The present invention relates generally to apparatus and methods for sealing or closing passages through tissue, and more particularly to devices for sealing punctures or other openings communicating with body lumens, such as blood vessels, and to apparatus and methods for delivering such devices.
Catheterization and interventional procedures, such as angioplasty or stenting, generally are performed by inserting a hollow needle through a patient's skin and muscle tissue into the vascular system. A guide wire may then be passed through the needle lumen into the patient's blood vessel accessed by the needle. The needle may be removed, and an introducer sheath may be advanced over the guide wire into the vessel, e.g., in conjunction with or subsequent to a dilator. A catheter or other device may then be advanced through a lumen of the introducer sheath and over the guide wire into a position for performing a medical procedure. Thus, the introducer sheath may facilitate introduction of various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss during a procedure.
Upon completion of the procedure, the devices and introducer sheath may be removed, leaving a puncture site in the vessel wall. External pressure may be applied to the puncture site until clotting and wound sealing occur. This procedure, however, may be time consuming and expensive, requiring as much as an hour of a physician's or nurse's time. It is also uncomfortable for the patient, and requires that the patient remain immobilized in the operating room, catheter lab, or holding area. In addition, a risk of hematoma exists from bleeding before hemostasis occurs.
Various apparatus have been suggested for percutaneously sealing a vascular puncture by occluding the puncture site. For example, U.S. Pat. Nos. 5,192,302 and 5,222,974, issued to Kensey et al., describe the use of a biodegradable plug that may be delivered through an introducer sheath into a puncture site. When deployed, the plug may seal the vessel and provide hemostasis. Such devices, however, may be difficult to position properly with respect to the vessel, which may be particularly significant since it is generally undesirable to expose the plug material, e.g., collagen, within the bloodstream, where it may float downstream and risk causing an embolism.
Another technique has been suggested that involves percutaneously suturing the puncture site, such as that disclosed in U.S. Pat. No. 5,304,184, issued to Hathaway et al. Percutaneous suturing devices, however, may require significant skill by the user, and may be mechanically complex and expensive to manufacture.
Staples and surgical clips have also been suggested for closing wounds or other openings in tissue. For example, U.S. Pat. Nos. 5,007,921 and 5,026,390, issued to Brown, disclose staples that may be used to close a wound or incision. In one embodiment, an “S” shaped staple is disclosed that includes barbs that may be engaged into tissue on either side of the wound. In another embodiment, a ring-shaped staple is disclosed that includes barbs that project from the ring. These staples, however, have a large cross-sectional profile and therefore may not be easy to deliver through a percutaneous site to close an opening in a vessel wall.
In addition, skin seals have been proposed that may be threaded into an opening in skin. For example, U.S. Pat. No. 5,645,565, issued to Rudd et al., discloses a surgical plug that may be screwed into a puncture to seal the puncture. The surgical plug includes an enlarged cap and a threaded shaft that extends from the cap. During an endoscopic procedure, the plug may be threaded into an opening through skin until the cap engages the surface of the skin. The plug is intended to seal the opening communicating with a body cavity to prevent insufflation fluid from leaking from the cavity. Such plugs, however, may only be used at the surface of the skin, and may not be introduced through tissue, for example, to seal an opening in the wall of a blood vessel or other subcutaneous region.
Accordingly, devices for sealing punctures or other passages through tissue, e.g., an opening into a blood vessel, would be considered useful.
The present invention is directed to apparatus and methods for sealing or closing passages through tissue, such as punctures communicating with blood vessels or other body lumens.
In accordance with one aspect of the present invention, a device for sealing a passage through tissue is provided that includes a body, e.g., formed from bioabsorbable material, including a proximal end, a distal end, and a helical thread on an outer surface extending at least partially between the proximal and distal ends. The body includes a lumen extending between the proximal end and a distal inlet port. A sealing member is disposed within the lumen that is expandable for substantially sealing the lumen from fluid flow therethrough.
In a first preferred embodiment, the sealing member includes a material that is expandable when exposed to fluid to substantially seal the lumen, such as a foam and/or a bioabsorbable material. The sealing member may be a valve or other device that is biased towards a first configuration for substantially sealing the lumen from fluid flow therethrough, and is movable to a second configuration for accommodating introduction of one or more devices through the lumen.
In a second preferred embodiment, the lumen includes a tapered portion that tapers in cross-section, and the sealing member is a generally annular-shaped member disposed adjacent a wide end of the tapered portion of the lumen. The sealing member is movable into the tapered portion for substantially sealing the lumen from fluid flow therethrough.
In accordance with another aspect of the present invention, an apparatus is provided for sealing a passage through tissue that includes a handle device or other elongate member and a plug member. The elongate member has a proximal end, a distal end, and a lumen extending between the proximal and distal ends. The plug member is disposed on the distal end of the elongate member, and includes a helical thread on its outer surface and a distal port therein in communication with the lumen.
Preferably, the plug member includes a passage therein extending between the distal port and the lumen. A sealing member may be disposed in the passage for substantially sealing the passage from fluid flow therethrough, such as that described above. In one embodiment, the passage and lumen define a bleed back lumen for determining the location of the plug member relative to a blood vessel or other body lumen.
