed state; and then secondly moving said clipper head in the first direction.
  • 2. The method of claim wherein said computer controls the carrier platform to first move said positioned clipper head a distance away from said beginning point in said second direction substantially 180 degrees from said first direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 09/237,526, filed Jan. 27, 1999, still pending, and entitled “APPARATUS AND METHODS FOR SCULPTING CARPET”, hereby incorporated by reference in its entirety.

US Referenced Citations (14)
Number Name Date Kind
2228768 Jones Jan 1941 A
2810954 Clark Oct 1957 A
2975517 Brittain Mar 1961 A
3364068 Stern Jan 1968 A
3988828 Geary Nov 1976 A
4107839 Jung Aug 1978 A
4512077 Tanabe et al. Apr 1985 A
4654969 Schwartzott Apr 1987 A
4793033 Schneider et al. Dec 1988 A
5016328 Gilpatrick May 1991 A
RE33756 Carder Dec 1991 E
5285558 Carder et al. Feb 1994 A
5653025 Cheng et al. Aug 1997 A
5979278 Warthen et al. Nov 1999 A