Not Applicable
Not Applicable
1. Field of the Invention
This invention pertains generally to displays and more particularly to low-cost static and semi-static displays.
2. Description of the Background Art
Currently, in order to incorporate a display for an electronic device the system must with complex electronics for driving the display. This drawback has reduced the inclusion of displays on many low cost electronic devices.
A conventional display controls the optical state of each area of the display from a separate control line, or multiplexes the display with rows and column between which a signal is imposed for controlling the activity of those display areas. Even in a multiplexed display, the number of rows and column drive lines necessary is typically a minimum of 2√{square root over (n)}, where n is the total number of display areas to be controlled.
In addition, the drive signals must be routed to the display areas for controlling them. The need for drive lines, whether 1-1 (direct) or multiplexed are required regardless of the update rates necessary within the display.
The cost and complexity of implementing these displays has limited their applicability.
Therefore a need exists for low cost displays that can be used in a variety of low-update rate applications. The display devices taught in accordance with the present invention satisfies those needs, as well as others, and overcome deficiencies in previously known techniques.
The present invention describes a number of static and semi-static update display related embodiments. In arriving at the invention the inventor has discovered that embedded drive lines and multiplexing can be done away on rewritable displays directed toward a number of specific application areas. The invention describes numerous forms of rewritable displays which can be implemented at low cost with reduced component count on the drive electronics.
Current package labels are currently write only, wherein a new label must be applied to alter the visually displayed addressing. In addition, other applications exist for inexpensive reprogrammable displays.
The use of electronic ink has been widely touted for use in books and other media wherein a grid of electrodes is then placed as a netting on both sides of the paper such that any small region of the material may be manipulated either on or off. However, the number and placement of electrodes on such a surface proves to be both expensive due primarily to the requirements for drivers and connection to the tiny embedded electrodes. To achieve a resolution of 300 DPI (generally considered a minimum quality level) requires approximately 3300 horizontal electrodes and 2550 vertical electrodes which must be driven by an attached electrical circuit. Supporting such as large number of connections can prove costly.
Using material coated with electronic ink with printer style devices that generate pixel sized electric fields has been described, however, it will be appreciated that driving a static array of such pixels for the width of a page requires approximately 2550 individual pixel electrodes that must be driven by the circuit voltage. The bar containing the pixel electric field electrodes, segmented electric field, is referred to as an electric field wand.
One of the advantages of electronic ink, is that once the electronic ink material is written it may be just as easily rewritten. However, in certain applications this is also a disadvantage, as others may change the state of the ink.
Therefore a need exists for a simple displays and methods thereof. The displays in accordance with the present invention satisfies that need, as well as others, and overcomes deficiencies in previously known techniques.
Accordingly, a need exists for inexpensive labels and other inexpensive displays which can be readily reprogrammed. The present invention fulfills that need without the expense and other drawbacks of prior techniques.
The present invention includes low cost reprogrammable labels and other display forms utilizing electronic ink. One aspect of the present invention provides a simplified drive mechanism for a segmented electric field configured for setting the state of the electronic ink within the material. This improved wand contains serial to parallel converters along its length wherein a bar containing thousands of pixels may be driven by a few signals from the controller. The state of the pixels being rapidly changed as the wand moves in relation to the elnk containing material.
Moving the wand over the paper requires that the pixels of the wand be modulated according to the rate at which the paper and wand move in relation to one another. The use of a standard feeder mechanism, such as in a printer, can provide a fixed speed as is generally required in devices wherein a physical material is displaced onto the paper.
However, use of electronic ink allows the field transitions that are required for changing the state of the microcapsules to take place at a widely varying rate. Therefore, the wand can be operated over the elnk containing material at a wide variety of speeds. The wand may be moved over the paper by manually moving the wand over the paper, or by manually pulling (or pushing) the paper past a wand device. In either case the speed of the paper must be discerned, and the present invention describes methods utilizing encoder wheels, and the use of detectors which detect the rate at which the material is passing past the wand. One aspect is the embedding of markings onto the paper so that a detector can determine the speed, position, and orientation of the material as it is moved in relation to the wand. A preferred marking is the printing of lines of ultraviolet responsive dyes into the material, wherein the detector reads the passing of the lines to determine position.
One challenge to the use of simplified ePaper utilization is that the electric field still needs to be modulated at the locations in accord with position of the paper. Utilizing a conventional motorized feeder, as is done with typical printers, the rate of feed is known. In conventional printers the head, (ink jet, laser, and so forth) is constrained to a given rate of operation that must coincide with the speed of the paper, given as pages per minute. It will be appreciated, however, that the electric field applied to material containing electronic ink may be passed over the surface at a wide range of speeds without altering the ability to print the material. However, it will be appreciated that the dots of the electric field scan wand still must be turned on and off at a rate that matches the spacing of characters on the page being printed and therefore the speed of the paper.
When being hand-fed, the wand can receive information on the rate of movement in the following ways: (1) roller wheels—material speed is detected in the pull direction; visible tracer lines—visible markings, such as lines on the back of a page, that are detected in order to determine material position and rate of movement; (3) invisible (to humans) markings—ultraviolet or marking visible at other spectral ranges wherein the markings do not interfere with viewing the electronic ink; (4) granularity detector—apparatus and method that utilizes the particulate nature of the deposited electronic ink microcapsules to detect the relative movement.
It will be appreciated that in order to change the state of the microcapsules they must be exposed to an electric field potential, wherein the of the materials within the associated suspension respond in alignment with the field and remain in the orientation even after the field is removed. Deposited grid lines on each side of the elnk material provides a method of addressing the microcapsules. The aforementioned lower cost displays deploying electronic ink utilize a single side wand, or screed, that is run over a single side of the material containing the electronic ink microcapsules. An opposing phase of the screed drive voltage is coupled to the opposing side of the display utilizing top side conductive areas which connect to the underside conductor, such as edge bars, grids, and conductive pad areas. The screed can then “print” an electronic label or page without access to the other side, which may be attached to another article. The conductive areas may be brought to the top surface in a number of ways. In one method a conductive grid is applied to the material (single signal—not as in a pixel addressable display) after which the elnk is applied over selected areas, thus providing access to the underside conductor. Furthermore, these edge areas according to the invention may be configured for removal, such as by segmentation (perforations) whereby the conductive areas may be removed such that the display can no longer be reprogrammed.
Electronic labels created according to the invention, provide a number of benefits within commerce as they may be topically reprogrammed. Numerous forms of electronic labels are described, including built-in programmable tags (i.e. on file folder labels, binders), reprogrammable bar code tags, package date codes which are “printed” at the time of production, package shipping addresses (originally provided as indirect addresses which are converted to direct addressed—as per another application from same inventor), warning labels whose message only appears in response to an nearby active electric field, and so forth.
A device for programming the aforementioned topically reprogrammable labels and tags is described which allows in-situ printing and optionally reading of labels. The device provides for voiced input of label information, which at user discretion is printed during a subsequent scan. The topical programmer provides an optional display so that the user can verify the proper audio conversion prior to reprogramming the label. The topical programmer also provides an optional optical reader, such that tags may be read in, and either altered or reprogrammed. This for example can facilitate relabelling items, wherein information read from the old label is used for creating the new label. This provides great utility with bar codes, pricing labels, package numbers, dates and so forth.
Very low cost reprogrammable and semi-active displays are described for use in various industries, such as advertising, point of sale, roadside, entertainment, and informational. In these displays electrode sections are configured for various forms of movement in relation to the material coated with electronic ink. By way of example thee following are described according to the invention: a circular sweep display, a cylindrical sweep display, a continuous loop scrolling display, plotters, and a spherical display. One of the displays is shown for use within lighting wherein the displayed text or graphic advertisement (backlight by the fixture) is reprogrammed by rotating the fixture, after loading in new information to the display. The above signs may also each be alternatively changed by means of manual cranking to reprogram the display.
Reprogramming sheets containing embedded electronic ink is described for extending the display area of a computer display, such that reference information may be printed on the fly to extend the “size” of the display area. For example, a screed is shown built into a peripheral edge of a laptop computer through which a panel containing electronic ink is slid. The user need only activate the screed when a desired reference item is on the screen, and then extract the panel. The panel provides reference information so that the user need not use a standard printer to print out throw-away reference pages, or toggle back and forth between screens. Alternatively, the active elements within a typical flat panel display can be adapted to generate an electric field in addition to controlling the display, such that the panel can be programmed by the display itself to a matching image.
An input tablet configured with a semi-active display of electronic ink is described. The tablet allows the user to draw with a electric-field stylus on pad containing electronic ink with embedded electric field sense grid. The input from the stylus both changes the state of the electronic ink and inputs the data to the computer, therefore, what is shown on the input tablet and represented on the computer remain synchronized. The user can erase, or rewrite the semi-active display, by means of a slidable screed, or less cost effective set of embedded upper and lower drive wires. The electric field sense grid is configured to respond to the electric field from the stylus, (either wired or wireless) in the same proportion as the electronic ink responds, so that the resultant captured image matches the image printed. By expanding the size of the tablet, a large electronic blackboard is created wherein whatever is written with the stylus can be captured by the computer. Erasers of various sizes are created with opposing electric field polarity in relation to the field potential of the large area electrode behind the electronic blackboard, wherein wiping down the display actually clears the desired region in similar manner to a conventional chalkboard, while simultaneously correcting the image held by the computer.
A simple reusable notepad is described, such that a stylus is used for applying an electric field at a moving point applied to the material containing electronic ink. The entire area can be erased at the push of a button to allow a new message to be written.
Power for a semi-active display can be derived from a conventional power-source, however, a method is described for overlaying a semi-active display utilizing electronic inks over an active area containing a photoelectric material for the generation of circuit power. In addition the photoelectric circuit may be interspersed with active devices, such as polymer transistors and the like, for controlling the pixels of the display.
Another device of the invention is a screed form of wand device for use with areas of electronic ink which span widths beyond the length of a typical programming wand; wherein the wand can be extended and contains optical detectors. The optical detectors determine the state of adjacent electronic ink pixels such that the images or text may be properly aligned although programmed in separate strips.
Embodiments of the present invention can provide a number of beneficial aspects which can be implemented either separately or in any desired combination without departing from the present teachings.
An object of the present invention is to provide a low cost reprogrammable shipping label.
Another object of the invention is to provide reprogrammable label upon which an indirect address may be reprogrammed with a direct address.
Another object of the invention is to provide low cost reprogrammable displays.
Another object of the invention is to provide electric field wand and ePaper sheet material containing electronic ink that allows scanning through by hand.
Another object of the invention is to provide segmented electric field electrodes capable of being individually driven with an applied voltage level, typically either on or off.
Another object of the invention is to provide low cost and/or large area semi-active displays which are refreshed at a non-real time rate, such as scrolling displays and so forth.