In another embodiment, an obturator or other elongate member is insertable through the lumen such that a distal end of the obturator is disposed beyond the distal end of the plug member. The obturator may include a location indicator for identifying when the distal end of the plug member is disposed adjacent a body lumen. The location indicator may include a bleed back lumen in the obturator and a bleed back port on its distal tip, the bleed back port being in communication with the bleed back lumen. Alternatively, the location identifier may include an expandable member on a distal tip of the obturator, the expandable member being expandable when the distal tip is disposed within a body lumen for providing tactile feedback of a location of the distal end of the plug member with respect to the body lumen.
Preferably, the plug member is releasable from the elongate member. The elongate member may include an actuator for releasing the plug member from the distal end of the elongate member. Preferably, cooperating connectors are provided on the distal end of the elongate member and on the plug member for releasably securing the plug member to the distal end of the elongate member.
In accordance with yet another aspect of the present invention, a method is provided for sealing a passage through tissue communicating with a body lumen using an apparatus, such as that described above. Generally, the apparatus includes an elongate member, and a plug member disposed on a distal end of the elongate member. The plug member includes an outer surface including a helical thread, and a bleed back indicator associated with a distal end of the plug member.
The plug member is inserted into the passage until the helical thread begins to enter the passage. The elongate member may be rotated in a first direction, thereby threading the plug member into the passage until the bleed back indicator enters the body lumen, whereupon fluid from the body lumen may enter the bleed back indicator to identify the location of the body lumen with respect to the plug member. If desired, rotation of the elongate member may be reversed, thereby withdrawing the plug member a predetermined distance relative to the body lumen. Thereafter, the plug member may be released from the elongate member within the passage. Preferably, the plug member is formed from bioabsorbable material, and the plug member is left within the passage until it is absorbed by the tissue.
In a preferred embodiment, the elongate member includes a lumen extending from its proximal end through the plug member, and the bleed back indicator includes a bleed back port in the plug member, the bleed back port being in communication with the lumen. Alternatively, an obturator may be inserted through the lumen until a distal end of the obturator extends distally beyond the plug member, and the bleed back indicator may include a bleed back lumen in the obturator.
A sealing member may be provided in a lumen of the plug member for sealing the lumen, and consequently the bleed back port, from fluid flow therethrough. The sealing member may be an expandable material that expands when exposed to fluid. Alternatively, the sealing member may be a generally annular-shaped element that may be disposed adjacent a wide end of a tapered portion of the lumen. The annular-shaped element may be moved or otherwise wedged into the tapered portion for substantially sealing the lumen.
Other objects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
Turning now to the drawings,
The plug member 12 is a substantially rigid body, preferably having a generally cylindrical shape, including a proximal end 20, a distal end 22, and an outer surface 30. The plug member 12 includes a lumen 24 that extends between a proximal opening 26 and a distal opening or port 28.
The plug member 12 may be formed from a biocompatible material, e.g., a plastic, such as polyethylene or polyester. Preferably, the plug member 12 is formed at least partially (and more preferably entirely) from bioabsorbable material, such as collagen, polyglycolic acids (PGA's), polyactides (PLA's), and the like, that may be at least partially absorbed by the patient's body over time. Alternatively, the plug member 12 may be a semi-rigid or flexible body or may have a substantially flexible distal tip (not shown), e.g., to facilitate atraumatic insertion of the plug member 12 into the passage. In addition or alternatively, the plug member 12 may be tapered along its length, and/or the distal end 22 may be rounded to facilitate advancement of the plug member 12 into a passage through tissue.
In a preferred embodiment, the plug member 12 has a length of not more than about ten millimeters (10 mm), and more preferably between about one and ten millimeters (1-10 mm). The plug member 12 also preferably has a diameter of between about one and twenty millimeters (1-20 mm). Preferably, the length and diameter have a ratio that not more than about two-to-one.
The plug member 12 generally includes a helical thread pattern 18, including one or more helical threads, that extend at least partially between its proximal and distal ends 20, 22. Preferably, the thread pattern 18 extends completely to the distal end 22 of the plug member 12, and may be tapered at the distal end 22 to facilitate introduction into a passage through tissue (not shown). The helical thread 18 is preferably substantially rigid and may have a substantially square cross-section to facilitate sealing of a passage into which the plug member 12 is threaded. In a preferred embodiment, the helical thread 18 is integrally formed on the outer surface 30 of the plug member 12. For example, the plug member 12 and thread 18 may be formed by injection molding. Alternatively, the threads may be cut or otherwise formed in the outer surface 30 of the plug member 12.
As best seen in
In an alternative embodiment, the plug member 12 may include a cavity (not shown) in the distal end 22. A material (also not shown) may be provided in the cavity, such as extra-cellular matrix material, e.g., intestinal, stomach, or bladder submucosa, collagen, an infection-resistant material, and the like, that may promote hemostasis and/or healing of the tissue. Alternatively, such material may be otherwise detachably secured to the distal end 22 of the plug member 12, either within a cavity or across the distal end 22 without a cavity. For example, the material may be secured using a biodegradable adhesive or a mechanical fastener, such as one or more clips (not shown).
