The present invention relates generally to sealants, apparatus, and methods for sealing punctures in a body, and more particularly, to apparatus and methods for sealing a vascular puncture extending through tissue to a blood vessel.
Apparatus and methods are known for accessing a patient's vasculature percutaneously, e.g., to perform a procedure within the vasculature, and for sealing the puncture that results after completing the procedure. For example, a hollow needle may be inserted through a patient's skin and overlying tissue into a blood vessel. A guide wire may be passed through the needle lumen into the blood vessel, whereupon the needle may be removed. An introducer, procedural, or femoral sheath may then be advanced over the guide wire into the vessel, e.g., in conjunction with or subsequent to one or more dilators. A catheter or other device may be advanced through the introducer sheath and over the guide wire into a position for performing a medical procedure. Thus, the introducer sheath may facilitate accessing and/or introducing various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss.
Upon completing the procedure, the device(s) and introducer sheath may be removed, leaving a puncture extending between the skin and the vessel wall. To seal the puncture, external pressure may be applied to the overlying tissue, e.g., manually and/or using sandbags, until hemostasis occurs. This procedure, however, may be time consuming and expensive, requiring as much as an hour of a medical professional's time. It is also uncomfortable for the patient, and may require the patient to remain immobilized in the operating room, catheter lab, or holding area. In addition, a risk of hematoma exists from bleeding before hemostasis occurs.
Various apparatus and methods have been suggested for sealing vascular punctures resulting from such procedures, such as those disclosed in U.S. Pat. Nos. 7,316,704, 7,331,979, 7,335,220, and 7,806,856, and U.S. Publication Nos. 2007/0231366, 2008/0082122, 2009/0088793, 2009/0254110, 2010/0168789, 2010/0274280, and 2010/0280546. The entire disclosures of these references are expressly incorporated by reference herein.
For example, the MATRIX™ product included two synthetic polyethylene glycol (“PEG”) polymer powders that were mixed with appropriate buffers and injected through a femoral sheath at an arteriotomy site, e.g., as disclosed in U.S. Pat. No. 7,316,704. The Mynx® Vascular Closure Device is another system for sealing vascular punctures, e.g., as disclosed in one or more of the references identified above, such as U.S. Pat. No. 7,335,220.
Accordingly, apparatus and methods for sealing a puncture through tissue would be useful.
The present invention is directed to apparatus and methods for sealing a puncture in a body. More particularly, the present invention is directed to sealants for sealing a puncture through tissue, and to methods for making such sealants. In addition, the present invention is directed to apparatus and methods for providing temporary or permanent hemostasis within a puncture extending through tissue, and/or to apparatus and methods for delivering a sealant into a percutaneous puncture extending from a patient's skin to a blood vessel or other body lumen.
In accordance with one embodiment, a sealant is provided for sealing a puncture through tissue that includes a first section including a proximal end, a distal end, and a cross-section sized for delivery into a puncture through tissue, and a second section fused to and extending from the distal end of the first section. The first section may be formed from a freeze-dried hydrogel that expands when exposed to physiological fluid within a puncture. The second section may be formed from a solid mass of non-freeze-dried, non-crosslinked hydrogel precursors, the precursors remaining in an unreactive state until exposed to an aqueous physiological, whereupon the precursors undergo in-situ crosslinking with one another to provide an improved adhesion of the sealant to the arteriotomy.
In one embodiment, the first section may consist essentially of freeze-dried hydrogel, and the second section may consist essentially of the non-crosslinked precursors. Alternatively, the second section may include one or more reinforcement elements, e.g., a plurality of filaments or particles, mixed with, embedded in, or surrounding the precursors. In addition or alternatively, the second section may include one or more diluents to enhance one or more properties of the second section.
Optionally, the sealant may include one or more pH adjusting agents, e.g., impregnated into, coated over, or otherwise included in the first and/or section sections. For example, when the sealant is exposed within a puncture, the agent(s) may alter the localized pH on or around the sealant, e.g., to enhance cross-linking of the precursors and/or creation of a desired adhesive material. Alternatively, the materials for the precursors may be selected such that the pH and/or buffering capacity of interstitial body fluids and/or blood are effective to drive or facilitate cross-linking of the precursors and the pH adjusting agents may be omitted.
In accordance with another embodiment, a sealant is provided for sealing a puncture through tissue that includes an elongate first section including a proximal end, a distal end, and a cross-section sized for delivery into a puncture through tissue, the first section consisting essentially of a freeze-dried hydrogel that expands when exposed to physiological fluid within a puncture; and a second section fused to and extending from the distal end of the first section, the second section consisting essentially of a solid mass of non-freeze-dried, non-crosslinked hydrogel precursors, the precursors remaining in an unreactive state until exposed to an aqueous physiological environment, whereupon the precursors undergo in-situ crosslinking to provide an adhesive layer to bond the first section relative to adjacent tissue.
In accordance with still another embodiment, a sealant is provided for sealing a puncture through tissue that includes an elongate body including a proximal end, a distal end, and a cross-section extending between the proximal and distal ends sized for delivery into a puncture through tissue. The elongate body may consist essentially of a solid mass of non-freeze-dried, non-crosslinked hydrogel precursors, the precursors remaining in an unreactive state until exposed to an aqueous physiological environment, whereupon the precursors undergo in-situ crosslinking to provide an adhesive material that bonds to adjacent tissue within the puncture. Alternatively, the elongate body may also include one or more reinforcement members, one or more diluents, and/or one or more pH adjusting agents.
In accordance with yet another embodiment, a sealant is provided for sealing a puncture through tissue that includes a first section including a proximal end, a distal end, and a cross-section sized for delivery into a puncture through tissue, and a second section fused to and extending from the distal end of the first section. The first section may be formed from a freeze-dried hydrogel that expands when exposed to physiological fluid within a puncture. The second section may consisting essentially of a solid mass of non-freeze-dried, non-crosslinked hydrogel precursors and one or more pH adjusting agents, reinforcement elements, and/or diluents mixed with the precursors to enhance one or more mechanical properties of the second section.