Another object of the invention is to provide optically state reprogramming in response to only gaining access to the top surface of the material.
Another object of the invention is to provide a simplified wand structure with screed that facilitates addressing.
Another object of the invention is to provide an elnk enhancement to facilitate variable-speed “wanding”.
Another object of the invention is to provide the use of tracer lines, for example optical (i.e. on back of page), ultraviolet (on either side) and so forth.
Another object of the invention is to provide exposed conductor track for making connection with wanding device.
Another object of the invention is to provide inexpensive displays—that require fewer scan lines.
Another object of the invention is to provide read-only mechanism with removal of area with conductive strip.
Another object of the invention is to provide granularity detection apparatus and method within the sensing of screed motion, for use with fixed or random elnk deposition.
Another object of the invention is to provide electronic labels with speed-tracks, with exposed ground plane.
Another object of the invention is to provide electronic labels with built-in programmable tags (i.e. on file folder labels, binders).
Another object of the invention is to provide electronic labels with programmable bar code tags.
Another object of the invention is to provide electronic labels with package date codes “printed” at the time of production.
Another object of the invention is to provide electronic labels with package shipping address (for consumer protection as per another application from same inventor).
Another object of the invention is to provide electronic field warning labels.
Another object of the invention is to provide a voice conversion programming wand, or one capable of taking external input.
Another object of the invention is to provide a semi-static circular display (such as a clock face wristwatch etc.).
Another object of the invention is to provide a semi-static drum display (like a scrolling textual display).
Another object of the invention is to provide a semi-static scroll display (i.e. advertising sign & reusable paper chart recorder).
Another object of the invention is to provide a semi-static panel printer providing extra screen surface.
Another object of the invention is to provide a semi-static panel printer in a laptop computer (built-in ewand).
Another object of the invention is to provide a semi-static panel printer as part of video display.
Another object of the invention is to provide a semi-static stylus surface.
Another object of the invention is to provide a writing tablet w/stylus and erase button—(i.e. children's drawing tablet, bulletin board, face of refrigerator.
Another aspect of the present invention is to provide a programmable static display, and material, whose transmissivity can be controlled by the application of an electric field.
Another aspect of the present invention is to provide a programmable transmissive display and material which can be fabricated at low cost in high volume rolls and cut to size for a variety of signage and display applications.
Another aspect of the present invention is to provide a programmable static display, and material, which may be utilized over backlighting and/or base materials operating in a reflective mode.
Another aspect of the present invention is to provide a programmable transmissivity display and material that also provides sufficient contrast in a reflective mode.
Another aspect of the present invention is to provide a material that may be utilized for creating transmissive active displays, static displays, and quasi-static displays.
Another aspect of the present invention is to provide a method of fabricating a programmable transmissive display and material.
Another aspect of the present invention is to provide a non-programmable material which may be utilized as a monochrome light transmissive backing for a printed article, to enhance visibility in low light and increasing apparent depth in all light conditions.
Another aspect of the present invention is to provide a programmable display and material which can provide any number of optical states.
Another aspect of the present invention is to provide a programmable display and material which can selectively direct the direction at which light is passed from a first side through to a second side of the material.
Another aspect of the invention is that it provides lower cost moving electrode programming for the display.
Another aspect of the invention is a display scroll in which both sides of page can be written upon.
Another aspect of the invention is a display scroll that can display a edge menu on each page for common selections.
Another aspect of the invention is a scroll page that can be held in either direction (page to right or to left).
Another aspect of the invention is that the scroll once extended preferably locks in out position until unlocked.
Another aspect of the invention is a scroll can be unlocked by button, hyperextension, jerk extension, and so forth.
Another aspect of the invention is the ability for extending multiple pages if desired.
Another aspect of the invention is that of displaying of a menu on extended portion of page.
Another aspect of the invention is that of verifying input on eink page in response to a “quick cast”.
Another aspect of the invention is user selections via TOC or other indexing on small active display.
Another aspect of the invention is that of utilizing programming electrodes as a user input device.
Another aspect of the invention is that it can record spoken notes
Another aspect of the invention is that it can associate notes with pages, paragraphs, lines, or specific text or graphics.
Another aspect of the invention can allow user to highlight lines of text.
Another aspect of the invention allows the user to select lines of text for copy into an upload buffer.
Another aspect of the invention is that it can be powered or charged from USB port and/or solar cells.
Another aspect of the invention is that solar cells can retain charge when not used for periods of time.
Another aspect of the invention is that content and/or notes can be downloaded or uploaded to/from device.
Another aspect of the invention is to provide a convenient means for writing labels on storage media.
Another aspect of the invention is to provide a media which can be easily label with a rewritable label.
Another aspect of the invention is to provide a method of rewriting labels such as on rewritable media.
Another aspect of the invention is to provide a means of writing media that can be performed on the fly within a media recording device.
Another aspect of the invention is to provide a means of writing media that can be performed with an inexpensive and portable device.
Further aspect and advantages of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
Referring more specifically to the drawings for illustrative purposes, the present invention is embodied in the method generally described in
Programming Screed.
According to one embodiment the means for converting a serial input into a parallel output within the electrode drive means comprises a series of shift registers 12a-12f (the number of which is determined by the desired resolution and length of the wand) distributed along a portion of the wand. The pixels of the wand may be driven by a set of signals for driving the conversion of serial data Din 14 into parallel data that creates electric fields at the surface of the material to set the state of the microcapsules. The embodiment shows the use of Din 14 connected in series to the shift registers which are clocked by a Clk signal such that the data is loaded across the span of shift registers. An optional reset line 18 is shown for clearing the shift registers simultaneously, such as for an erase operation. The outputs of the shift registers are connected to sets of pixel electrodes 20 and 22 (each shift register has a set of pixels). The signals 24 continue to subsequent shift registers including optional Out 26. The shift registers upon receiving an edge transition cause the output of data contained in the bits of the shift register to the pixel electrodes. It is preferred that the output bits of the shift register as set to output either a positive or a negative voltage in relation to a ground held on the opposing side of the material.
Reprogrammable Tags and Labels.
The present invention includes reprogrammable labels which may be utilized in the marking of packages associated with the consumer privacy system described above, or utilized separately in labels and low cost displays.
Although the lines are shown at varying length for ease of representation, they may be of different colors, line widths, have different dash patterns or be solid, and so forth and combinations thereof, wherein the system can detect positioning better than if all lines are of the same characteristics. This aspect is depicted as a full span set of lines 76 having diverse character (such as different width, breaks versus solids and so forth). The lines on the material may be printed with ink that is visible or preferably with ink that is reflective only to limited wavelengths of light, such as ultraviolet.
Programming Wand/Screed Control Electronics.
The following circuit may be used with the screed shown in
Another external input is illustrated by example utilizing an interface 174 which can receive text and/or graphics information either by a wired connection 176 to an electronic device 180 which sources the text and/or graphics information from either an internal memory, from user inputs, or in response to communicating with other systems. For example the input data can be received from a computer, laptop computer, personal digital assistant (PDA), cellular phone, dedicated programming device, and so forth. It will be appreciated that a wireless interface means 178 can be integrated for receiving text, graphic data, and/or commands from a remote device, such as using an RF link (or optical, inductive, capacitive, electric field intensity and so forth).
The electrode head 151 has a contactor wheel 152 for providing the opposing programming voltage. A speed detection circuit 153 provides feedback on programming speed. The electrode head 151 and speed detection circuit 153 are both connected to a scan circuit 154 which coordinates the speed and printing head of the wand. The scan control circuit is connected to a controller 156 which coordinates the actions of the circuit elements and generates the signals to drive the scan circuit. The microphone 158 is connected to a conditioning circuit 160 and an A/D converter 160 that digitizes the voice input. The microcontroller provides DSP functionality for speech to text conversion. An optional display 164 allows the user to see the converted speech prior to printing a label. A user interface 166 allows control inputs to be given by the user. A confirm button 168 is shown that the user can press after verifying the correct text on the display 164. Additionally, an erase button 170 allows erasing the converted speech such that additional speech may be input to the device. An optional reader head 172, allows a label to be read either textually, or by a bar code. The text is read in and can be communicated to other systems, after which the label can be reprogrammed with a new bar code or text.
Semi-Static or Slow-Scan Display Embodiments.
In addition to quasi-static reprogrammable labels, a number of inexpensive semi static, or slow-scan, displays are described. It will be appreciated that the conventional use of electronic ink that utilizes an the microcapsules interposed between matrices of fine grids, or deposited over an active transistor matrix, require a large number of addressing lines and associated circuitry which increase cost.
The screed may also take the place of one of the hands of an analog clock, such a second hand or minute hand, wherein it can update the display in the course of its normal movement, or more preferably perform a quick sweep and return just ahead of its former location, therein fulfilling two purposes. Example, in a clock with hour and minute hand the minute hand is adapted as the screed. In response to a trigger, such as a periodic signal, or the receipt of updated data (i.e., stock changes, news and the like), the combination minute hand/screed makes a quick revolution, such as within 1-2 seconds (depending on size of clock and motors used) and returns to a position just ahead of where it left. A portion of the minute hand is preferably transparent or has an aperture wherein the user's view of the programmed portions of the display is not substantially hindered.
Numerous mechanisms can be used for getting the data into the controller circuit. If the display is utilized for a clock, for example, the microcontroller 204 can maintain the time which may be set by external interface buttons. The display may be loaded with data in a variety of ways. A voice input section 206 is shown which comprises a microphone 208, a conditioning circuit 210, and an analog to digital converter 212 which is connected to a microcontroller capable of performing speech to text conversion, or additionally comprising a circuit containing DSP routines for performing speech to text conversion. A user can thereby give voice commands to the display, or enter notes that are then displayed on the circular display.
Alternate input is also shown by way of an optical link 214, typically infrared, comprising an optical receptor 216 (and optionally transmitter) coupled to a conditioning or modulation circuit 218 that is coupled to the microcontroller 204. The display can thereby be programmed by any form of optical remote control, PDA, cellular phone, and so forth. Additionally, an RF interface 220 is shown comprising an RF module 222 with antenna 224. A data connection 226 is also shown comprising a connection 228 and a level conversion circuit 230. The data connection can support connections to any form of digital output.
The invention may be practiced with additional rollers to suit the application. A drive mechanism 278 moves the rollers and overlayed material. Numerous actuating means (e.g., motorized actuators, stepping motors, mechanisms, and so forth) may be utilized for driving the scroll, such as by way of example a motor 279 with a pinion gear/wheel 280. A screed section 282 provides a series of electrodes for generating electrical fields at pixels along the span. The screed section 282 is shown connected to a controller 284 and a display input system. It will be appreciated that a wide variety of inputs are contemplated for this display device. In the case of a roadside billboard, it should be appreciated that the input device, such as an RF or IR link allows the contents of the billboard to be changed on the fly, without the conventional needs for manually attaching strips of colored paper materials to a structure. It will be further appreciated that an additional screed section 288 may be added so that the opposing side of the display may be utilized, however, the downward scrolling may be undesirable for certain applications.