Returning to
Preferably, the handle device 14 is a substantially rigid tubular member, formed from a biocompatible material, e.g., plastic, such as polyethylene or polyester, or metal, such as stainless steel. The handle device 14 preferably has a cross-section that is substantially smaller than a cross-section of the plug member 12, e.g., to minimize dilation of a passage into which the apparatus 10 is inserted.
At least one of the plug member 12 and the distal end 36 of the handle device 14 include a connector. Preferably, the plug member 12 and the distal end 36 of the handle device 14 include cooperating connectors (not shown) for releasably securing the plug member 12 to the handle device 14, as described in application Ser. No. 09/738,431, incorporated above. Preferably, the cooperating connectors substantially couple the plug member 12 to the handle device 14 such that the plug member 12 cannot move independently of the handle device 14, e.g., such that the plug member 12 may be rotated only by rotating the handle device 14.
For example, the plug member 12 may include a recess (not shown) in its proximal end 20 and the handle device 14 may include a mechanism, e.g., a frame and/or radially projecting fingers (not shown), for frictionally engaging the wall of the recess. Alternatively, the recess may include slots for positively receiving the mechanism on the handle device 14. In a further alternative, the plug member 12 may include a hub (not shown) extending from its proximal end 20 and the handle device 14 may include a mechanism for detachable securing the hub to the handle device 14.
Preferably, the handle 42 includes an actuator (not shown) that may be activated to release the connectors securing the plug member 12 to the handle device 14. For example, the actuator may include a button coupled to a control rod or wire (not shown) that extends through the handle device 14 to its distal end 36. Upon depression of the button, the control rod may be moved, thereby disengaging the connector on the handle device 14 from the mating connector on the plug member 12. In another alternative, the distal end 36 of the handle device 14 and the plug member 12 may include mating threads (not shown) so that the handle device 14 may be rotated with respect to the plug member 12 to release the plug member 12. In this embodiment, the mating threads should wind helically in the same direction as the thread pattern 18 on the plug member 12 to ensure that the plug member 12 is not released prematurely from the handle device 14.
The obturator 16 is an elongate member, preferably having a proximal end 44 and a substantially atraumatic and/or flexible distal tip 46. An inlet or bleed back port 48 is provided on the distal tip 46, and a bleed back lumen 50 extends from the inlet port 48 to the proximal end 44. The proximal end 44 may include an outlet port 52, which may include any conventional structure for detected or observing fluid passing from the back bleed lumen 50.
The obturator 16 has a size and shape for insertion through the lumen 40 of the handle device 14 and through the lumen 24 of the plug member 12. Once the obturator 16 is fully received through the handle device 14, the distal tip 46 of the obturator 16 may extend beyond the distal end 22 of the plug member 12, as shown in
In alternative embodiments, an expandable member (not shown) may be provided on or adjacent the distal tip 46 of the obturator 16, in addition to or instead of the bleed back port and lumen 48, 50. The expandable member may be expandable, e.g., when the distal tip is disposed within a body lumen, for providing tactile feedback of a location of the distal end of the plug member with respect to the body lumen. The expandable member may be a balloon, one or more expandable wings, such as those disclosed in application Ser. No. 09/732,835, filed Dec. 7, 2000, or a helical tether device, such as that disclosed in application Ser. No. 10/006,400, entitled “Apparatus and Methods for Providing Tactile Feedback to Position a Closure Device,” filed Nov. 30, 2001. The disclosures of these applications and any other references cited therein are expressly incorporated herein by reference. This listing of claims will replace all prior versions, and listings, of claims in the application:
Turning to
Upon completion of the procedure, any instruments, such as an introducer sheath (not shown), may be removed from the vessel 90 and puncture 92. If a guidewire 102 is used during the procedure, the guidewire 102 may be removed before delivering the plug member 12, or preferably, the guidewire 102 may be used to guide the plug member 12 into position, as described below.
Initially, the apparatus 10 is assembled as shown in
As the obturator 16 is advanced into the puncture 92 (e.g., over the guidewire 102), the plug member 12 is inserted into the puncture 92, as shown in
Turning to
When the plug member 12 is advanced into the puncture 92, the distal tip 46 of the obturator 16 eventually passes through the wall 98 of the vessel 90, whereupon the bleed back port 48 becomes exposed to fluid, i.e., blood, within the vessel 90. Because of internal blood pressure, the fluid enters the bleed back port 48, passes through the bleed back lumen 50 (not shown in
Preferably, the relative lengths may be such that the apparatus 10 needs to be counter-rotated to attain the preferred deployment depth. For example, bleed back may occur when the plug member 12 is within or in close proximity to the vessel 90, as shown in
Once the desired deployment location is attained, the plug member 12 may be released from the handle device 14. The obturator 16 may be withdrawn from the plug member 12 and handle device 14 either before or after releasing the plug member 12. The sealing member 32 (not shown, see
Preferably, as explained above, the sealing member 32 is a material that expands when exposed to fluid. For example, as the obturator 16 is withdrawn, fluid, e.g., blood, may flow proximally through the lumen 24 in the plug member 12, e.g., until it encounters the sealing member 32. Although a relatively small amount of fluid may pass beyond the sealing member 32, the sealing member 32 may expand substantially due to the fluid contact until it substantially seals the lumen. Alternatively, the sealing member 32 may be a valve that may open to accommodate the obturator 16, but may automatically close upon withdrawal of the obturator 16.