In accordance with still another embodiment, a method is provided for making a sealant for sealing a puncture through tissue that includes forming an elongated first section including a proximal end, a distal end, and a cross-section sized for delivery into a puncture through tissue. The first section may be formed from a freeze-dried hydrogel or other biocompatible, bioabsorbable material that expands when exposed to physiological fluid within a puncture. A solid mass of non-crosslinked hydrogel precursors may be fused or otherwise attached onto the distal end, the precursors remaining in an unreactive state until exposed to an aqueous physiological environment, whereupon the precursors undergo in-situ crosslinking with one another to provide an improved adhesion to the arteriotomy. For example, the solid mass may be formed as a substantially uniform solid plug or may be formed as a sintered mass of powder.
In accordance with yet another embodiment, a method is provided for making a sealant for sealing a puncture through tissue that includes forming a sheet of the freeze-dried hydrogel that expands when exposed to physiological fluid within a puncture; rolling the sheet into a tubular roll including a lumen extending between the proximal and distal ends; and loading the tubular roll into a tubular member such the distal end of the tubular roll is offset inwardly from a first end of the tubular member. A plurality of non-crosslinked hydrogel precursors may be mixed and melted, optionally with one or more diluents, the precursors remaining in an unreactive state until exposed to an aqueous physiological, whereupon the precursors undergo in-situ crosslinking; The melted precursors may be applied to the distal end of the tubular roll within the tubular member, and allowed to solidify to create the solid mass fused to the distal end of the tubular roll.
In accordance with another embodiment, an apparatus is provided for sealing a puncture through tissue that includes a tubular member including a proximal end, a distal end sized for insertion into a puncture, a lumen extending between the proximal and distal ends, and a distal opening in communication with the lumen, a sealant within the lumen, and an advancer member within the lumen for deploying the sealant from the lumen out the distal opening, e.g., when the tubular member is retracted from a puncture relative to the advancer member. The sealant may include a first section including proximal and distal ends, and a second section fused to and extending from the distal end. The sealant may be disposed within the lumen such that the second section is disposed closer to the distal opening than the first section. In an exemplary embodiment, the first section may be formed from a freeze-dried hydrogel that expands when exposed to physiological fluid within a puncture, and/or the second section may be formed from non-crosslinked hydrogel precursors, the precursors remaining in an unreactive state until exposed to an aqueous physiological environment, whereupon the precursors undergo in-situ crosslinking with one another to provide improved adhesion to the arteriotomy.
In accordance with still another embodiment, a method is provided for sealing a puncture through tissue that includes providing sealant including a first section including proximal and distal ends, and a second section fused to and extending from the distal end. In an exemplary embodiment, the first section may be formed from a freeze-dried hydrogel, and/or the second section may be formed from non-crosslinked hydrogel precursors in an unreactive state. The sealant may be introduced into a puncture through tissue with the second section entering the puncture before the first section. The sealant may be exposed to fluid within the puncture, whereupon the precursors of the second section undergo in-situ crosslinking with one another to provide improved adhesion to the arteriotomy, and the freeze-dried hydrogel of the first section expands to fill space within the puncture to provide hemostasis.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
It will be appreciated that the exemplary apparatus shown in the drawings are not necessarily drawn to scale, with emphasis instead being placed on illustrating the various aspects and features of the illustrated embodiments.
Turning to the drawings,
For example, this configuration of sealant 2 may combine crosslinking of the second section 6 to create an adhesive material in-situ with swell characteristics of a freeze-dried hydrogel or other expandable material of the first section 4. By improving the adherence characteristics of the expandable hydrogel, the sealant 2 may provide enhanced extra-vascular closure, e.g., by providing expansion of the first section 4 in combination with improved adhesion of the sealant 2 to tissue surrounding an arteriotomy or other adjacent tissue structure, e.g., entirely extra-vascularly or extending partially into the arteriotomy and/or vessel, by virtue of the in-situ polymer crosslinking that occurs at the second section 6 of the sealant 2.
As shown, the first section 4 may be formed generally into an elongate cylindrical shape, e.g., including proximal and distal ends 4a, 4b, and an outer surface 4c extending therebetween. Optionally, as shown in phantom, the sealant 2 may include a lumen 5 extending between the proximal and distal ends 4a, 4b of the first section 4 and through the second section 6, e.g., to facilitate delivery of the sealant 2. For example, the lumen 5 may be dimensioned to accommodate receiving a balloon catheter or other positioning member 14 (not shown, see, e.g.,
In an exemplary embodiment, the first section 4 may be formed from a sheet of freeze-dried hydrogel rolled into a tubular shape, e.g., as disclosed in U.S. Publication No. 2007/0231336, the entire disclosure of which is expressly incorporated by reference herein. It will be appreciated that the first section 4 may have other tubular or solid rod cross-sections or shapes, as desired, such as elliptical, triangular, square, conical, disk, polygonic shapes, and the like (not shown).
In exemplary embodiments, the sealant 2 may have an overall length between about three and twenty millimeters (3-20 mm), e.g., between about five and ten millimeters (5-10 mm) or between about fifteen and twenty millimeters (15-20 mm), and an outer diameter or other cross-section between about one and eight millimeters (1-8 mm), e.g., between about one and three millimeters (1-3 mm), e.g., between about 1.5 and two millimeters (1.5-2.0 mm), e.g., about 0.069 inch (1.75 mm). In the embodiment shown in
For example, the first section 4 may have a length between about zero (if the sealant 2 is formed entirely from the second section 6) and twenty millimeters (0-20 mm), e.g., between about five and twenty millimeters (5-20 mm), e.g., about fifteen millimeters (15 mm). The second section 6 may have an outer diameter similar to the first section 4, but may have a length that is substantially shorter, e.g., between about zero (if the sealant 2 is formed entirely from the first section 4) and eight millimeters (0-8 mm), e.g., between about half and five millimeters (0.5-5.0 mm), e.g., about 1.5 millimeters.
The first section 4 may be formed from a biocompatible and/or bioabsorbable material, for example, a porous and/or bioabsorbable hydrogel, that may have desired expansion characteristics when hydrated. In one embodiment, the first section 4 may be formed entirely from a freeze-dried and crosslinked hydrogel, e.g., polyethylene glycol (“PEG”), or other synthetic material, as disclosed in U.S. Publication No. 2007/0231336, incorporated by reference above, although optionally including a transition zone (not shown) where the material of the second section 6 has penetrated partially into the distal end 4b of the first section 4, e.g., during fusion, as described further below.