A stamp means 368, such as time stamping module, is illustrated which comprises a plurality of electrode regions, such as organized in a 7-segment numeric pattern, 15-segment alpha-numeric pattern, a graphic pattern of elements, a bar for generating bar coding, or any other desired pattern type to be programmed onto the electronic ink. Optical state programming voltages are applied by a controller between the electrodes within the stamp and the background electrode for setting the electronic ink to a desired state. In this embodiment the controller maintains a time and/or date value and periodically outputs this for printing on the chart, for example at intervals which depend on the charting rate (e.g., every 5 minutes, 15 minutes, 1 hour, and so forth). It should be appreciated that this aspect of the invention can be used with the other inventive aspects described herein.
Semi-Static Display Device.
A preferred mechanism allows the display panels to be attached to the exterior sides of the display to extend it sidewardly with the static information. As in the previous examples, erasure can be performed on a panel by having the screed generate an opposite phase electric field as the panel is reinserted, or upon user activation of an erase feature coupled with movement across the panel. Alternatively, depending on the particular form of electronic ink utilized, the write operation can write portions of the display panel 410 to an active (such as dark pixels) while setting the remaining portions to a non-active state (such as light pixels), such that a specific erase procedure is not necessary. It will be recognized that non-rigid display panels may be printed by the screed section, and even relatively flexible sheets of material can be extended as a semi-static display, or sheets containing electronic ink may be hand fed through the slot to enable writing of static rewritable information thereon. It will be recognized that a motorized mechanism can be added proximal the slot for moving the panels and/or sheets of material in, out, or through the slot, however, this adds a measure of complexity and cost.
Input Tablet Devices using Electronic Ink.
A version which provides active updating can be constructed which utilizes embedded perpendicular grids and between the opposing grids is sandwiched a material containing elnk microcapsules. Substantially conventional electronic ink paper may be utilized as forms of it are provided with opposing grids to allow the setting of pixel regions at the crossing points where the grids overlap with appropriate signals. Used herein, the grid is connected to a driver circuit with programmable I/O pins that provide selective input and output and very high input impedance, such as I/O pins on certain microcontrollers manufactured by Microchip Incorporated™. The drivers on the grid lines vacillate between input and output modes.
While in an input mode they are set as high impedance inputs to register the electric field on the vertical and horizontal lines. Since the hand of the user itself is capable of acting as an antenna to couple an electric field to the input tablet, the electric field of the stylus 456 is preferably modulated, at a frequency that is not a multiple of the 60 Hz line frequency, or to assure distinction from other IF sources the electric field is modulated with a specific recognizable waveform pattern. Multiple input lines and output lines, depending on the pitch of the grid lines, may detect the electric field and the software determines the center for the line based on the center of the responsive area corresponding to the crossing in the grid associated with the received voltage pattern. It is preferable that the activation voltage of the electronic ink correspond with the detection potential of the grid lines, such that as the use writes with the stylus, the elnk capsules change state indicating the line being drawn, while the system also detects the new input to update the electronic version of the drawing, or writing.
The stylus used can be either wired or wireless, and it generates an electric field when pressed against the material. Preferably the stylus is configured with a force sensor and a control circuit which modulate the intensity of the electric field in response to the applied pressure and the selected simulated writing instrument, much as the depth of color and width of a pencil mark is determined by pressure, or the width and composition of a brush stroke changes with applied pressure.
The tablet toggles the I/O lines connected to the grid to output mode in order to drive the elnk spheres (capsules) to new states. In one embodiment the outputs are generated in quick bursts having a duration approximately equal to the maximum response time of the microcapsules, wherein the grid lines are utilized to drive an electric field in the conventional manner to change the state of the pixels. It will be appreciated that the grid can be driven in either polarity such that the pixels may be turned either on or off. Once set, the lines are quickly toggled back to input mode such that user inputs can be registered. A short simultaneous burst, such as one microsecond, of a single potential on all grid lines can be used to clear any stored charge on the input capacitance of the I/O drivers prior to switching back to input mode so that aliasing does not occur.
Certain forms of electronic ink may require that active elements be embedded below the pixels of elnk for activating the microcapsules. It will be appreciated that these active elements are to be configured with an input mode wherein a sensitivity to an electric field can be read through the addressing of the active elements.
The above active input tablet can be expanded to a large size as an electronic whiteboard whose contents can be collected by a computer.
Other non-grid forms of electric field detectors may be utilized within the input tablet. If the form of electric field detector utilized does not provide for driving the elnk, then a screed 458 is provided on the tablet to allow the erasing of the lines drawn by the stylus. In addition, the stylus itself is preferably configured with an “erasing” surface which generates an opposing polarity of electric field to erase the state of microcapsules back to their original, typically white state.
An otherwise conventional force input tablet can be augmented for semi static display by providing an electronic ink material overlay and changing the stylus. The electronic ink overlay has a conductive backing retained at a given, or selective potential. The stylus generates an electric field potential which is capable of driving the state of the electronic ink microcapsules. Preferably the electric field is generated in response to applied pressure, whereby the force tablet registers a particular force corresponding to a given brush width while the pixels of the electronic ink overlay are simultaneously being set to a given state in response to an electric field generated according to the same force.
The upper conductor, or partial grid conductor is held in a floating state during stylus writes. The upper conductor may be left off, if the difficulties with electric field dispersion or the intents of the specific implementation warrant. The side of the stylus 478, or a separate erasure screed can be utilized for clearing the electronic ink on the tablet.
Self-Powered Electronic Ink Display.
The display described above can also be implemented with all or portion of the display using a transparency controlled electronic ink, such as the embodiment described in another aspect of the invention.
Large-Area Optical State Programming Screed.
In one embodiment screed 530 incorporates a movement annunciation means configured to alert the user as to how to properly move the screed, and/or to indicate when it is not being moved properly as regard to direction, speed, and location. According to one simple example embodiment lights 538a, 538b are configured for indicating when the proper orientation of the screed is being retained. The lights are coupled to an orientation sensor whereby for horizontal use both lights are active if the screed is at the proper position and speed. A single light going out indicates that the corresponding end of screed 530 has not kept up with the other side of the screed. If both lights extinguish then the screed is being moved too slowly. In a more complex movement indicator, direction arrows can be provided about a center indicator, wherein both the direction and rate of motion can be indicated to the user by changing the direction and length of the displayed arrows. It will be appreciated that other forms of annunciating screen motion may be incorporated without departing from the teachings of the present invention.
In another aspect of the invention the screed is configured to provide a wide area synchronization means. The lower section of the screed is configured with electrodes, as previously described, for programming the elnk to an active or erased state. In one embodiment the synchronization means is embodied with upper portion 542 incorporating a set of detectors for registering the on/off state of the adjacent display area such that the position of the screed 530 in relation to the prior lines of programmed output may be determined and synchronized. The screed, as described previously is configured with a motion sensing mechanism, such as rollers, so that screed speed may also be registered. The wireless screed 530 is configured with an RF section so that text and images can be downloaded for printing on a conductive surface over which electronic ink material, or microcapsules have been overlayed. Screed 530 allows the large areas to be seamlessly programmed or erased by a single operator.
Accordingly, it will be seen that this aspect of the present invention provides a method for creating low cost reprogrammable display and labels.
Reprogrammable Printing on Bar Coded Tags.
It is often necessary to print new barcodes for different applications, or to update printed information as new pricing or other information changes, such as on shelf tags.
A few aspects of electronic ink reprogrammable printing are described. The first being the printing of bar codes on electronic ink labels. Wherein the configuration of a simple programming device is described.
The printer need only have a single electrode to generate the bar codes, the unit can sense motion across the label using mechanical sensors, optical mouse type sensing (high rate image comparison). Labels may have buried electrodes allowing the bar codes to be programmed automatically. The elements of the label can be programmed simultaneously, without the need to traverse (move) across the label. For example a set of electrode bars or a dot style of coding (such as used on packages delivered by United Parcel Service), can be programmed in response to a two dimensional low resolution array. Furthermore, even small text or graphics patterns can be programmed using simultaneous programming from a two dimensional electrode array.
Secondly, a method and system is described for updating the printed elements associated with a specific identifier, such as represented by a bar code. For example, wherein an electronic ink printing device contains a reader means, such as for reading a bar code. The identifier is read and used to determine which content is to be written to the electronic ink, and as the unit is moved over the area to be printed, the appropriate text and/or graphics is printed on the electronic ink.
Well suited for information that is subject to periodic change, such as for example client information sheets, patient information sheets, pricing, price lists, menu items, and other displayed information which changes periodically but not generally enough to warrant display on a dynamic display screen.
By way of example the device can comprise a reprogramming device which reads an identifier from the label, such as a Client Number, UPC, or other record identifier (such as preprogrammed), annunciates when it has looked up information associated with that identifier (such as locally or via a communication with a server, for instance a wireless communication), and then reprints information on the reprogrammable information element. The information element may be made reprogrammable using electronic ink and providing a first electrode coupled to a first side of the information element, and a programming device with electrodes for applying programming voltages to a second side of the information element.
One of the applications that is well suited to this technology is that of product shelf tags which typically contain both a bar code indicia along with product information comprising a code, name, description and price. It will be appreciated that the prices are often subject to change. Installing electronic shelf tags is expensive, The present invention allows the shelf tag to be written with a fixed UPC bar code and a section of electronic ink. A wand, preferably containing a set of update data, entire database, or which communicates with a database, is wanded over the tag reads the UPC looks up the associated data and then writes the updated information over the elnk area on the shelf tag.
Electrode Bars and Other Display Enhancements.
This aspect of the invention describes what are referred to herein as integrated electronic ink electrode bars which provide a simple interface for driving the programming of electronic ink displays being programmed in response to moving the electrode bar over the electronic ink. The integrated electrode bars can be fabricated in a number of ways according to the invention.
The invention also describes a method of utilizing electronic ink electrodes as input devices in combination with their use for programming the electronic ink. The input function can allow for instance registering user touch inputs. The input function can be utilized with electrode bars made according to other inventive aspects by the same inventor, or with the electrode bar described herein.
SW for Creating Elnk Drive Signals.
The present aspect of the invention describes software for converting images etc. into electrode patterns for operating a scrolling display, such as display scroll loop, circular display, wide area screed programmer, a scrolling display or intermittent programmed display, each of these subject to being programmed from single of multiple linear arrays of programming electrodes coupled to the system.
Electrode Bars for Modulating the State of Electronic Ink.