Finally, as shown in
Turning to
The handle device 114 is an elongate member having an enlarged portion 134 and a reduced portion 136 defining a shoulder 138 therebetween. The enlarged portion 134 may include a handle 142 on the proximal end 140. The reduced portion 136 has a size for insertion through the lumen 124 of the plug member 112 and terminates in a distal tip 146 that may be substantially atraumatic and/or flexible, similar to the obturator distal tip described above. A bleed back port 148 is provided in the distal tip 146 that communicates with a bleed back lumen 150 that extends to an outlet port 152 in the proximal end 140.
As shown in
Preferably, the plug member 112 and the handle device 114 include cooperating elements (not shown) for coupling the plug member 112 to the handle device 114, i.e., to prevent rotation of the plug member 112 relative to the handle device 114. For example, all or a portion of the reduced portion 136 of the handle device 114 may have a noncircular cross-section, and all or a mating portion of the lumen 124 may have a complementary noncircular cross-section. Alternatively, cooperating longitudinal slots and tabs and the like may be provided on the reduced portion 136 and within the lumen 124 of the plug member 114. Thus, when the reduced portion 136 is fully inserted through the lumen 124, rotation of the plug member 112 may be coupled to rotation of the handle device 114. In a further alternative, the plug member 112 and the handle device 114 may include connectors that may releasably couple the plug member 112 to the handle device 114, similar to the embodiment described above.
The apparatus 110 may be used to seal and/or close a passage through tissue, such as a puncture communicating with a blood vessel or other body lumen (not shown), similar to the embodiment described above. Upon completion of a procedure accessed via the puncture, any instruments may be removed from the vessel and puncture, although a guidewire (not shown) may remain, similar to the embodiment described above. The apparatus 110 may be assembled as shown in
The apparatus 110 may then be rotated to thread the plug member 112 into the puncture such that the outer surface 130 and thread pattern 118 engage tissue surrounding the puncture to substantially seal the puncture. When the distal tip 146 enters the vessel, the bleed back port 148 becomes exposed to blood within the vessel. Because of internal blood pressure, fluid within the vessel enters the port 148, passes through the bleed back lumen 150, and exits the outlet port 152, thereby providing a visual indication that the vessel has been attained.
If desired, rotation of the apparatus 110 may then be reversed to withdraw the plug member 112 a predetermined distance relative to the vessel. The plug member 112 may then be released from the handle device 114. The handle device 114 may then be withdrawn from the plug member 112 (and the guidewire, if still present). Preferably, the reduced portion 134 of the handle device 114 may simply be withdrawn from within the lumen 124, without requiring disengagement of connectors, which may simplify construction of the handle device 114 compared to the embodiment described above. As the reduced portion 134 is withdrawn from the lumen 124, the sealing member 132 becomes exposed to fluid passing through the lumen 124. Preferably, as explained above, the sealing member 132 expands when exposed to the fluid to substantially seal the lumen 124 from subsequent fluid flow. Alternatively, the sealing member 132 may be a valve or an element that may controllably opened or closed (not shown).
Turning to
The handle device 214 has a proximal end 234 and a distal end 236, and defines a longitudinal axis 238 that extends between the proximal and distal ends 234, 236. A lumen 240 also extends between the proximal and distal ends 234, 236. A handle 242 may be provided on the proximal end 234 of the handle device 214 for facilitating manipulation of the apparatus 210, e.g., to facilitate rotation of the apparatus 210 into a passage, similar to the embodiments described above. An outlet port 252 is provided on the proximal end 234, e.g., in the handle 242, that communicates with the lumen 240. Preferably, the handle device 214 is a substantially rigid elongate shaft formed from biocompatible material. The handle device 214 preferably has a cross-section that is substantially smaller than a cross-section of the plug member 212, similar to the embodiments described above.
The plug member 212 and the distal end 236 of the handle device 214 generally include cooperating connectors (not shown) for releasably securing the plug member 212 to the handle device 214, similar to the first embodiment described above. Preferably, the cooperating connectors substantially couple the plug member 212 to the handle device 214 such that the plug member 212 cannot move independently of the handle device 214, e.g., such that the plug member 212 may be rotated only by rotating the handle device 214.
Preferably, the handle 242 includes an actuator (not shown) that may be activated to release the connectors securing the plug member 212 to the handle device 214. For example, the actuator may include a button coupled to a control rod or wire (not shown) that extends through the handle device 214 to its distal end 236. Upon depression of the button, the control rod may be moved, thereby disengaging the connector on the handle device 214 from the mating connector on the plug member 212.
Before use, the plug member 212 may be coupled to the distal end 236 of the handle device 114. Once the plug member 212 is attached to the distal end 236, the lumen 224 in the plug member 212 communicates with the lumen 240 in the handle device 214.