For example, the PEG polymer for the hydrogel sealant may include two components of Polyethylene Glycol Hydrogel, e.g., PEG-Amine: 8A20K-NH2 and PEG-Ester: 4A10K-CM-HBA-NHS, e.g., as disclosed in the references incorporated by reference above. In an exemplary embodiment, the molar ratio of PEG-Amine/PEG-Ester may be between 1:9 (10% PEG-Amine: 90% PEG-Ester) and 9:1 (90% PEG-Amine:10% PEG-Ester), for example, about a 1:1 ratio.
In alternative embodiments, the first section 4 may be formed from other materials, such as pro-thrombotic material, e.g., including one or more biological pro-thrombotics, such as collagen, fibrin, carboxymethylcellulose, oxidized cellulose, alginates, gelatin, or other protein-based material, and/or synthetic materials, e.g., as polyglycolic acids (PGA's), polylactides (PLA's), polyvinyl alcohol (PVA), and the like. The material of the first section 4 may be at least partially absorbed by the body over time, e.g., over a period of days, weeks, or months.
Optionally, the first section 4 (and/or second section 6) may include therapeutic and/or pharmaceutical agents, e.g., to promote healing, prevent infection and/or other adverse medical events, and the like. Such agents may be embedded in the material and/or applied as one or more coatings or layers. In addition, the material of the first section 4 may have a substantially uniform composition or the composition may be varied, e.g., along its length and/or within underlying layers within the first section 4.
In an exemplary embodiment, the first section 4 may be formed entirely from freeze-dried hydrogel, e.g., initially formed as a thin sheet of freeze-dried polymer. For example, to fabricate the first section 4 from a PEG hydrogel material, PEG-amine and PEG-ester powders intended to form the hydrogel may be filled into separate vials. Phosphate and borate buffers may be made, e.g., by dissolving the sodium borate and sodium phosphate in sterile water for injection (WFI) and adjusting the pH of each solution to meet pre-established requirements. The two PEG powders may then be dissolved in their respective buffer solutions. These precursor solutions may be mixed together, poured into trays, and freeze-dried. The freeze-dried material may be subjected to a series of heat and/or humidity conditioning cycles, e.g., to complete the polymerization reaction.
The freeze-dried and conditioned sheet of hydrogel sealant may then be trimmed according to size and mass requirements, e.g., cut to a desired length for the finished first section 4. For example, as shown in
To fabricate the non-freeze-dried, non-crosslinked distal section 6 of the sealant 2, PEG-amine and PEG-ester powders (or other crosslinkable polymer precursors) may be melted in a beaker, mixed, and heated at a pre-determined temperature and duration. For example, the precursors may be melted in a substantially dry air or inert gas environment, e.g., to minimize or prevent entrapment of moisture, which may otherwise cause premature crosslinking Using a vacuum generator, the melted PEG may then be applied onto the distal end 4b of the rolled freeze-dried first section 4.
For example, as described above, the first section 4 may be formed from a rolled sheet and loaded into a transfer tube 8, as shown in
The first section 4 may be loaded into the transfer tube 8 such that the distal end 4b of the first section 4 is offset inwardly a predetermined distance L6 from the end of the transfer tube 8, e.g., corresponding to or greater than the desired length of the second section 6. For example, for a desired finished length of the second section 6 of about 1.5 millimeters, the distal end 4b may be offset inwardly about two millimeters (2.0 mm) from the end of the transfer tube 8 (with any excess material may trimmed off later, as described below). Using the vacuum generator, the melted non-crosslinked PEG is then applied onto the distal end 4b of the rolled freeze-dried sealant, e.g., the vacuum directing the melted PEG into the transfer tube 8 and against the distal end 4b of the first section 4 (as represented by the arrow labeled “vacuum”). Thus, the transfer tube 8 may mold the melted PEG into the desired shape, e.g., diameter and/or length, for the second section 6.
The vacuum may cause the melted precursors to nominally abut the distal end 4b of the first section 4, and/or may partially draw the melted precursors into the pores and/or other open spaces within the first section 4, e.g., due to capillary action and the like. In this situation, a transition zone 7 may be created within the distal end 4b of the first section 4 in which the melted precursors permeate the freeze-dried hydrogel or other material of the first section 4, which may enhance fusing the second section 6 to the first section 4. For example, the melted precursors may quickly cool under ambient conditions such that the penetration into the distal end 4b may be relatively short, e.g., resulting in a transition zone 7 of one millimeter (1 mm) or less.
The melted precursors may be dried under ambient conditions, e.g., simply allowed to cool and solidify, or alternatively, the melted and applied precursors may be exposed to desired conditions to accelerate or facilitate solidification of the melted precursors. The vacuum process effectively fuses the two sections together to provide a length of sealant 2.
If desired, the resulting sealant 2 may then be trimmed to length, as desired, e.g., for loading into a delivery apparatus, e.g., a cartridge or shuttle, such as those described further below and in the references incorporated by reference herein. For example, any excess length of the second section 6 may be removed, e.g., by mechanical cutting, laser cutting, and the like, to provide the desired length for the final second section 6. In addition or alternatively, the first section 4 may be trimmed to a desired length, e.g., by cutting the proximal end 4a before loading the first section 4 into the transfer tube 8 (as described above) and/or after fusing the second section 6 to the distal end 4b.
In addition or alternatively, if the sealant 2 and/or first section 4 includes a lumen 5, the lumen 5 may be created when the first section 4 is formed, e.g., if the first section 4 is rolled from one or more sheets or layers of material or formed by molding. Alternatively, the lumen 5 may be formed by boring into or otherwise removing material from an already formed and solid first section 4, second section 6, or through the entire sealant 2. For example, if the first section 4 is formed from a rolled sheet, a rod or other mandrel 9 (which may be fabricated similar to the transfer tube 8) may be inserted through the lumen 5 before the second section 6 is applied to the distal end 4b, e.g., that extends from the transfer tube 8, as shown in
In exemplary embodiments, the precursors for the second section 6 may include one or more of the following:
a) Polyethylene glycol derivatives or polyethylene glycols with at least two end groups (2Arms) and having at least one crosslinkable end groups. The first functional groups may chemically react with the second functional groups in-situ to form covalent bonds and thereby form a crosslinkable gel.
b) The first functional groups or second functional groups may be chosen from groups that are strong electrophiles, e.g., epoxide, succinimide, N-hydroxysuccinimide, acrylate, methacrylate, maleimide, and N-hydroxysulfosuccinimide in addition to a group including amine, sulfhydryl, carboxyls, or hydroxyls.
c) The molecular weight of the polyethylene glycols may range from 5000 to 40,000 Da and may include at least about 2 to 8 functional groups.