Electrode bars for use with moving electronic ink displays. A series of conductive electrodes are placed in close proximity and preferably covered with a thin layer of Teflon, UHMWPE or similar material slippery abrasive resistant surface to protect the electrodes and reduce friction and prevent any chance of scratching the surface over which the electrode will be proximal to or retained against. Preferably make electrodes as raised protrusions having a curved surface. Preferably a laminate with alternating conductor and insulator (spacing?? i.e. 25% conductor—75% conductor—preferably about 50% conductor) preferably a serial interface chip on a PCB having the electrodes).
In utilizing the dual bar electrode array, it will be appreciated that in order for the outputs to be synchronized with the desired output pattern, the modulation of one bar will occur a select time before the other. The pixel buffer may configured with separate areas for output to each electrode array, wherein output is generated to the first electrode and then data collected for output to the second, and after a selected time, or in response to position information from the display, output is generated to the second electrode array.
Thereby if a series of 100 stages are used then the data is setup and clocked 100 times to propagate a new setting through the flip flops in preparation for output. Once loaded the output buffers are activated to drive the pixels programming them into an ON state (or reverse video off state).
The circuit is shown having its own power supply 156 for establishing the proper drive voltages for driving the states of the electronic ink, this reduces the constraints on the host system, which only need to generate conventional level signals, such as from a microcontroller. Power supply 156 in this case utilizes ground as the backplane reference voltage (prevents any chance of shorting out as typically the housing and other elements of an electronic unit are retained at ground potential. Therefore, setting the electronic ink (or similar technology providing a static output of display elements in response to the application of a sufficient voltage field) to a first and second state requires applying a voltage to the electrode which is at a first voltage (+V2) to reach a first state, and a second voltage (−V2) to reach a second state. It should also be appreciated that the voltages required to reach said first and second state could be skewed wherein reaching one state may require a different absolute voltage than reaching the opposing state. In the circuit shown the data latches operate from the originating supply voltage and the outputs are translated in the buffer stages 154a-154n, which are driven to the output voltage in response to the active signal that supplies +V2 to the output stage of the buffers. In similar manner a voltage of −V2 is output to the erase electrode in response to the erase signal. The reference voltage output is shown for driving the electronic ink reference plane.
Electrode module 110 may also be adapted with a number of other optional features. Output latches may be incorporated between outputs of the flip flops 152 and the inputs of the buffers 156. The latches would be preferably driven by the active signal after all bits were loaded into the shift register. This arrangement would allow the electrode outputs to be active while new data is being loaded for into the shift register, therein reducing the reliance on the processor to rapidly send a serial string between pixels during a string.
To support a reverse video output, the voltages output by the output stages to the segmented electrodes and to the erase electrode can be swapped in response to another input signal, such as reverse (not shown). For example each output may have both a +V2 driver and a −V2 driver side, wherein a first state of the reverse signal selects a first polarity for the segmented electrodes and the opposing voltage for the reverse electrode, while a second state selects the opposite voltage selection.
A microcontroller may be integrated with the module, although for supporting a large number of segmented electrode outputs, the shift register-buffer elements are still preferably included. It should be appreciated that incorporating a simple microcontroller within the electrode module (as in
As mentioned above motion detection can be integrated within electrode bar module 110, or a separate position detection module provided for the given form of display being supported. It will be appreciated that binary detectors (i.e. optical, magnetic sensors, Hall effect, electrical contact sensors, and so forth) may be utilized for detecting markers on a display material for synchronizing the output of the vertical rows. The movement of the electrodes in relation to the display material containing the elnk may be sufficiently constant to allow the segmented bar to be driven in response to timing, for example outputting new data to the electrode module at a fixed rate (i.e. 1 row/10 mS). Motion may also be detected with rolling sensors (i.e. having potentiometer feedback elements, optical feedback, switch encoder feedback, or other form of position detection.). Alternatively, optical imaging techniques may be utilized, such as currently utilized within optical mouse devices that sense the motion of a material in relation to he device. In any of these instances the electrode module can be implemented as a largely self-contained module that only relies on receiving data associated with text and/or graphics to be displayed.
Method for Programming elnk and Collecting User Input.
In this example programming is considered to be executing within a controller attached to the electrodes for programming the state of the electronic ink. The electrodes are moved in over the electronic ink display area, or the electronic ink display area is moved over the electrodes, or a combination of the two.
Represented by block 170 the output mode is entered by the system, wherein at block 172 a common voltage is established on the common electrode. The output mode can be entered in response to user input, detection of motion of the electrodes and/or electronic ink layer, programmatically, or otherwise. However, it will be appreciated that output can not be produced unless relative motion between display and electrodes is occurring. In block 174 the data is being output as voltages on the electrodes in relation to the common voltage for programming the state of the electronic ink. The data output is synchronized with the relative motion so that pixels are properly programmed and not unduly in response to incorrect motion information. The outputting of data continues until all data has been output, the full motion has been reached, the end of a movement cycle or programming cycle has been detected, or condition for terminating output to the display as detected by block 176.
If output is completed, at least temporarily, then an input mode is entered at block 178. If an integrated electrode bar is being utilized, such as described above, then the mode of that device may need to be changed to input. Furthermore, depending on how the inputs are to be sensed (i.e. conductance, capacitance, inductance, AC-coupled (radio-frequency), electric field changes, and so forth), other changes may need to be made, such as changing the voltage on the common electrode, or applying a alternating signal on the common electrode, erasure electrode, or other element. Additionally, the inputs may be sensed directly, or in response to conveying of another signal. For example, a signal (i.e. oscillating signal) can be output on the common electrode, a separate single electrode bar, or on alternating electrodes not being used for input, wherein the signal is coupled from the output to the input. Many of the modes of sensing can be performed through small thicknesses of material, such as RF, capacitive, inductive, and electric field and so forth.
When established in input mode the input can be sensed in response to changes in state as depicted by block 180a, and/or based on periodic sensing as depicted by block 180b. The input data is preferably interpreted by the processing element, such as to determine what the input means in a given context. It will be appreciated that the input can span a number of electrodes (although not all of the output electrodes need be involved in the input process), and may comprise a motion across the input wherein the controller needs to interpret the motion and contact data relative to the current context of the device, such as depending on what menu or other user input selection is provided. These electrode inputs can be additionally, or alternately, utilized for sensing other environment conditions. The inputs can also be adapted to provide input sensing other than provided by strictly electrodes, such as coupling signals to the electrodes when they are in input mode, although this is more complex and generally less preferable.
Finally, when the display needs to be updated, such as in response to motion of the display or electrode, as sensed by block 182, then the programming causes a switch back to output mode.
Electrode Bar Configured Also as User Input.
An electronic ink display material 192 is shown with a base layer 194, electronic ink sphere layer 196, a transparent common electrode 198, and an optional insulator 200 covering the transparent electrode. Conductor of electrode 198 may be deposited on a face of an insulator directed toward the electronic ink layer 196. An electrode 200, or more preferably the side view of an array of programming electrodes 200, is shown with optional smooth raised base and electrode tip 206 for assuring retention at a fixed distance from the eink layer. It should be noted that the material passing over a flat surface is more subject to separating from that surface and changing the distance between electrode and eink particles, although this is not generally very critical if the movement away from the electrode, or electrode array is sufficiently constrained so that sufficient programming voltage is provided.
Electrodes 204 may be integrated within an electrode bar, which can contain additional circuits for driving and interfacing, and preferably a serial interface, such as represented by three wire connection 206 to a processing element 208, such as a microcontroller. Alternatively, connections may be provided to each separate electrode, or to drive circuit for inputs and outputs of each electrode. It will be appreciated, however, that the integrated electrode bar, as described herein provides a readily implemented solution for both directing output and collecting input.
In
In
It will be appreciated that a legend may be printed on the electronic ink over (
Circuits can be added to
It will be appreciated that the number of input electrodes can be reduced from the number of programming electrode as the resolution needed for input is typically much less than required for output. For example reasonable text and graphics output is typically output on a small display with between about 16 to 300 pixels per inch, while a finger input selector may need only about 1-4 contacts per inch, although more can be utilized for collecting sliding user input. For example every nth electrode can be extended to provide the input, simplifying the processing of the inputs, and reducing the circuitry necessary for processing the inputs.
This embodiment is shown with an optional erasure bar 280, which in this embodiment has a first surface for erasing sections of the display and a second surface for detecting the presence of a user input, and alternatively for conditioning the user input, for example for outputting an AC signal which is coupled from the erasure bar 280 to the input electrodes 272.
Interface circuitry 282 can be integrated to form a combination output and input electrode bar circuit, therein allowing OEMs to quickly implement new electronic ink embodiments.
It should also be appreciated, that the electrodes may be grouped wherein some are set in an input modes while others are set in an input mode. This mechanism can provide specialty functionality.
In one embodiment, the two-dimensional array can be implemented as a transparent layer which overlays a display, such as a portion of the electronic ink material being programmed by electrode array 292, or any other form of display. In this way the selections can span a two dimensional array of choices, or allow a user to enter handwriting, drawings, and so forth.
Biased Output State Electronic Ink for Return to Default.
Electronic ink provides a low power and low cost method of actively displaying information. By altering the electric field on either side of the ink spheres (or other form of field sensitive optical elements) the optical characteristics of the material can be changed. One advantage of electronic ink is that once set in an active or inactive state, no more power is needed to retain that state, wherein power needs are greatly reduced.
However, this advantage of electronic ink is a disadvantage when the display is utilized as a readout of changing conditions.
In some applications, it is actually desirable that the display return to a default state when a programming voltage is removed. However, despite this being generally an advantage, there are some applications in which having the output remain in its last state after the drive signal disappears is problematic, because for example one may be desiring to indicate the presence of the drive signal.
The present aspect of the invention describes methods of making electronic ink, or similar technologies, so that they return to a fixed state under no-signal conditions. The present electronic ink enhancements provide mechanisms that force the electronic ink (or similar field driven optical output) to return to a fixed non-signal state, such as active or inactive.
The feature is implemented by including a form of biasing mechanism to urge the ink toward a fixed state, without the need to supply a sufficient field to change the electronic ink back to that fixed state (i.e. active, or inactive), such as when no power is available or otherwise being applied. Although an electrical bias could be used with conventional electronic ink, this has the disadvantage of requiring power and is really more of a signal state driven display.
This feature of the present invention may be implemented with a number of other aspects of electronic ink which have been described in the applications referenced above, which are incorporated herein by reference. For example with altering the field potential at which the electronic ink changes state, wherein output indications can change with changing field intensity, for example in a linear voltmeter display, or other field response applications.
In response to applying a field across the electrodes, between which the electronic ink is positioned, the eink changes from the biased state to the opposite state. Upon removal of the voltage potential across the ink layer it returns under the urging of the bias force to its original state.