The apparatus 210 may be used to seal and/or close a passage through tissue, similar to the embodiments described above. After performing a procedure accessed via the puncture, the distal end 236 of the plug member 212 may be inserted into the puncture. The apparatus 210 may then be rotated to thread the plug member 212 deeper into the puncture. When the distal end 236 of the plug member 212 enters the vessel, the bleed back port 248 becomes exposed to blood within the vessel, causing fluid within the vessel to enter the port 248, pass through the lumens 224, 240, and exit the outlet port 252, thereby providing a visual indication that the vessel has been attained.
If desired, rotation of the apparatus 210 may then be reversed to withdraw the plug member 212 a predetermined distance relative to the vessel. The plug member 212 may then be released from the handle device 214. The handle device 214 may then be withdrawn, leaving the plug member 212 in place to,substantially seal the puncture.
If the plug member 212 includes a sealing member, the sealing member is exposed to fluid passing through the lumen 224, causing the sealing member to expand when exposed to fluid contact to substantially seal the lumen 224 from subsequent fluid flow. Alternatively, if no sealing member is provided, the lumen may be sufficiently small such that hemostasis may still occur. The lumen 224 may begin to seal on its own or, if necessary, external pressure may be applied to the puncture to promote hemostasis.
Turning to
In addition, the plug member 312 includes a lumen 324 that extends between a proximal opening 326 and a distal opening 328 generally parallel to a longitudinal axis 338. The lumen 324 includes a tapered portion 325 that tapers towards the distal end 322. The lumen may include a proximal portion 324a and a distal portion 324b on either side of the tapered portion 325 that may be substantially uniform in cross-section. Thus, the distal opening 328 may be substantially smaller than the proximal opening 326, e.g., corresponding to the respective portions of the tapered portion 325. In addition, the plug member 312 may include an annular recess 327 disposed concentrically around the proximal opening 326.
A sealing member 332 is disposed in an open position adjacent the wide end of the tapered portion 325 of the lumen 324. The sealing member 332 is a generally annular-shaped member, preferably a coil of material including one or more overlapping layers, which may be formed from a biocompatible, and preferably a bioabsorbable material, similar to the plug member 312 itself. Alternatively, the sealing member 332 may be an enclosed ring that may be formed from semi-rigid or flexible material. In its open position, the proximal portion 324a of the lumen 324 is substantially open, i.e., the sealing member 332 does not generally obstruct the lumen 324. The sealing member 332 is movable distally into the tapered portion 325 to become compressed or wedged therein, thereby defining a closed position for substantially sealing the lumen 324 from fluid flow therethrough.
The handle device 314 includes an outer carrier tube 334, and an inner delivery tube 336, the inner tube 336 being coaxially and/or slidably disposed within the outer tube 334. The handle device 314 may include a handle and/or actuator (not shown) on a proximal end of the handle device 314 for manipulating the handle device 314 and/or for controlling movement of the inner tube 336 relative to the outer tube 334. A distal end 340 of the outer tube 334 may be received in the annular recess 327 to couple the plug member 312 to the handle device 314. The distal end 340 may frictionally engage a wall of the recess 327, e.g., providing a desired resistance to removing the distal end 340 from the recess 327. In addition or alternatively, the distal end 340 and/or the plug member 312 may include one or more connectors (not shown), similar to the embodiments described above.
A distal end 342 of the inner tube 336 preferably has a size for being slidably received into the proximal portion 324a of the lumen 324. Preferably, when the distal end 340 of the outer tube 334 is disposed within the recess 327, the distal end 342 of the inner tube 336 extends into the proximal portion 324a of the lumen 324 in close proximity, e.g., contacting, the sealing member 332. The inner tube 336 preferably includes a lumen 344 that communicates with the lumen 324, more preferably the distal portion 324b of the lumen 324. Thus, the lumens 344, 324 may provide a bleed back lumen, similar to the embodiments described above.
During use, the apparatus 310 is assembled by inserting the distal end 340 of the outer tube 334 into the recess 327 and the distal end 342 of the inner tube 336 in the proximal portion 324a of the lumen 324, as shown in
The inner tube 336 may then be advanced distally relative to the outer tube 334, thereby engaging the sealing member 332 and forcing it distally into the tapered portion 325 of the lumen 324. Because of its inherent flexibility and/or because of its coil shape, the sealing member 325 may compress and/or otherwise become wedged into the tapered portion 325, thereby substantially sealing the lumen 324 from fluid flow therethrough, as shown in
Turning to
The handle device 414 has a proximal end 434 and a distal end 436, and defines a longitudinal axis 438 that extends between the proximal and distal ends 434, 436. In one embodiment, the handle device 414 is tubular, and includes a lumen 440 extending between the proximal and distal ends 434, 436, the lumen 440 communicating with the lumen 424 when the plug member 412 is attached to the distal end 434 of the handle device 414. A handle 442 may be provided on the proximal end 434 of the handle device 414 for facilitating manipulation of the apparatus 410, e.g., to facilitate rotation of the apparatus 410 into a passage.
The handle device 414 may be have a cross-section that is substantially smaller than a cross-section of the plug member 412, e.g., to minimize dilation of a passage into which the apparatus 410 is inserted. The plug member 412 and/or the distal end 436 of the handle device 414 may include cooperating connectors (not shown) for releasably securing the plug member 412 to the handle device 414, as described above. Preferably, the handle 442 includes an actuator (also not shown) that may be activated to release the connectors securing the plug member 412 to the handle device 414. Alternatively, the handle device 414 may have a cross-section defining a portion of a circle, e.g., a “C” shape, or may include one or more elongate shafts (not shown) that releasably connect to the plug member 412.