d) Examples of the polyethylene glycols derivatives that may be used include but are not limited to the following formulations:
Y-Shape PEG NHS Ester, MW 40000
Y-Shape PEG Maleimide, MW 40000
Y-Shape PEG Acetaldehyde, MW 40000
Y-Shape PEG Propionaldehyde, MW 40000
Hydroxyl PEG Carboxyl, MW 3500
Hydroxyl PEG Amine, HCl Salt, MW 3500
Amine PEG Carboxyl, HCl Salt, MW 3500
Acrylate PEG NHS Ester, MW 3500
Maleimide PEG Amine, TFA Salt, MW 3500
Maleimide PEG NHS Ester, MW 3500
4 Arm PEG Succinimidyl Succinate (pentaerythritol), MW 10 KDa
8 Arms PEG Amine, MW 10-20 KDa
Methoxy PEG Succinimidyl Carboxymethyl Ester, MW 10-20K
Methoxy PEG Maleimide, MW 10-20K
Methoxy PEG Vinylsulfone, MW 10-20K
Methoxy PEG Thiol, MW 10-20K
Methoxy PEG Propionaldehyde, MW 10-20K
Methoxy PEG Amine, HCl Salt, MW 10-20K
Optionally, the second section may include one or more pH adjusting agents. For example, a pH adjusting agent, e.g., sodium borate, sodium phosphate, sodium bicarbonate, and/or other salts, such as Na2B4O7.10H2O in crystalline or powder form, may be melted with the precursors and then applied with the precursors to the distal end 4b of the first section 4, as described above. Alternatively, the pH adjusting agent may be applied to the second section 6 after fusing the melted precursors to the first section 4, e.g., by bonding or impregnating crystals of borate or other salts to the outer surface of the solid mass of non-crosslinked precursors and/or by melting and applying a coating of melted salts to the outer surface, e.g., similar to embodiments disclosed in the references incorporated by reference elsewhere herein. In addition or alternatively, one or more pH adjusting agents may be provided on the first section 4, if desired.
In this manner, the pH adjusting agent may alter the localized pH on or around the sealant 2, e.g., when deployed within a puncture to enhance cross-linking and/or creation of a desired adhesive material. Alternatively, the pH and/or buffering capacity of interstitial body fluids and/or blood may be effective to drive or facilitate cross-linking of the second section 6. For example, the precursors of the second section 6 may be optimized to take into account all of these factors and/or form a robust attachment to tissue.
In addition or alternatively, diluents, such as low molecular PEG and/or glycerol, may be added to the formulation, i.e., the melted precursors before application to the first section 4, e.g., to improve the mechanical strength and/or integrity of the first section 6 and/or to minimize the brittleness of the second section 6.
In a further alternative, if desired, one or more reinforcement elements may be provided within the second section 6. For example, as shown in
As shown, the mesh 6a′ may include one or more fibers or filaments having a helical configuration (one helical filament shown), or alternatively the mesh 6a′ may include a braid of filaments, a rolled porous mat, and the like (not shown). In an exemplary embodiment, the mesh 6a′ may be embedded in the precursors 6b′ of the second section 6,′ e.g., by inserting the reinforcement element(s) into the end of the transfer tube 8 (not shown, see
Alternatively, as shown in
Once the sealant 2 is formed and/or trimmed, as described above, the sealant 2 may be loaded onto a delivery apparatus for use in sealing a puncture, e.g., using the methods described below.
Turning to
As shown in
With additional reference to
The advancer member 30 may be substantially rigid, semi-rigid, and/or substantially flexible, e.g., having sufficient column strength to allow proximal movement of the tubular member 20 relative to the sealant 2 without buckling the advancer member 30 and/or to allow the distal end 34 of the advancer member 30 to be advanced to compress the sealant 2 within a puncture, e.g., by pushing from the proximal end 32, as described further below. As best seen in
Optionally, the advancer member 30 may include one or more elements (not shown) on the proximal end 32, e.g., for interacting with one or more cooperating elements (also not shown) on the positioning member 14, e.g., to limit movement of the advancer member 30 relative to the positioning member 14, e.g., as described in the references incorporated by reference herein.
As shown in phantom in
With continued reference to
For example, as shown, the positioning element may be a balloon 46, and the positioning member 14 may include a tubular body 40 including a lumen (not shown) extending between the proximal and distal ends 42, 44 and communicating with an interior of the balloon 46. In this embodiment, the positioning member 14 may include a source of inflation media, such as syringe 148, that may be coupled to a housing 48 on the proximal end 42 of the positioning member 14. Optionally, the positioning member 14 may include an internal pull wire (not shown) that causes the balloon 46 to shorten during expansion and extend during collapse. Exemplary embodiments of positioning members 14 including balloons that may be used are disclosed in U.S. Publication Nos. 2004/0249342, 2004/0267308, 2006/0253072, and 2008/0009794. The entire disclosures of these references are expressly incorporated by reference herein.
Alternatively, the positioning element may be biased to an enlarged condition, but may be compressed to a contracted condition, e.g., by an overlying sleeve or other constraint (not shown). The constraint may be removed to expose the positioning element, allowing the expandable element to automatically expand to the enlarged condition. Additional information on expandable structures that may be provided on the positioning member 14 may be found in U.S. Pat. Nos. 6,238,412, 6,635,068, and 6,890.343, and in co-pending application Ser. No. 10/975,205, filed Oct. 27, 2004. The entire disclosures of these references are expressly incorporated herein by reference.
With additional reference to
As shown in
Optionally, the cartridge 16 and/or positioning member 14 may include cooperating features that limit distal movement of the cartridge 16 relative to the positioning member 14. For example, the hub 23 of the cartridge 16 may include a pocket and the positioning member 14 may include a detent or other feature (both not shown) that may be received within the pocket when the cartridge 16 is advanced to a distal position. In addition or alternatively, the positioning member 14 and/or advancer member 30 may include one or more elements that engage when the cartridge 16 reaches a predetermined location when advanced along the positioning member 14, e.g., to limit subsequent proximal movement of the advancer member 30 relative to the positioning member 14 when the tubular member 20 is subsequently retracted, similar to embodiments disclosed in the references incorporated by reference herein.