Biasing the electronic ink to a fixed power-off state can be accomplished in a number of ways. By way of example these can comprise: (1) increasing particle size and/or density; (2) electrical biasing; and/or (3) magnetic or chemical biasing.
It will be appreciated that numerous other mechanisms can be utilized for biasing the materials inside the electronic ink spheres toward a given state, without departing from the teachings of the present invention. The present electronic ink invention can be utilized for a number of different applications, such as electronic indicators, labeling, field sensing.
In a first set of embodiment the electric field sensitive particles are biased to a default state by gravity. By way of example, the particles and the fluid filled capsules can be sufficiently increased in size until gravity effects become sufficient to bias the particles into a position when the voltage across the electrodes is relaxed. This also adds an advantage of increasing the depth of view. The density of the particles and/or fluid can also be altered to optimize the characteristics for using this biasing mode. It will be appreciated that as the particles are enlarged the time required for changing the display state increases as does the required electrode to background voltage levels.
Very low cost displays may be fabricated using the biased electronic ink. These displays can provide a number of benefits such as low power, adaptable transfer functions, high visibility, elegance of a display having a depth of view (as opposed to flat eink implementations as described in other applications by the inventor).
In
Although it appears of less practical value, one can provide electrodes in the face of each cell, wherein as conductive particles are pulled to the face of the display provide a conductive path wherein the setting of the display is registered. Although every cell could be configured in this manner, this is particularly well suited for one or more upper cells for registering if a threshold has been crossed. A display may be sold with connections available within each cell allowing the user to select their own limits, in response to which a small signal is generated when crossed to activating over/under threshold alerts and the like.
It will be appreciated that a number of ways exist for reducing the electric field strength for a given input voltage, or to otherwise register other aspects within the display.
Electronic Ink with Integrated Sensing.
By way of further example, a switched capacitor input can be configured wherein, as the applied voltage drops below an activity threshold, switches (i.e. analog FET switches) changes state to reverse the capacitor connection to direct an opposing field voltage which resets the output to an initial state.
One preferred method is the inclusion of materials in at least one of the ink material of the sphere which is magnetically attracted to material on one side of the electronic ink, such as adjacent the one electrode. For example a ferromagnetic material may be retained in particles which is attracted to a magnetic material layer near one of the electrodes. This has a similar effect as the gravity technique described above, but it not affects by directionality. It will be appreciated that other variations can be incorporated, such as including a magnetic material within at least one of the electronic inks that is magnetically attracted to a ferromagnetic metal on one side of the electronic ink. Further, both inks could be configured to alternatively attract and repel one or more external materials.
Repulsive chemical properties may also be relied upon to bias the retained two elements of material within the spheres to a fixed position in the absence of a sufficient electric field to force alignment in a given direction.
An electronic ink display (or similar) which is biased magnetically as described can be applied for use in sensing magnetic fields and reporting the intensity of the field without the need of converting sensed magnetic field to a voltage for driving a display. Similarly, electronic ink that is biased to a given state in response to other stimulus may be configured to change state in response to sensing related conditions, for example depending on the temperature, presence of liquid, presence of other chemical constituents, and so forth.
Electronic Ink incorporating Light Transmission Control.
In many display applications it is very desirable or necessary to have display backlighting wherein light shines through either the active or non-active elements, wherein the outline of the displayed text and/or graphics can be seen even when insufficient direct lighting exists. Conventional electronic ink technology, however, does not provide selective transmissivity.
Therefore, a need exists to develop a light transmissive form of electronic ink. The present invention solves that need and can be implemented utilizing substantially conventional processing.
Previously, the present application described the use of a form of light transmissive electronic ink was referred to, however, details were not provided on the construction details of the material. The present aspect of the invention describes methods and apparatus embodiments for producing transmissive electronic ink displays and materials which are programmable or non-programmable. These embodiments may be utilized with backlighting or have integral backlighting, and may be utilized in combination with printing techniques adapted for use with the material for controlling the transmissivity of the resultant signage or display.
In the present inventive aspect, the particles are retained in a section of a “fluidic light pipe” which tapers from a wide first end to a narrow second end. A sufficient quantity of particles is incorporated within the fluidic light pipe to provide a substantial blockage of the light when they are disposed at the narrow end of the light pipe, without duplicity (i.e., minimum number to achieve a given percentage light reduction, for instance 95%). It will be recognized that when the particles are at the wider end of the light pipe that the increased spacing will allow a greater percentage of light to pass through the medium. Therefore, changing the position of the particles in response to an electric field has the effect of altering the transmissivity of the material from a first state to a second state.
In the present invention a transmissive display technology is created utilizing the basic operating principles of electronic ink. It will be appreciated that the utilizing the electronic ink spheres within a paint material matrix does not easily lend itself to transmissivity because the spheres are symmetrical, blocking light through the material regardless of direction. Furthermore the matrix within which the spheres are randomly embedded also poses problems; with a clear matrix light passes through voids better than through the spheres, while an opaque matrix prevent light transmittal when material overlays any spheres. These problems with present technology have been recognized by the inventor.
The size of the tapered containers should be sufficiently small so that the particles move in response to a moderate voltage applications level. Furthermore, the use of a sufficiently small chamber and small particles assures that the particles remain in a given location within the tapered container after electrode programming voltages are relaxed. Preferred size ranges for the containers are expected to be with diameters in the range of from approximately 30 microns to 1000 microns, and more preferably between 50 microns to 500 microns with the thickness of a single opaque material layer being about the same thickness.
It should be appreciated the material 11 need not be opaque if light is otherwise restricted from passing through the material except through narrow and wide windows. For example covering 24 and/or 26 can be patterned to provide selective transparency to align with the windows, or the front or back of the material may contain an opaque coating for preventing the light from passing through non-window portions of the material.
Non-symmetrical containers 12, 14, 16 are formed in a substantially opaque base material 22, preferably a form of plastic selected for proper workability, durability, temperature stability and so forth. Forming top and bottom covers for sealing the containers are transparent layers 24, 26 (clear or colored) allowing light to permeate to the containers 12, 14, 16. It should be appreciated that additional structures may be incorporated for directing the particles or controlling their distribution toward either surface. For example a conical protrusion 38 extending into the cavity of the container can aid in biasing the particles toward the fringes of the container, and a steep enough protrusion could result in stacking the particles wherein more light can be transmitted. Other structures will be obvious in view of this structure, such as having a series of tapered wells on the wide side into which the particles stack automatically when moved from the narrow side to the wide side of the container. From the teachings above one of ordinary skill in the art will readily be able to create a number of alternate structures for redirecting particle alignment, without depart from the teachings of the present invention.
The containers are preferably closely spaced and may be adjacent one another, but preferably not overlapping, which would allow particles to migrate leaving uneven particle distribution and display properties. The optimum spacing of the containers depends on a number of factors, including material costs, fabrication techniques, fabrication costs on the opaque material, and the maximum amount of light to be transmitted through the material.
Example scenario determining light transmissivity. The following considers an example scenario in which circular cross section containers are placed with the widest portions being adjacent and the wide side having twice the diameter of the narrow side. The apertures for the containers provide up to about 75% transmissivity to the panel from the wide side, assuming near optimum light reflection from the interior walls of the light pipe. The particles at a density to block about 95% of the light at the narrow end, will block about 25-30% of the light when they are pulled to the wide end of the container. Therefore, the transmissivity of the panel can be changed from less than 5% to approximately 50%, which provides a high contrast ratio for the display. The size relationship between the wide and narrow ends and other aspects in the above example not limiting the practice of the invention.
It should be appreciated that although a single layer is shown for the sake of clarity, the material can be constructed with multiple layers, insofar as a light path is still provided between containers in one layer and those of another layer. The layers actually don't need to be aligned so long as a light path is created, for instance incorporation of a sufficiently thick diffusive layer can be placed between subsequent apertured layers wherein they need not be aligned. By way of example another opaque layer with tapered apertures can be coupled to layer 26 or layer 24 having the same orientation as the opaque layer shown. In this way the opacity of the non-windowed sections can be increased while the opacity of the material can be increased when the particles are directed at the narrow portion of the containers.
Embedded programming may be established to program the layers separately, although more preferably it is configured for programming the multiple layers simultaneously. For example multiple aligned layers of the material shown may be assembled, in particular for increasing the opacity of the base material 22 and the particles when retained at the narrow end of the containers. Another method of increasing the opacity of the base material is to attach an aligned overlapping aperture layer to the material, wherein light is further attenuated which attempts to pass through the opaque material. This may be placed on either side, but used on the wide portion of the display can increase the amount of light coupled through the container.
An illumination source 28 is shown disposed on one side of the electronic ink, herein depicted as the wide side. A means for generating an electric field 30 across the material is shown with a source Vp. It should be appreciated that any convenient method may be utilized with the material for generating a sufficient electric field for “programming the ink” (directing the spheres to a first or second side of the material).
By way of example and not of limitation, row and column techniques may be utilized with preferably substantially transparent conductors. Mechanical programming techniques may be utilized in which an electrode array generating electric field domains is slide over the material to program the portions into a first or second state. It should be appreciated that the material may be utilized with other techniques for programming the state of the electronic ink without departing from the teachings of the present invention.
Construction and Uses of Materials.
The present electronic ink invention lends itself to numerous fabrication techniques for creating the container walls in the opaque material, for filling the containers with particles and fluid, and for covering the opaque layer with a transparent layer. It should be appreciated with any of these techniques, however, that a manufacturer can generally produce one or a few varieties of the material which can be deployed within any active, semi-static, or static applications. Unlike conventional displays the manufacturer does not have to worry about producing specific sizes and types, they can concentrate on the lower the cost on creating rolls of the material, and the process should become more like producing paper than producing a display.
The following describes, by way of example and not of limitation, a few contemplated methods for fabricating the material of the present invention. One of ordinary skill in each fabrication art can utilize their expertise to modify the teachings herein for reducing the cost and complexity of manufacturing the display material without departing from the present invention.
In a first contemplated manufacturing process, appropriately shaped apertures are created in a sheet of opaque material forming the walls of the containers. A transparent covering 24, 26 is attached over either side of the opaque material. The container are filled with particles 20 and fluid 18, and then the cells are sealed off with another sheet of material 24/26. A number of aspects of manufacture should be considered with the material.
The apertures in the opaque material may be formed in a number of alternative ways, for example by ablation techniques, chemical etching, laser cutting, mechanical cutting, molding, mask forming techniques, additive processes, printing techniques and so forth. The material may have printing 40 (
The overlaid sheet may also provide a selective bonding surface, for example allowing paint or inks to adhere only to the material 40 while remaining clear, or being easily removed, from the ends of the containers. It will be appreciated that in this way a sign can have a reflective printing but be enhanced by the use of the transparent electronic ink display capability, wherein light can be generated through selected portions of the print (i.e. a monochrome rendition output in conjunction with a colored reflective rendition), thereby enhancing visibility in all conditions, but especially in low light conditions.