In addition, the plug member 412 and the handle device 414 include a bleed back device for providing a visual indication when the distal end 422 of the plug member 412 is disposed within a blood vessel 90 or other body lumen. For example, as shown, the handle device 414 may include a bleed back lumen 452 that extends between the proximal and distal ends 434, 436. An outlet port 45, a transparent tube (not shown) or other device may be provided on the proximal end 434 of the handle device 414 that communicates with the bleed back lumen 452. The plug member 412 may include a bleed back port 454 that extends from the distal end 422 to the bleed back lumen 452. For example, the bleed back port 454 may be a separate lumen (not shown) extending between the proximal and distal ends 420, 422 of the plug member 412.
Alternatively, the bleed back port 454 may be a groove extending along the lumen 424 of the plug member 412, as shown in
The apparatus 410 may be used in conjunction with an introducer sheath 416 or other elongate member, having a proximal end 444 and a distal end 446. The sheath 416 may include a tapered and/or substantially atraumatic distal end 446 having a size for insertion through a puncture into a body lumen 90. The sheath 416 may include a lumen 450 that extends between the proximal and distal ends 444, 446, the lumen 450 having a size to accommodate insertion of one or more devices therethrough. The sheath 416 may include a seal (not shown), e.g., in the lumen 450 adjacent the proximal end 444 to substantially seal the lumen 450, yet accommodate devices (not shown) therethrough.
The apparatus 410 may be attachable to the sheath 416 at any time during a procedure, e.g., such that the plug member 412 and handle device 414 may slide along the sheath 416. Alternatively, the apparatus 410 may be substantially permanently, but slidably, attached to the sheath 416.
With particular reference to
As shown in
For example, the distal end 422 of the plug member 412 may be inserted into the passage 92 until the thread pattern 418 begins to engage tissue 96 surrounding the passage 92. Then, as best seen in
Turning to
As shown in
Once the desired deployment location is attained, the sheath 416 may be removed, as shown in
If desired, the bleed back port 454, e.g., if a separate lumen (not shown) from the lumen 424, may also include a sealing member (also not shown) for substantially sealing the bleed back port 454 from fluid flow therethrough, similar to the sealing members described above.
When the plug member 412 is disposed at a desired location within the passage 92 and/or once hemostasis is obtained, the plug member 412 may be released from the handle device 414. The handle device 414 (and sheath 416 if still within the passage 92) may be withdrawn from the passage 92. As shown in
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the appended claims.
This application is a continuation-in-part of application Ser No. 09/866,548 filed May 25, 2001, now U.S. Pat. No. 6,663,655, which is a continuation-in-part of application Ser No. 09/738,431, filed Dec. 14, 2000, now U.S. Pat. No. 6,846,319 the disclosure of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
287046 | Norton | Oct 1883 | A |
2969887 | Darmstadt et al. | Jan 1961 | A |
3015403 | Fuller | Jan 1962 | A |
3678158 | Sussman | Jul 1972 | A |
3683655 | White et al. | Aug 1972 | A |
3757783 | Alley | Sep 1973 | A |
3875595 | Froning | Apr 1975 | A |
3941127 | Froning | Mar 1976 | A |
3944114 | Coppens | Mar 1976 | A |
3952377 | Morell | Apr 1976 | A |
3964480 | Froning | Jun 1976 | A |
4269174 | Adair | May 1981 | A |
4301802 | Poler | Nov 1981 | A |
4439423 | Smith | Mar 1984 | A |
4447915 | Weber | May 1984 | A |
4509233 | Shaw | Apr 1985 | A |
4525157 | Vaillancourt | Jun 1985 | A |
4586502 | Bedi et al. | May 1986 | A |
4638799 | Moore | Jan 1987 | A |
4719108 | Smith | Jan 1988 | A |
4738658 | Magro et al. | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4744364 | Kensey | May 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4802478 | Powell | Feb 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4863477 | Monson | Sep 1989 | A |
4878893 | Chin | Nov 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4904260 | Ray et al. | Feb 1990 | A |
4968298 | Michelson | Nov 1990 | A |
4998934 | Bernstein | Mar 1991 | A |
5002557 | Hasson | Mar 1991 | A |
5007921 | Brown | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5026390 | Brown | Jun 1991 | A |
5032125 | Durham et al. | Jul 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5108420 | Marks | Apr 1992 | A |