In addition or alternatively, one or more markers may be provided on the apparatus 10, e.g., to identify when components are located at one or more desired positions or otherwise to facilitate use of the apparatus 10. For example, the positioning member 14 may include one or more markers at predetermined locations on the elongate member 40. Such markers may provide visual confirmation when the cartridge 16 has been advanced to a desired distal position, e.g., when the marker(s) emerge from the hub 23 as the cartridge 16 is advanced over the positioning member 14. In addition or alternatively, as shown in
The apparatus 10 may be assembled using conventional manufacturing methods and/or using methods disclosed in the references incorporated by reference herein. Although an exemplary process is described below as being performed in an exemplary order, it will be appreciated that the actual order of the assembly steps may be changed, as desired.
For example, the positioning member 14 may be formed by providing a length of tubing for the tubular body 40 and attaching a balloon 46 to the distal end 44. To make the balloon, a section of tubing, e.g., LLDPE or other elastic material, may be cut to a predetermined length that is necked down to a smaller diameter, e.g., using a hot die or hot air necker. The tubing may then be placed into a balloon blower, which may use a split aluminum or other mold (not shown) to form the balloon 46, e.g., at a desired temperature and blow pressure. The resulting balloon subassembly may then be trimmed as desired and attached to the distal end 44 of the tubular body 40, which may also be necked down to facilitate attachment of the balloon 46, e.g., by an interference fit, bonding with adhesive, fusing, and the like.
The components of the cartridge 16, the tubular body 20, advancer tube 30, and hub 23 may be formed using conventional methods, e.g., extruding, molding, and the like. For example, the hub 23 may be formed from a plurality of molded shells that may be attached together and to which the proximal end 22 of the tubular body 20 may be attached.
In the exemplary embodiment shown, the cartridge 16 includes a single tubular body 20 attached to the hub 23. In an alternative embodiment, the cartridge 16 may include inner and outer cartridge assemblies, including inner and outer tubular bodies (not shown) attached to the hub 23, e.g., similar to embodiments disclosed in the references incorporated by reference herein. For example, an inner cartridge subassembly may include tubing bonded to a molded hub, and an outer cartridge subassembly may include tubing bonded to a molded slider. The inner and outer cartridges may then be captured within halves of a shuttle shell providing the hub 23.
The advancer member 30 may include a section of tubing with a thermoformed tapered tip. Once the tubular body 20 (or bodies) is assembled to the hub 23, the advancer member 30 may be inserted into the lumen 26 of the tubular body 20 (e.g., into the inner cartridge tubing if inner and outer cartridge tubular bodies are provided).
To provide the hub 48 of the positioning member 14, a hub barrel 48a, stopcock 48b, and extension line 48c may be assembled, as shown in
To complete the positioning member 14, locking features (not shown) may be bonded onto the tubular body 40, e.g., spaced a predetermined distance from the proximal end 42. The proximal leg of the balloon 46 may be bonded to the distal end 44 of the tubular body 40. The cartridge 16, hub barrel 48 and a core wire with tension plunger (not shown) are all then assembled with the tubular body 40, e.g., similar to embodiments in the references incorporated by reference herein. The core wire may then be bonded into the distal leg of the balloon 46. The hub barrel 48a is bonded to the proximal end 42 of the tubular body 40 and captured within the halves of the handle shell to provide the hub 48, as shown in
Finally, the sealant 2 is loaded onto the assembled apparatus 10. For example, the rolled sealant 2 may be coaxially mounted over the tubular body 40 from the distal end 44 and positioned inside the tubular member 20 of the cartridge 16, e.g., adjacent the distal end 24 and the advancer member 30 therein. For example, the sealant 2 stored within a transfer tube 8 (not shown, see
Optionally, a thin silicone coating may be applied to the tubular body 40, the tubular member 20, and the balloon 46. A protective sheath (not shown) may then be placed over the balloon 46 and at least partially over the tubular body 40.
The apparatus 10 and syringe 148 may then be placed with appropriate packaging, e.g., into respective cavities within a thermoformed clamshell tray (not shown), and the clamshell tray snaps may be closed. The closed tray may be inserted into a foil pouch or other packaging as desired. Additional processing, such as product labeling, sterilization, and the like, may be completed before the apparatus 10 is provided to a user.
Turning to
In an exemplary method, the puncture 90 may be created using known procedures, e.g., using a needle, guidewire, one or more dilators, and the like (not shown). An introducer sheath 80 may be advanced through the puncture 90 into the vessel 94, e.g., over a guidewire (not shown) placed through the puncture 90 into the vessel 94. The introducer sheath 80 may provide access into the vessel 92 for one or more instruments (not shown), e.g., to allow one or more diagnostic and/or interventional procedures to be performed via the vessel 94. Upon completing the procedure(s) via the vessel 94, any such instrument(s) may be removed from the puncture 90, leaving the introducer sheath 80 extending through the puncture 90 into the vessel 94.
With reference to
Still referring to
After expanding the positioning element 46, the positioning member 40 may be at least partially withdrawn until the positioning element 46 contacts the wall of the vessel 94, e.g., to substantially seal the vessel 94 from the puncture 90. In an exemplary method, shown in
Proximal tension may be applied and/or maintained on the positioning member 14 to hold the positioning element 46 against the wall of the vessel 94, e.g., to seal the puncture 90 from the vessel 94 and/or prevent further removal of the positioning member 14. The proximal tension may be maintained manually or using a tensioner device (not shown) to provide temporary hemostasis, e.g., during the subsequent steps. Exemplary tension devices are disclosed in U.S. Publication No. 2004/0267308, incorporated by reference elsewhere herein.
Turning to
Thereafter, as shown in
As the tubular member 20 is retracted, the advancer member 30 may prevent substantial proximal movement of the sealant 2, thereby exposing the sealant 2 within the puncture 90, as shown in
When the sealant 2 is exposed within the puncture 90, the sealant 2 may be exposed to blood and/or other body fluids within the puncture 90. This exposure may cause the sealant 2 to absorb fluid and activate to provide hemostasis, as described further elsewhere herein. Optionally, as shown in
Once the sealant 2 has been exposed for sufficient time and/or tamped by the advancer member 30, the positioning element 46 may be collapsed, and the positioning member 14 withdrawn from the vessel 94 and puncture 90, e.g., pulling the collapsed positioning element 46 through the sealant 2 and advancer member 30, as shown in
Optionally, after removing the positioning member 14, liquid hydrogel or other sealing compound, or other material may be delivered into the puncture 90, e.g., above and/or around the sealant 2, to assist in achieving hemostasis. For example, such material may be delivered via the lumen 36 of the advancer member 30 and/or by introducing another delivery device (not shown) into the puncture 90, e.g., after removing the advancer member 30.