In another aspect of the invention a printing device can be configured with a means for detecting the position of the transmissive matrix of the present material, and a means for selectively applying inks or paints to the material, wherein the areas of the transparent apertures can be selectively prevented from being overprinted, or even selectively printed over, or ignored in a section on which that aspect is not important. One means for detecting the positioning of the material is by using a light mask having a similar sized apertures and pitch of the target material and modulating the position of this mask in relation to the position of the material, wherein a conventional optical sensor can detect the position at which maximum light passes through the mask and material. The position at which the maximum signal is detected is the position at which the holes in the mask optimally align with the material.
The above being described, it should however, be recognized that the size of the apertures (container ends—narrow end or wide end) is on the order of hundreds of microns, wherein precise pixel ink/paint deposition control would be required to achieve this level of accuracy. Alternatively, the optical mask above may be coupled to an inverse mask, wherein when the optical mask is aligned the inverse mask covers the apertures on the material. The printing may then be relegated to smaller masked sections, as it will be difficult to achieve the same temperature coefficients for the mask and material while preventing any pressure induced permanent or temporary distortions in the material or mask. Configuring the covering material of the transmissive material with one or more selective adherence layers is preferred as this can be performed at the factory making the high precision material, and allows for the use of generally conventional printing techniques which may be modified for aiding the difference in adherence and/or for providing a post printing cleaning operation which removes non-adhered inks/paints from over all or selected container ends (narrow or wide), or sealed apertures in the opaque material.
In addition the material need not be utilized with a backlight, as it can rely on light reaching the face of the display and either being reflected or absorbed by the particles, or passing though the container and reflecting off of the backing surface (which is only partially covered by the particles) back out to the viewer. For example the backing 26 may contain a reflective material. In a more preferred use of the material, the backing may contain a graphical image to be displayed (i.e. color or monochrome), wherein the user selectively sees the colors on this backing in response to the position of the particles, when programmed to the wide side the particles allow most of the incoming light to reflect from the backing thereby reflecting that color back out to the user. When the particles are positioned in the narrow end of the container, then the incoming light is directly reflected back to the user and the user sees the color of the particles themselves. The backing material may comprise a colored transparent backing wherein backlighting may be provided to enhance the amount of light reaching the user and not relying incoming light.
It should also be appreciated that the opaque material can be configured as a light pipe material, without the inclusion of the particles, such as for use behind signs and the like as described above. This material being also described as an aspect of the present invention. The light can be set to shine through all portions of the display, or be selectively attenuated by the application of inks or paints to provide the backlight transparent monochrome image overlaid with a reflective color image as described above, without the reprogrammability aspects, the reprogrammability may not be desired (except if special effects are wanted) for a sign intended to display a static message. The light pipe apertures in the opaque material may even be selectively formed in a process which converts a monochrome base image to determine the presence, spacing, size, and characteristics of the apertures formed in a layer of the opaque base material. For example utilizing optical masking techniques adopted from the semiconductor processing industry.
The above manufacturing method describes a process of creating apertures in opaque material, bounding a first surface, filling, and then bounding the second surface. It should be appreciated, however, that a number of alternative techniques can be adopted for creating the display material of the present invention, and derivatives thereof.
As a first example the opaque material can be formed with the tapered apertures into which capsules of electronic ink are coupled, using any convenient form of self-assembly technique. For example applying a vacuum pressure to the front surface (narrow side of apertures) while flowing capsules, optionally in a fluid or other carrier, over the back surface—wherein capsules get lodged under vacuum pressure into the tapered apertures. Glues or mechanical protrusions from tapered structure can be provided to enhance retention of capsules. A coating or covering can then be placed to retain the capsules and preferably to apply the conformal pressure, in particular from the backside. It will be appreciated that the narrow front aperture is sufficiently small to prevent the capsules from passing through the material, and can form a beneficial domed surface on the front side. Preferably in this way the original shape of the capsules, such as spherical, is forced to substantially conform to the interior of the tapered cavity. One big advantage of the technique is that it can be produced without the need of filling the individual containers with fluid and the proper volume of particles, wherein it can rely on techniques utilized for manufacturing conventional electronic ink spheres.
As a second example, electronic ink capsules can be formed individually having the asymmetrical shapes (narrow on one end and wider at the other end) and then these can be assembled (i.e. fused, adhered, attached to a backing, etc.) into a material layer.
It should be appreciated that a number of different aspects of the present invention and manufacturing techniques have been described above which can provide numerous options for creating various forms of both programmable and non-programmable signage, displays, and so forth.
The transparent electronic ink material and methods of the present invention may be utilized for constructing a variety of semi-static signs as well as for creating low cost, low power active displays. The material may be utilized within any conventional application for electronic ink, such as those described by the inventor or by others, although it is particularly well suited for backlite display applications, such as road side signage and so forth.
Optimizing Transparency.
It will be appreciated that by forcing the spheres to the edges of the wide end of the containers that the transparency can approach 100%, actually over 100% of the output area. One method for increasing the transparency is by forming the electrodes so as to redirect the spheres. In this embodiment electrodes are configured about the perimeter of the wide end of the cells, wherein the reflective elements are drawn to the edges of the display and to the center on narrow end of the cells.
Electrode 74 is a small flat electrode which forms a ring about each cell periphery. The electrode can also fill in the larger areas between the cells diagonally, if desired, however, this in some case could distort the distribution of spheres away from a strictly circular pattern. Electrode 74′ is shown being larger than the area between cells, wherein it can provide additional force to draw the spheres, but blocks a portion of the incoming light to the cell. Electrode 74″ is shown formed over the structure, such as by sputtering or other additive processes.
It can be readily seen that the spheres collect about the periphery of the wide end of the cells when polarity is applied in that direction. This increases the central transparency of the cells allowing the light to pass through with less diffusion although the reflected light about the periphery is reduced.
The above example illustrates the material utilized in a row and column type of drive, however, it can also be utilized with a display in which the pixels are programmed by a moving electrode in reference to a fixed electrode. In the above example the fixed electrode can comprise the ringed electrode structure 74, 74′, 74″ covering the back portion of the display. The programming voltages then applied from an electrode moving over the face of the display will still cause the spheres to either collect to block the narrow end or be distributed about the periphery of the cell (
Transparent Electronic Ink with Integral Backlighting.
It has been recognized by the inventor that a planar electronic ink construct which changes transparency in response to programming is particularly well suited for use with an integral and evenly distributed light source. Using discrete light sources requires that the material of the electronic ink and the light source be separated by a distance that is many orders of magnitude above the thickness of the electronic ink layer. Accordingly, one aspect of the present invention describes a transparent electronic ink with integral light source.
Multistate/Directional Optical Output.
In some applications it is desirable to be able to use a material for altering the direction of a light source. Although mirror arrays and the like may be utilized they can be expensive in large sizes and are not structurally robust.
Therefore a need exists for an apparatus and method for redirecting light using electric fields. The present invention fulfills that need and can be manufactured as a sheet material that may be cut for use in numerous applications.
Apparatus and methods are described for modulating the direction of light utilizing the movement of reflective particles within a fluid filled capsule, which utilizes electric field attraction properties found in electronic ink devices.
The above material presumes the setting of the electronic ink into a first or second state as is done with conventional reflective electronic ink. However, aspects of the invention may be utilized and extended for implementing various multistate output display materials, such as for directing the light output in a similar manner to a programmable mirror array.
Transparent layers 24, 26 may be applied to the material to seal apertures 12, 14 in creating the encapsulated fluid filled area, or to provide extra protection to the thin walls of the container cells.
Electrodes 16a-16d are shown adjacent to portions of container cells 12, 14. To simplify control it is preferred that the particles within cell 14 respond to the opposite polarity as the particles within cell 12, although the technique can be alternatively implemented using all the same type of particle. The particles utilized within this embodiment preferably have a highly reflective exterior surface for redirecting the light output. A transparent conductive connection grid is coupled between layer 10 and layer 26, and another between layer 10 and layer 24, wherein voltage are applied for directionally controlling the light output. The light can be directed straight through the center of the cells, toward the outside edges, or deflected at an angle controlled by the application of electrode voltage.
In
In
To use the same particles in each cell an upper and lower transparent electrode can be embedded between the walls of cell 12 and cell 14, a region 22 which is depicted in
Material 10 can be configured with all like electrodes connected together, wherein all the cells on the material will similarly direct light. Alternatively signals can be coupled separately to each cell, or more preferably to pixel clusters of cells, wherein the direction of light output can be controlled separately for each pixel area. This aspect of the invention allows for a wide variety of lighting effects to be created. Alternatively, regions in the material, such as bands or rings within a section of material, can be connected sharing common signals, thereby allowing separate control by section while significantly reducing the cost of interconnection and output driving a large number of separate pixels.
Inexpensive Electronic Book Embodiments.
A number of electronic book formats have been proposed for allowing a reader to view book pages electronically. These devices all utilize a dynamic display screen which is updated with a conventional row and column addressing matrix and therefore unit cost is often above what individuals are willing to pay for an electronic book display device.
Therefore a need exists for a lower cost alternative electronic book viewing device that provides the majority of the benefits of prior systems while doing so at a reduced unit cost, the present invention satisfies those needs.
A viewing device that utilizes a static display element, such as electronic ink, which is voltage field programmed to display text and graphics information. The display region does not contain the buried row and column drivers of a conventional display wherein cost per unit is reduced.
The viewing unit is particularly well suited for a paperback book replacement device, and it operates on the same concept as described with regard to
In addition, another device by the inventor describes a “location-aware audio tour device” which utilizes many of the principles espoused in
One of the primary advantages of the present invention is that it does not require the expensive row and column drives embedded in the sheet of a dynamic e-book. Cost can be brought down to the $10-$50 range. It should be appreciated that a page of 5″ by 8″ having 100 pixels per inch (which is not especially high resolution), currently requires 500 drive lines in a first direction and 800 drive lines in a second direction. These 1300 lines need to be connected to a myriad of circuits. In the present invention a single distributed electrode is required, which controls 800 drive lines, but can do so from a serial interface. Therein the electronics are substantially simplified. Furthermore, more than a single page can be extended if the user wants to briefly look back or forward to nearby pages.
Each retraction-advance cycle yields next page—unless other selection mechanism is used. The page is pulled from a housing, such as perhaps rolled-up under tension and in transit it is programmed with new data, such as text and graphics. The page may be left substantially flexible or stiffened in a number of ways. One preferred manner of stiffening the page to simplify holding is with a scissor mechanism that supports the extended page. However, use of a stiffener makes it more difficult to inexpensively implement the use of multiple pages.