5114032 | Laidlaw | May 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5190050 | Nitzsche | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5192302 | Kensey et al. | Mar 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5232451 | Freitas et al. | Aug 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5275616 | Fowler | Jan 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5292332 | Lee | Mar 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5306254 | Nash et al. | Apr 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320639 | Rudnick | Jun 1994 | A |
5334216 | Vidal et al. | Aug 1994 | A |
5334217 | Das | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
RE34866 | Kensey et al. | Feb 1995 | E |
5411520 | Nash et al. | May 1995 | A |
5425757 | Tiefenbrun et al. | Jun 1995 | A |
5431639 | Shaw et al. | Jul 1995 | A |
5443481 | Lee | Aug 1995 | A |
5486195 | Myers et al. | Jan 1996 | A |
5492763 | Barry et al. | Feb 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5522840 | Krajicek | Jun 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5549633 | Evans et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554162 | Delange | Sep 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5571181 | Li | Nov 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5573994 | Kabra et al. | Nov 1996 | A |
5588424 | Insler et al. | Dec 1996 | A |
5588992 | Scott et al. | Dec 1996 | A |
5591206 | Moufarrege | Jan 1997 | A |
5601556 | Pisharodi | Feb 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676689 | Kensey et al. | Oct 1997 | A |
5681334 | Evans et al. | Oct 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5707393 | Kensey et al. | Jan 1998 | A |
5713911 | Racenet | Feb 1998 | A |
5720748 | Kuslich et al. | Feb 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5728122 | Leschinsky et al. | Mar 1998 | A |
5728132 | Van Tassel et al. | Mar 1998 | A |
5728146 | Burkett et al. | Mar 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5814062 | Sepetka et al. | Sep 1998 | A |
5830125 | Scribner et al. | Nov 1998 | A |
5830171 | Wallace | Nov 1998 | A |
5843124 | Hammerslag | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5857999 | Quick et al. | Jan 1999 | A |
5861004 | Kensey et al. | Jan 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5871474 | Hermann et al. | Feb 1999 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5888220 | Felt et al. | Mar 1999 | A |
5888223 | Bray, Jr. | Mar 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5893890 | Pisharodi | Apr 1999 | A |
5895411 | Irie | Apr 1999 | A |
5897593 | Kohrs et al. | Apr 1999 | A |
5904648 | Arndt et al. | May 1999 | A |
5906631 | Imran | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5941899 | Granger et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5954636 | Schwartz et al. | Sep 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5964807 | Gan et al. | Oct 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5972031 | Biedermann et al. | Oct 1999 | A |
5984927 | Wenstrom, Jr. et al. | Nov 1999 | A |
5989230 | Frassica | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6007563 | Nash et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6016806 | Webb | Jan 2000 | A |
6020380 | Killian | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6030442 | Kabra et al. | Feb 2000 | A |
6033427 | Lee | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6056768 | Cates et al. | May 2000 | A |
6066108 | Lundberg | May 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6077281 | Das | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6082362 | Webb | Jul 2000 | A |
6086608 | Ek et al. | Jul 2000 | A |
6093207 | Pisharodi | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099567 | Badylak et al. | Aug 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6126675 | Shchervinsky et al. | Oct 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6146419 | Eaton | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6162240 | Cates et al. | Dec 2000 | A |
6174322 | Schneidt | Jan 2001 | B1 |
6174323 | Biggs et al. | Jan 2001 | B1 |
6183518 | Ross et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6206921 | Guagliano et al. | Mar 2001 | B1 |
6206922 | Zdeblich et al. | Mar 2001 | B1 |
6206923 | Boyd et al. | Mar 2001 | B1 |
6221109 | Geistlich et al. | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6240849 | Holler | Jun 2001 | B1 |
6248131 | Felt et al. | Jun 2001 | B1 |
6258100 | Alferness et al. | Jul 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6270516 | Tanner et al. | Aug 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293951 | Alferness et al. | Sep 2001 | B1 |
6296657 | Brucker | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6306114 | Freeman et al. | Oct 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6346112 | Adams | Feb 2002 | B2 |
6348064 | Kanner | Feb 2002 | B1 |
6350274 | Li | Feb 2002 | B1 |
6368341 | Abrahamson | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6458100 | Roue et al. | Oct 2002 | B2 |