With additional reference to
In addition, the non-freeze-dried distal section 6 of non-crosslinked precursors absorbs local fluids, which initiates crosslinking in-situ and results in a more secure mechanical hold on the surrounding tissue as the freeze-dried hydrogel conforms to the spaces in the tissue tract. Optionally, if the sealant 2 includes salts or other pH adjusting agents, exposure of the sealant 2 may dissolve the agent(s) in the local fluids, which may enhance or facilitate crosslinking of the precursors.
In an exemplary, if the sealant 2 is compressed against the arteriotomy over the vessel 94, the distal section 6 may bond to the outer surface of the vessel wall 96 and/or other tissue adjacent the arteriotomy, or may fill or otherwise penetrate into the arteriotomy, e.g., optionally extending into the interior of the vessel 94, which may enhance the resulting seal and/or prevent migration of the proximal section 4 of the sealant 2, e.g., away from the arteriotomy and vessel wall 96. Thus, the end result may be a discrete, optimally targeted deposition of hydrogel sealant that provides a durable seal over or within the arteriotomy, as shown in
Several alternative embodiments of sealants are shown in
For example, turning to
As shown in
Optionally, the non-crosslinked precursors of the distal section 106 and/or the uncoated biomaterial of the proximal section 104 may have salts or other pH adjusting agents impregnated therein or applied thereto such that, when physiological fluids wet the biomaterial and/or unreacted hydrogel precursors, a favorable pH may be obtained for cross-linking the distal section 106. The ratio of the lengths of unreacted hydrogel precursors to uncoated biomaterial, i.e., distal to proximal sections 106, 104, may range from 0-100% for the respective materials, and the length of the overall sealant 102 may vary, similar to other embodiments herein.
During use, the sealant 102 may be advanced into position, e.g., over a positioning member 40 and/or towards a positioning element 46, in apposition to the surface 96 of an artery at the arteriotomy within a puncture (not shown), e.g., using apparatus and methods similar to those described elsewhere herein. The local fluids within the puncture may initiate crosslinking of the precursors of the distal section 106, which may cause the crosslinking precursors to soften, flow into available space within the puncture, e.g., into the arteriotomy and/or into the vessel itself, and begin to crosslink to form a hydrogel. The “setting” action of the non-crosslinked precursors as the in-situ crosslink occurs may act as a glue to substantially fix the sealant 102 in position over the arteriotomy.
The distal section 106 may also form a patch over the arteriotomy, e.g., against or into the vessel wall 96, e.g., with the sealant 102 acting as a sponge to absorb any blood in the immediate area, e.g., to minimize subsequent oozing. For example, as shown in
Turning to
As shown in
Turning to
Turning to
The act of placing a compressive load on the proximal section 206 of the sealant 202 while holding the distal face of the distal section 204 substantially fixed (e.g., in this case using a balloon 46 as a backstop), may drive the proximal section 206 into the distal section 204. As shown in
Turning to
It will be appreciated that the shape of any of the sealants herein may be modified to have a shape that is conducive to controlled deformation. Examples include an inverted golf tee, an hourglass, swept or wavy surfaces, and the like.
Turning to
Sealants 402c and 402d include a main section 404c, 404d, e.g., formed from freeze-dried hydrogel, and non-crosslinked precursor sections on either both ends 406c or one end 406d of the main section 404c, 404d. In these embodiments, the non-crosslinked sections 406c, 406d may be a solid mass fused to the main sections 404c, 404d or a bolus or sintered mass of precursor powders.
Sealants 402e-402g include main sections 404e-404g, e.g., formed from freeze-dried hydrogel, and distal sections 406e-406g, e.g., solid masses of non-crosslinked precursors fused or otherwise attached to the main sections 404a-404g. For example, in sealant 402e, the main section 404e may include a recess, e.g., a conical recess in one end for receiving the distal section 406e substantially flush with the end of the main section 404e. Alternatively, the distal section 406f may extend from the recess in the main section 404f, as shown for the sealant 402f. In a further alternative, the sealant 402g includes a smaller tab or other feature extending from the main section 404g around which the distal section 406g may be formed and/or extend.
Turning to
Turning to
As shown in
The patch 602 may be delivered using the apparatus and methods described elsewhere herein, e.g., where the patch 602 is small enough to be loaded into a cartridge. Alternatively, the patch 602 may be applied manually, e.g., if the tissue surface is sufficiently exposed.
For example, upon application to a vessel or other tissue surface or structure, e.g., over an arteriotomy or other puncture (not shown), adhesion to the vessel may occur due to the coating 606, but the non-stretch nature of the base layer 605 of the substrate patch 602 may prevent the expanding pressurized vessel from substantially opening or enlarging the arteriotomy because of the lateral resistance of the patch 602 to expansion. The dense weave of the base layer 605 and the cross-linking of the coating 606 may prevent blood or other fluid from the vessel from leaking though the patch 602. The size of the patch 602 may vary from being large enough to surround all or a portion of vessel having a puncture therethrough, e.g., adhering the patch all around the puncture to only pulling together the mid-point of the vessel puncture for achieving substantial hemostasis. Optionally, after applying the patch, another hemostatic material, such as freeze-dried hydrogel (or any other sealant, such as those described elsewhere herein) may be applied over the top to achieve complete hemostasis.
In still another embodiment, a plurality of coated sealant pellets (not shown) may be provided for sealing a puncture through tissue. For example, freeze-dried hydrogel sealant may be used as a carrier for non-crosslinked PEGs or other precursors in a solid (i.e., melted, mixed, and solidified) form, e.g., a solid shell surrounding the underlying freeze-dried hydrogel. For example, freeze-dried hydrogel sealant may be punched, ground, or other formed into particles, e.g., having one or more diameters between about 0.5-10 millimeters. The particles may then be spray-coated with a hot liquid mass, e.g., including the melted PEG amine and PEG ester. The resulting pellets may then be delivered over an arteriotomy, into a puncture, or applied to a tissue surface, e.g., as a bolus through a sheath or other delivery device, and the non-crosslinked precursors may reconstitute and bind to form a slurry of adhesive gel and rapidly-absorbing hydrogel sealant over the arteriotomy, within the puncture, and/or onto the tissue surface.