Single button retraction and extended by pulling out the page. In one mode of the display, when the page is retracted and then pulled out again, the text and/or graphics being display is automatically updated to the next page. A small table of contents (TOC), such as with a dynamic LCD or eink can be incorporated on the housing to facilitate movement between sections of the device, and provide for directly setting page numbers and other overall reference functions. Buttons increase utility, such as for TOC, Index, Chapter forward, Chapter reverse.
Since no embedded sets of electrodes are necessary. Multiple pages can be pulled from the unit as the scroll can span numerous pages if desired. This is particularly useful during normal reading for going back to the prior page to refer to some content, without the necessity of changing the active page back to the prior page.
Other beneficial features are also described, such as a user input device that relies upon the electrode array used for programming the eink. User inputs can be sensed on the raw electrode array, such as conductively, of even through the material of the screen, such as capacitively or by registered the presence of RF (i.e. person's body acts as an antenna). In addition, the system can be configured to allow the user to take notes, listen to recorded music and the like. In one embodiment the notes taken can be stored in association with locations in the text, or graphics, to which they apply. A number of additional features are also described.
It should be appreciated that this embodiment provides output on a slide out electronic ink sheet, programmed by a fixed electrode as described in a previous portion of the application (
Basic Functions.
Embodiment 10 depicts the eBook as a small dedicated device, or one that is part of a memory stick, audio player/recorder, although it may be implemented in a number of alternative embodiments.
An optional stiffener 18 is shown attached to a distal side of page 14, therein making it easier to handle by the user. In this embodiment fasteners 20a, 20b are shown configured for attachment to structures 22a, 22b respectively therein protecting the user interface 24, such as allowing the unit to be carried in an attaché case, backpack, purse, hand bag, or whatever.
User interface 24 is shown comprising an optional active display 26, such as active eink, LCD, OLED, or other form, allowing interaction with the user. It will be appreciated that single LEDs or other indicators could be alternatively utilized, or menuing provided on the roll out screen, wherein even the small active display is not necessary. However, a small screen is preferable if the device is to be used for other functions aside from an electronic book, such as an file retaining memory stick, audio playback system, and so forth, wherein the user need not open the screen to select simple functions of the device. User scroll buttons 28 are shown along with various selection inputs 30, therein allowing the user to fully program the operation of the device.
According to the embodiment depicted, when the unit is utilized in an electronic book mode a desired index mechanism, is shown on the active display, or a combination of index mechanisms. For example a table of contents can be shown, a last displayed position shown, as well as user programmed bookmarks, note locations, page numbers and so forth. In this way the user can select how they want to select the content to be viewed. Furthermore, when the unit is loaded with multiple content elements, such as different books, lists of quotes, and so forth, a menu can be provided to allow the user to select which content. In one mode the unit defaults to the last content accessed, as this is the predominant selection for book readers, while other content may be kept for reference, such as dictionary, thesaurus, Bible, and so forth for other information.
User Input Via Programming Electrode Array.
One aspect of the present invention that increases the utility of the system, without substantially increasing the cost is that of using the elnk programming electrodes in both an output mode, as described, as well as in an input mode. This is possible within the semi-static display as the electrodes are not in use unless the screen is being programmed. Another aspect of the present invention describes this in detail, wherein it will not be described in this section. A linear input 32 is shown which contains a series of separate conductive elements which are coupled to the programming electrode bar. All or any portion of the electrodes may be coupled to linear input 32. It should be appreciated as described elsewhere that the unit can sense using conductivity, capacitance, RF, inductance or other sensing parameter for detecting user interaction with the electrode. It should be appreciated that this input in this form can detect not only a single selection in response to a single touch, but a range of selection inputs in response to a sliding motion, as well as rate or intensity in response to the speed of sliding motion on the input. Furthermore, this linear input can be expanded as described to provide a two-dimensional input allowing more elaborate functions to be selected.
This input control can be utilized in various modes in the present invention, such as for selecting areas of text (for notes, highlighting, etc.), selecting analog parameters such as volume level, or supporting user interface functions, such as selecting options from a menu, sections of content, page numbers, and so forth. In a mode in which the display or a portion of the display is used as a legend for the linear input 32. input mode of the display menuing mode of the invention the screen is extended to a first menu wherein the user selects the menu option by pressing on an associated area on input 32. The screen only need be extended sufficiently to allow the user to see the choices from which to select.
In another aspect of the embodiment the screen does not latch into the extended position when not fully extended, therein saving the user the step of pressing a retract button between selections using this interface. Furthermore, once a selection is made the do a “quick cast” by allowing the page to slightly retract, wherein they pull it out again. The system upon recognizing the short retraction stroke, marks the position that is the current selection, as seen by 65 marking a menu item. Unless the page is fully retracted, at least past the visible screen items, the selection made will not take effect. This feedback assures the user that the right choice has been entered, an especially important feature if the menus are crowded and the users hands are large.
It is preferable that a setup option allows the user to set the minimum spacing between items in the menus, such as small, medium, large, for example based on their hand size and dexterity. These same setup options can contain options for the font sizes and other parameters of the device.
When reading sequential content, such as an electronic book, newspaper and so forth it is preferable that the unit will advance the page with each “full cast” wherein the page is fully retracted and then extended. It is also preferred that a certain menu items be selectable from the extended page, for example: backpage, menu, next chapter, last chapter, table of contents, and so forth to facilitate user control. Preferably there are few enough menu choices wherein the user will not need to verify that the correct item has been selected. Upon retraction and extension, referred to herein as a “full cast” the action is performed wherein the display now contains the information, page or whatever as selected by the user.
In view of this form of input with control 60 few other user inputs are required on the device. In this example the device contains an ON button 66, which can be configured to turn off automatically after a period of inactivity, or when the button is pressed again. An indicator 68, such as an LED, displays activity as well as can indicate the status of the power source.
A retract button 70 is preferably configured as a mechanical retraction input which disengages the mechanical latch holding the page in the fully extended mode wherein the user need not apply continued force during reading. The retraction can be configured in other ways such as a pull-pull mode, wherein once pulled past a certain extent it will latch, wherein a quick jerk pull on the handle can release the latch to allow retraction. Or the retraction can be deactivated by extending the page sufficiently past a border line (a “warning track”), wherein retraction occurs. In addition, this last mode is very helpful as additional menuing, table of contents, or other selection device, can be displayed past the normal boundary of the page, wherein the user can make a wider range of choices if they desire.
A marking button 72 is shown wherein the user can select a region to be highlighted, or otherwise marked. After pressing the mark button, such as with the thumb of the hand holding the “scroll”, the user can slide their finger along a section of the linear input 60 to make their selection. The results can be seen by doing a “quick cast” if desired, wherein the edge of those lines will show up as highlighted. The user can also mark sections for doing voice annotation if the microphone and memory are provided in the unit as shown in
A menuing button can be provided so that the user can go directly to a menu. The button is pressed and then the scroll retracted and extended to reach the menu. It will be appreciated that a menu selection can be contained on each page, wherein this control can be eliminated.
Optional Solar Collection.
The electronic ink book device can be powered by any desired form of electrical energy source, such as fuel cell, conventional primary batteries, or the use of rechargeable (secondary) batteries (or supercapacitors). However, it will be appreciated that secondary batteries and capacitors lose their charge over time. Therefore, the system of
Optional Backlighting.
Utilizing the backlite electronic ink described in another portion of this application, the unit can be configured for reading in dim light situations at little extra cost. The OLED layers add little cost to the basic scroll cost. The backlight can be controlled, such as by replacing the menu button 74 with a backlight control 74.
An optional active display area 108 can be provided with user inputs 110, and/or the electrodes on front or back may be utilized in an input mode, to detect inputs on a surface input area 112, shown in a menu grid.
Alternatively a separate row of electrodes can be coupled to slider 98 wherein both the front and/or rear surface of the section 94 can be programmed in response to the sliding action. In this instance the front surface can also be selected for gathering inputs. The slider can update the menus or selection on area 112 and in input mode the user can make a selection, write a character, draw, and so forth.
In an alternative embodiment of the above, a single two-sided slider can be provided which rides between the two halves, writing to either or both halves simultaneously. It should also be appreciated that a large number of embodiments can be provided by combination of those described.
A housing 132 is shown within which an electronic ink laden material 134 is retained between two rotatable retainers 136, 138 at each end (i.e. circular, oval, octagonal, or other polygonal cross-section). A portion of the backside of housing 132 may be open, or more preferably transparent, allowing the user to view both sides. An array of eink programming electrodes 140 are retained proximal a surface of the material 134, in this embodiment the upper surface. The electrodes are also used as an input device 142 for allowing the user to select items from the screen, in response to pressing one of the menu commands 146. Once the menu has been used the user can back scroll the display to erase the menu returning the original content stream (i.e. lines of content) if desired. Electronics 148 contain a processor for controlling the user interface and outputting data from a memory to the electrodes which program the electronic ink on the display. A power source, such batteries, are shown retained within the housing 132.
Interfacing for downloading content to the viewer, or installing memory modules is depicted as a slot 152 and an interface connection 154, although the unit can be equipped with a transceiver (i.e. BlueTooth etc.) for wirelessly 156 downloading content. Connections 152, 154 can be coupled to circuit 148 with wiring, flex circuit, or other means (not shown).
Other Beneficial Features.
These beneficial features are written with regard to
Note taking. Embodiments of the system can be configured with other beneficial features can be added to the system, such as a recording element. In one embodiment a mode of recording provides context sensitive notes, wherein the entered speech is stored with tags to the location or locations of the text to which it is associated. The notes can be stored in relation to the whole page (i.e. such as by default), or the user can select the paragraph, line, or even word, to which the notes are to be associated. It will be appreciated that an embodiment within this invention has been described to allow the electrode bar to be utilized for capturing input, which can facilitate allowing the user to select where to place the note.
Furthermore, in one preferred mode of the invention the user can select whether the reader should listen to the note first (pre-note), or after reading this portion of the text (post-note). For example, if the user records the note first and then places it, then it is registered as a pre-note, if they place first and then record then it can be considered a post-note; making the user interface intuitive. In this way, the user can annotate the text they are reading.
Upon later viewing the page containing the spoken notes, markers are displayed indicating the location of the notes. The user can elect to play the notes as desired. Alternatively, the user may select a note, wherein that page is accessed by extending the page. In a playback mode the user can play the notes sequentially, pausing to read the associated text. If pre and post notes are designated then the unit can direct the user to read first, if that is what a note indicates, or otherwise will play the audio first wherein the user knows to then read the text.