6464645 | Park et al. | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6494848 | Sommercorn et al. | Dec 2002 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6547810 | Sharkey et al. | Apr 2003 | B1 |
6554833 | Levy et al. | Apr 2003 | B2 |
6626918 | Ginn et al. | Sep 2003 | B1 |
6645225 | Atkinson | Nov 2003 | B1 |
6656206 | Corcoran et al. | Dec 2003 | B2 |
6663655 | Ginn et al. | Dec 2003 | B2 |
6682489 | Tenerz et al. | Jan 2004 | B2 |
6695867 | Ginn et al. | Feb 2004 | B2 |
6699261 | Cates et al. | Mar 2004 | B1 |
6702835 | Ginn | Mar 2004 | B2 |
6716179 | Burbank et al. | Apr 2004 | B2 |
6776784 | Ginn | Aug 2004 | B2 |
6846319 | Ginn et al. | Jan 2005 | B2 |
6860895 | Akerfeldt et al. | Mar 2005 | B1 |
7008439 | Janzen et al. | Mar 2006 | B1 |
7144411 | Ginn et al. | Dec 2006 | B2 |
7317951 | Schneider et al. | Jan 2008 | B2 |
7361183 | Ginn | Apr 2008 | B2 |
20010003158 | Kensey et al. | Jun 2001 | A1 |
20010037808 | Deem et al. | Nov 2001 | A1 |
20010052344 | Doshi | Dec 2001 | A1 |
20020002386 | Ginn et al. | Jan 2002 | A1 |
20020016583 | Cragg | Feb 2002 | A1 |
20020022822 | Cragg et al. | Feb 2002 | A1 |
20020026208 | Roe et al. | Feb 2002 | A1 |
20020072767 | Zhu | Jun 2002 | A1 |
20020077656 | Ginn et al. | Jun 2002 | A1 |
20020077657 | Ginn et al. | Jun 2002 | A1 |
20020077658 | Ginn | Jun 2002 | A1 |
20020077701 | Kuslich | Jun 2002 | A1 |
20020082617 | Nishtala et al. | Jun 2002 | A1 |
20020095179 | Tenerz et al. | Jul 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030023267 | Ginn | Jan 2003 | A1 |
20030033006 | Phillips et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030088271 | Cragg et al. | May 2003 | A1 |
20030139819 | Beer et al. | Jul 2003 | A1 |
20030144694 | Chanduszko et al. | Jul 2003 | A1 |
20030145865 | Sterman et al. | Aug 2003 | A1 |
20030208232 | Blaeser et al. | Nov 2003 | A1 |
20030225421 | Peavey et al. | Dec 2003 | A1 |
20040019330 | Ashby | Jan 2004 | A1 |
20040059375 | Ginn et al. | Mar 2004 | A1 |
20040073242 | Chanduszko | Apr 2004 | A1 |
20040098042 | Devellian et al. | May 2004 | A1 |
20040098121 | Opolski | May 2004 | A1 |
20040133236 | Chanduszko | Jul 2004 | A1 |
20040204654 | Egnelov et al. | Oct 2004 | A1 |
20050065549 | Cates et al. | Mar 2005 | A1 |
20050085854 | Ginn | Apr 2005 | A1 |
20050085856 | Ginn | Apr 2005 | A1 |
20050192606 | Paul et al. | Sep 2005 | A1 |
20050267528 | Ginn | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
3922203 | Oct 1990 | DE |
19710392 | Jul 1999 | DE |
0432321 | Jun 1991 | EP |
0647430 | Apr 1995 | EP |
0700671 | Mar 1996 | EP |
1033115 | Sep 2000 | EP |
1078601 | Feb 2001 | EP |
2639823 | Jun 1990 | FR |
2001309933 | Nov 2001 | JP |
WO 9726847 | Jul 1987 | WO |
WO 9205828 | Apr 1992 | WO |
WO 9308740 | May 1993 | WO |
WO 9505206 | Feb 1995 | WO |
WO 9802100 | Jan 1998 | WO |
WO 9819605 | May 1998 | WO |
WO 9820939 | May 1998 | WO |
WO 9848706 | Nov 1998 | WO |
WO 9902100 | Jan 1999 | WO |
WO 9902108 | Jan 1999 | WO |
WO 9902214 | Jan 1999 | WO |
WO 9961084 | Dec 1999 | WO |
WO 9965544 | Dec 1999 | WO |
WO 0007506 | Feb 2000 | WO |
WO 0062699 | Oct 2000 | WO |
WO 0069374 | Nov 2000 | WO |
WO 0071032 | Nov 2000 | WO |
WO 0102042 | Jan 2001 | WO |
WO 0110316 | Feb 2001 | WO |
WO 0113839 | Mar 2001 | WO |
WO 0113908 | Mar 2001 | WO |
WO 0121247 | Mar 2001 | WO |
WO 0126588 | Apr 2001 | WO |
WO 0128464 | Apr 2001 | WO |
WO 0145577 | Jun 2001 | WO |
WO 0145579 | Jun 2001 | WO |
WO 0160288 | Aug 2001 | WO |
WO 0166045 | Sep 2001 | WO |
WO 0166190 | Sep 2001 | WO |
WO 0187170 | Nov 2001 | WO |
WO 03047434 | Jun 2003 | WO |
Entry |
---|
E.H. Cassinelli, M.D., et al., “Biochemistry of Intervertebral Disc Degeneration and the Potential for Gene Therapy Applications”, SpineLine, The Clinical & News Magazine for Spine Care Professionals, vol. 11, Issue 1, Jan.-Feb. 2001. |
K. Nishimura, M.D., et al., “Percutaneous Reinsertion of the Nucleus Pulposus, An Experimental Study”, Spine vol. 23, No. 14, pp. 1531-1539, 1998. |
Maurice Hiles, “New Specialty Polymer Products Through Interpenetrating Polymer Network (IPN) Technology—The Development of an Interpenetrating Polymer Network to Contain Mechanically Induced Vibration”, Oct. 20-21, 1986, Colony Square Hotel, Atlanta, GA. |
Zoltan G. Turi, M.D., “Overview of Vascular Closure”, Endovascular Today, Closure Update 2008, pp. 28-37. |
Office Action in corresponding Canadian Patent Application No. 2,733,845 dated Dec. 16, 2013. |
M. Saines, PCT Publication No. WO 00/71032 A2, “Hemostatic Device for Angioplasty”, Nov. 30, 2000. |
Number | Date | Country | |
---|---|---|---|
20040127940 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09866548 | May 2001 | US |
Child | 10734929 | US | |
Parent | 09738431 | Dec 2000 | US |
Child | 09866548 | US |