It will be appreciated that elements or components shown with any embodiment herein are merely exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the appended claims.
The present application claims benefit of U.S. provisional application Ser. No. 61/434,412, filed Jan. 19, 2011, the entire disclosure of which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2115492 | Kober | Apr 1938 | A |
3765419 | Usher | Oct 1973 | A |
4002173 | Manning | Jan 1977 | A |
4260077 | Schroeder | Apr 1981 | A |
4327709 | Hanson et al. | May 1982 | A |
4362150 | Lombardi, Jr. et al. | Dec 1982 | A |
4472542 | Nambu | Sep 1984 | A |
4540404 | Wolvek | Sep 1985 | A |
4655211 | Sakamoto et al. | Apr 1987 | A |
4664857 | Nambu | May 1987 | A |
4734097 | Tanabe | Mar 1988 | A |
4738658 | Magro et al. | Apr 1988 | A |
4838280 | Haaga | Jun 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4890612 | Kensey | Jan 1990 | A |
5061274 | Kensey | Oct 1991 | A |
5104375 | Wolf et al. | Apr 1992 | A |
5104389 | Deem et al. | Apr 1992 | A |
5108421 | Fowler | Apr 1992 | A |
5192300 | Fowler | Mar 1993 | A |
5192302 | Kensey et al. | Mar 1993 | A |
5221259 | Weldom et al. | Jun 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5275616 | Fowler | Jan 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5292332 | Lee | Mar 1994 | A |
5306254 | Nash et al. | Apr 1994 | A |
5320639 | Rudnick | Jun 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5334216 | Vidal | Aug 1994 | A |
5383896 | Gershony | Jan 1995 | A |
RE34866 | Kensey et al. | Feb 1995 | E |
5391183 | Janzen et al. | Feb 1995 | A |
5409703 | McAnalley | Apr 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5419765 | Weldon et al. | May 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5437631 | Janzen | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443481 | Lee | Aug 1995 | A |
5464396 | Barta et al. | Nov 1995 | A |
5486195 | Myers et al. | Jan 1996 | A |
5489278 | Abrahamson | Feb 1996 | A |
5514158 | Kanesaka | May 1996 | A |
5529577 | Hammerslag | Jun 1996 | A |
5550187 | Rhee | Aug 1996 | A |
5571181 | Li | Nov 1996 | A |
5580923 | Yeung | Dec 1996 | A |
5591204 | Jansen et al. | Jan 1997 | A |
5591205 | Fowler | Jan 1997 | A |
5601602 | Fowler | Feb 1997 | A |
5626601 | Gershony et al. | May 1997 | A |
5643464 | Rhee | Jul 1997 | A |
5660849 | Poison et al. | Aug 1997 | A |
5700477 | Rosenthal | Dec 1997 | A |
5716375 | Fowler | Feb 1998 | A |
5718916 | Scherr | Feb 1998 | A |
5725498 | Janzen | Mar 1998 | A |
5725551 | Myers et al. | Mar 1998 | A |
5728122 | Leschinsky et al. | Mar 1998 | A |
5731368 | Stanley et al. | Mar 1998 | A |
5741223 | Janzen et al. | Apr 1998 | A |
5744153 | Yewey et al. | Apr 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5780044 | Yewey et al. | Jul 1998 | A |
5782860 | Epstein et al. | Jul 1998 | A |
5785679 | Abolfathi et al. | Jul 1998 | A |
5795331 | Cragg et al. | Aug 1998 | A |
5830130 | Janzen et al. | Nov 1998 | A |
5836970 | Pandit | Nov 1998 | A |
5843124 | Hammerslag | Dec 1998 | A |
5916236 | Muijs Van de Moer et al. | Jun 1999 | A |
5922009 | Epstein et al. | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5941847 | Huber et al. | Aug 1999 | A |
5948429 | Bell | Sep 1999 | A |
5948829 | Wallajapet | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5951589 | Epstein et al. | Sep 1999 | A |
5957952 | Gershony | Sep 1999 | A |
5972375 | Truter | Oct 1999 | A |
5973014 | Funk | Oct 1999 | A |
6017359 | Gershony | Jan 2000 | A |
6022361 | Epstein et al. | Feb 2000 | A |
6027471 | Fallon et al. | Feb 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6048358 | Barak | Apr 2000 | A |
6051248 | Sawhney | Apr 2000 | A |
6056768 | Cates | May 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6063061 | Wallace | May 2000 | A |
6083522 | Chu | Jul 2000 | A |
6093388 | Ferguson | Jul 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6162240 | Cates et al. | Dec 2000 | A |
6162241 | Coury et al. | Dec 2000 | A |
6165201 | Sawhney | Dec 2000 | A |
6179862 | Sawhney | Jan 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6271278 | Park | Aug 2001 | B1 |
6287323 | Hammerslag | Sep 2001 | B1 |
6296658 | Gershony | Oct 2001 | B1 |
6299597 | Buscemi et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6350274 | Li | Feb 2002 | B1 |
6368300 | Fallon et al. | Apr 2002 | B1 |
6371975 | Cruise et al. | Apr 2002 | B2 |
6379373 | Sawhney | Apr 2002 | B1 |
6458147 | Cruise et al. | Oct 2002 | B1 |
6475177 | Suzuki | Nov 2002 | B1 |
6514534 | Sawhney | Feb 2003 | B1 |
6562059 | Edwards et al. | May 2003 | B2 |
6566406 | Pathak | May 2003 | B1 |
6569185 | Ungs | May 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6608117 | Gvozdic | Aug 2003 | B1 |
6613070 | Redmond et al. | Sep 2003 | B2 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6689148 | Sawhney | Feb 2004 | B2 |
6699261 | Cates et al. | Mar 2004 | B1 |
6703047 | Sawhney | Mar 2004 | B2 |
6774151 | Malmgren | Aug 2004 | B2 |
6818008 | Cates | Nov 2004 | B1 |
6818018 | Sawhney | Nov 2004 | B1 |
6863924 | Ranganathan | Mar 2005 | B2 |
6887974 | Pathak | May 2005 | B2 |
6960617 | Omidian | Nov 2005 | B2 |
7316704 | Bagaoisan et al. | Jan 2008 | B2 |
7335220 | Khosravi | Feb 2008 | B2 |
7780980 | Sawhney | Aug 2010 | B2 |
7790192 | Khosravi et al. | Sep 2010 | B2 |
7806856 | Bagaoisan et al. | Oct 2010 | B2 |
7993367 | Bagaoisan et al. | Aug 2011 | B2 |
8002742 | Pai et al. | Aug 2011 | B2 |
8029533 | Bagaoisan et al. | Oct 2011 | B2 |
8292918 | Hill et al. | Oct 2012 | B2 |
8394122 | Bagaoisan et al. | Mar 2013 | B2 |
8617204 | Khosravi et al. | Dec 2013 | B2 |
8795709 | Sawhney et al. | Aug 2014 | B2 |
9820728 | Mylonakis et al. | Nov 2017 | B2 |
20010031948 | Cruise et al. | Oct 2001 | A1 |
20010046518 | Sawhney | Nov 2001 | A1 |
20010047187 | Milo et al. | Nov 2001 | A1 |
20010051813 | Hnojewyj | Dec 2001 | A1 |
20020015724 | Yang et al. | Feb 2002 | A1 |
20020062104 | Ashby et al. | May 2002 | A1 |
20020072767 | Zhu | Jun 2002 | A1 |
20020106409 | Sawhney et al. | Aug 2002 | A1 |
20020111392 | Cruise | Aug 2002 | A1 |
20020111851 | Ungs | Aug 2002 | A1 |
20020120228 | Maa et al. | Aug 2002 | A1 |
20020188319 | Morris et al. | Dec 2002 | A1 |
20030008831 | Yang et al. | Jan 2003 | A1 |
20030012734 | Pathak | Jan 2003 | A1 |
20030014075 | Rosenbluth et al. | Jan 2003 | A1 |
20030061735 | Pavcnick et al. | Mar 2003 | A1 |
20030078616 | Ginn et al. | Apr 2003 | A1 |
20030088269 | Ashby | May 2003 | A1 |
20030088271 | Cragg et al. | May 2003 | A1 |
20030100921 | Addis et al. | May 2003 | A1 |
20030135234 | Fisher et al. | Jul 2003 | A1 |
20030135236 | Fisher et al. | Jul 2003 | A1 |
20030139770 | Fisher et al. | Jul 2003 | A1 |
20030139771 | Fisher et al. | Jul 2003 | A1 |
20030139772 | Fisher et al. | Jul 2003 | A1 |
20030139773 | Fisher et al. | Jul 2003 | A1 |
20030233120 | Akerfeidt | Dec 2003 | A1 |
20040063206 | Rowley et al. | Apr 2004 | A1 |
20040093015 | Ogle | May 2004 | A1 |
20040121905 | Ranganathan et al. | Jun 2004 | A1 |
20040122350 | Zhong et al. | Jun 2004 | A1 |
20040147016 | Rowley | Jul 2004 | A1 |
20040249342 | Khosravi | Dec 2004 | A1 |
20040267308 | Bagaoisan et al. | Dec 2004 | A1 |
20050169882 | Lowe et al. | Aug 2005 | A1 |
20060034930 | Khosravi et al. | Feb 2006 | A1 |
20060079599 | Arthur | Apr 2006 | A1 |
20060100664 | Pai | May 2006 | A1 |
20070060950 | Khosravi et al. | Mar 2007 | A1 |
20070231366 | Sawhney | Oct 2007 | A1 |
20080015709 | Evans et al. | Jan 2008 | A1 |
20090088793 | Bagaoisan et al. | Apr 2009 | A1 |
20100209478 | Sawhney et al. | Aug 2010 | A1 |
20100274280 | Sawhney | Oct 2010 | A1 |
20100280546 | Campbell | Nov 2010 | A1 |
20130060279 | Yassinzadeh | Mar 2013 | A1 |
20130226229 | Uchida et al. | Aug 2013 | A1 |
20140249575 | Mylonakis et al. | Sep 2014 | A1 |
20180028166 | Mylonakis et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
0476178 | Mar 1992 | EP |
0482350 | Apr 1992 | EP |
9222252 | Dec 1992 | WO |
9413210 | Jun 1994 | WO |
9922646 | May 1999 | WO |
0014155 | Mar 2000 | WO |
0019912 | Apr 2001 | WO |
03009764 | Feb 2003 | WO |
03087254 | Oct 2003 | WO |
03004749 | Nov 2003 | WO |
2009025836 | Feb 2009 | WO |
2011057131 | May 2011 | WO |
Entry |
---|
PCT International Search Report and Written Opinion for PCT/US2012/021920, Applicant: AccessClosure, Inc., Forms PCT/ISA/220, PCT/ISA/210, and PCT/ISA/237; dated Sep. 21, 2012, 15 pages. |
David, Shaun L., Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/773,326, pp. 1-14. |
Fossen, Kayla J., Response to Office Action dated Jun. 26, 2014 in U.S. Appl. No. 12/773,326, pp. 1-11. |
David, Shaun L., Final Office Action dated Oct. 22, 2014 in U.S. Appl. No. 12/773,326, pp. 1-13. |
Gel (definition), Wikipedia, http://en.wikipedia.org/wiki/Gel, 1 page, Mar. 23, 2014. |
Communication from the Examining Division and Annex to the communication for European Application No. 12737125, dated Apr. 16, 2015, 5 pages. |
Communication from the Examining Division and Annex to the communication for European Application No. 12737125, dated Feb. 4, 2016, 5 pages. |
Communication from the Examining Division and Annex to the communication for European Application No. 12737125, dated Jun. 7, 2017, 4 pages. |
Communication from the Examining Division and Annex to the communication for European Application No. 12737125, dated Nov. 17, 2016, 4 pages. |
Final Office Action dated Nov. 12, 2015 for U.S. Appl. No. 13/859,615, 14 pages. |
Final Office Action dated Apr. 13, 2017 for U.S. Appl. No. 13/859,615, 27 pages. |
Final Office Action dated Dec. 24, 2013 for U.S. Appl. No. 13/859,615, 14 pages. |
Non-Final Office Action dated Aug. 11, 2016 for U.S. Appl. No. 13/859,615, 22 pages. |
Non-Final Office Action dated Jul. 17, 2013 for U.S. Appl. No. 13/859,615, 11 pages. |
Non-Final Office Action dated Mar. 5, 2015 for U.S. Appl. No. 13/859,615, 13 pages. |
Plastic Welding; Wikipedia; https://en.wikipedia.org/wiki/Plastic_welding; accessed Apr. 6, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20120209323 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61434412 | Jan 2011 | US |