It should be readily appreciated that the present device allows users to share information and notes about book content. If the content of the book (i.e. book, paper, document, and so forth) is public domain, then the content as well as the notes can be shared between users. Features can be provided for converting the notes to text as desired, however, this is less preferable in a small unit as the user has little facility toward correction. If conversion to text is desired, it is preferable that the notes be passed to a computer system having a keyboard, touch screen or other user interface which provides sufficient controls for editing text. Once converted to text the file can be input to the present system and the voice notes deleted, if desired, (user may want to select either text or spoken notes). The system can be configured for showing the textual notes as footnotes for each page, as this makes the distinction between content sources evident. In this way the author of the footnote can be more readily indicated as well. The text notes could be displayed with the other text, however, this could lead to confusion, it also requires that the content be reformatted based on the notes being input, which adds complexity, especially when text and graphic elements share the pages of the system. To provide communication of notes, as well as content, the present system is preferably configured with a wired connection, such as USB, Firewire, or other convenient standard, although wireless connectivity is another option.
It should also be appreciated that the above features can be performed on a reading device having an active display, instead of a static display which requires movement of the electrodes over the page to program the electronic ink. With an active display additional features can be readily provided, such as markings locations for the notes at the time of their creation.
The display features described can be utilized for an electronic book or other equipment wherein material is displayed. Other applications may additionally provide audio output and other forms of sensing. For example, as described in another application by the inventor, a tour guide device is configured for sensing its external environment, such as with an RFID reader for challenging tags within the environment of the tour. GPS can be utilized, although preferably with a differential signal source to increase accuracy to that necessary for identifying locations within the tour location. In addition a bar code reader or localized RFID reader can be incorporated for identifying elements in the environment for which information is available. These features can be incorporated into the book devices described herein along with audio output, such as through headphones, to facilitate the tours. The electronic book devices described herein can be utilized for manuals, incorporated into other equipment and the like in which its display properties are utilized.
Cylindrical Semi-Static Display Types.
Displays are utilized in a wide variety of applications, wherein manufacturers are always looking for novel display methods. This is particularly true in the case of low cost display systems. Therefore a need exists for lower cost alternative electronic controlled displays. The present invention fulfills that need and others.
Various embodiments of rotating semi-static displays are described within the present invention. These embodiments are particularly well suited for being implemented at low cost and having a low power consumption. The displays generally comprise a electronic ink sleeve over a housing, or cylinder within a housing. The creation of relative motion between the eink material and separate electrodes in the housing allow setting the state of the eink to be changed in response to the electrodes for displaying text and/or graphics.
A plurality of programming electrodes 18, preferably in a row, or bar 20 electrode, are retained adjacent the electronic ink material 14, and configured for applying programming voltages through the electrodes in combination with a rear electrode 22 (shown in
The device is shown with optional user inputs 26, shown in the form of buttons 28, for allowing the user to control what is to be displayed on electronic ink 14 as cylinder 12 is rotated. It should be appreciated that any convenient form of user inputs may be coupled to the device. For example the electrode array may be utilized as described previously with an input mode. The inputs shown are preferably aligned with a portion of the cylinder 12, wherein a menuing system is provided, wherein the system displays selections on the electronic ink which the user can select by pressing the buttons. The buttons may be coupled to housing 11 or cylinder 12, or otherwise coupled to the control electronics.
An optional solar collector region 30 is shown for powering the display system, for example implemented as a plurality of solar cells preferably connected in series, or alternatively in parallel or a combination thereof. The solar collector is preferably fabricated from a low-cost polymeric material fabrication technique either upon or attached to housing 11. It should be appreciated that since the eink display is fully static that display power is only needed when changing the state of the display by rotating cylinder 12. Therefore, the control electronics can remain in a quiescent mode with a power-storage capacitor building a full charge until the cylinder is rotated sufficiently to indicate use, wherein the control circuit enters an active state to control the electrodes according to use.
A controller 40, with memory 41, is shown coupled to the separate electrodes 18 in electrode array 20. These are shown with separate connections from the controller to each separate electrode. For large displays it is more preferable that a series of series to parallel shift registers be implemented wherein the number of I/O lines required of the controller is thereby held to a fixed number despite display size. Embodiments of integrated electrode arrays are described elsewhere within this application. Furthermore, another embodiment describes the use of a matrix approach to controlling the electrode voltages in response to the combination of voltages that exist at multiple adjacent electrodes. Inputs to the controller preferably comprise optional inputs 26, as well as means for detecting the position and/or rotation of the display, such as a state of motion sensor 42 and a position sensor 44. The position must be sensed with sufficient repeatability, within less than a pixel, to allow outputting voltage changes to the electrode bar for changing the text and/or graphics on the display. Contacts may be used for detecting the motion, or optical sensors or other mechanisms may be employed to register the position. For example an off, on, off, on . . . set of connections are swiped by an electrode connected to controller 40, wherein it detects the transition from off (i.e. Gnd) to on (i.e. +V). Another contact can be utilized as an index, or multiple indexes so that the absolute position of the device can also be determined. It should be appreciated that a rotating encoder may be utilized with a wheel pressed against the movable display to detect motion, or another convenient means may be selected for registering the motion and preferably the position.
A circuit is shown to allow controller 40 to put itself to sleep (into a low power mode) when the display is not be used, as determined by it not be moved for a period of time. This aspect of the invention is depicted as an analog switch 46 which regulates power to circuit with controller 40. Preferably at least a keep alive voltage is maintained for memory 41 so that memory is not lost, presuming in this case that the memory is volatile and requires power to maintain state. In response to motion being detected from sensors 42, 44, the OR gate is temporarily activated which activates switch 46 to provide power to controller 40. Upon being activated, controller 40 activates OR gate 48 to maintain the switch in the On position for maintaining circuit power. When the controller senses that the device is no longer being used, such as in response to the position not changing for a specified period of time, it then deactivates the input to the OR gate which then allows the switch to enter the off position thereby reducing power requirements.
Generation the position change trigger can be performed with the above off, on, off switching (or V1, V2 switching; or V+, V− switching) by capacitively coupling the output to a very light pull-up or pull-down (may be inherent for input of controller) wherein the change of position generates a short transient pulse for temporarily activating controller 40. Controller 40 is preferably configured to lock on its power source and then to test is motion is actually occurring, if not then it can go right back to a low power mode.
The present embodiment may be implemented within a number of different applications, such as over rotatable knobs, on containers (i.e. prescription bottles, supplements, sport bottles, coffee mugs and beverage containers), over the exterior of electronic devices configured in a round shape (i.e. MP3 players, personal stereos, memory cards, USB memory sticks, cameras, low cost phones, etc.) utilized for an informational and user interface on various pieces of equipment. It will be appreciated that a wide variety of applications can make use of this form of low cost, low power display.
Spool or Reel Mounted Display.
A rotating housing, such as a spool/reel, configured with an integrated semi-static display. In one embodiment the display is updated as the housing rotates, such as for indicating the amount of line which has been extended from the reel.
An electrode array 22, 24 is shown for printing on the edge and/or end of spool. A position/movement sensor 26 is shown for synchronizing the printing to the spool motion and for registering the amount of line being played out.
A control circuit 28 is shown having a controller 30 with memory 32 containing the mapping for printing the numbers on the reel. User inputs 33 are shown for selecting aspects of the operations, for example for setting a baseline (similar to a tare function but this zeros out the location of the spool), selecting units (i.e. centimeters, inches, foot and inches, etc.), and so forth. An on/off switch can be provided, this unit is preferably configured with a power controller 34 (i.e. FET switch(es)) shown for temporarily powering on controller 30 from battery 36 (or other charge storage device—which may be charged such as from solar energy cells, piezoelectrics, generators, or other energy generating means) in response to sufficient movement of the spool, wherein the controller locks the power controller into an on-state during operation and shuts it off when not in use for a sufficient period of time.
In another aspect of the invention calibration is incorporated wherein the user can indicate the amount of line which has been played out so that the unit will more accurately register the amount, instead of just relying on factory estimates which are based on reel size. For example a calibration-zero function is provided wherein the user can indicate the zero point, at which no line is played out. The zero function can also be used if a given amount must be played out to a minimum, for example setting the zero point to be the minimum amount of line necessary for clearing through the hoops of a fishing pole. In addition the calibration is preferably configured for establishing other points as determined by the user. For example the user may establish calibration points every fifty feet for a fishing reel, wherein the system saves the data points and can provide corrective estimations between the data points thereby increasing accuracy across the whole range of distances. An input is provided for selecting at least a zero distance, and more preferably entering any desired distance, either directly or as multiples of a given distance (i.e. 5 feet, 10 feet, 25 feet, 50 feet, 5 meters, and so forth). The processor stores the correlation between the calibrated distance indicated by the user with the number of rotations of the spool, or the amount of line played out as registered by other means. The processor then performs a point and slope correction across the range of calibrated distances, and can even extrapolate these corrections for distances beyond the calibration entries. When line is extended or retracted the correction factors are applied against the registered spool rotation or that registered by other means with the result being output on the display.
The controller is preferably configured with programming for calculating the circumference of the spool wherein it can determine the amount of line being played out or wound up in response to the rotation of the spool.
Another embodiment can be implemented by directly sensing the motion of the elongated material being played out or rewound. For example a rotating pulley 52 coupled to a rotational sensing element coupled to the controller. This is a more accurate means of registering the material going on or off the reel, and may be implemented in a manner like that shown in
Tape Dispenser Configured for Making Labels.
A tape dispenser for semi-static printing upon a tape material having an electronic ink material coating. The text or graphics being output on the tape being preferably communicated to the tape dispenser via a wired or wireless communication link.
Optionally, the device may provide two sets of programming electrodes, a first single electrode to be sure the whole tape is erased to a desired state, and a second set of pixelated electrodes for setting the electronic ink on the tape to the desired state. It should be appreciated text and graphics can be printed on the tape in a conventional format or in a reverse video format. The font, style, size, borders, and other aspects of the text and/or graphics being printed is controlled within this embodiment by the external device.
The movement of the tape is registered as the top of the tape moves past a motion sensor 18 (i.e. mechanical or optical). A contactor 32 is shown for registering movement as it passes over ground pads on the exterior of sensor 18, which pull down the voltage of an input to controller 30, which is otherwise pulled up.
Combination Solar Power and Sensor.
A display apparatus configured for displaying information in response to user rotation. Power for operating the display is generated from a set of solar cells, or the like, which are also connected to allow the circuitry to detect user rotation. A semi-static rotating display is described in which operating power and detection of motion, and optionally position, are provided in response to signals generated from portions of a solar cell array.
The embodiment is shown in a container embodiment having a removable cap 20, although a number of alternative embodiments (i.e. drinking glasses, supplies, beverages, non-containers, informational displays, alert messages, and so forth) can be implemented without departing from the teachings herein.
This embodiment is configured with a ring of solar cells 22 that provide power for the circuit and also provides for detecting the relative position between the electrode array and the electronic ink material.
A data interface 32 is shown for loading display data into the memory of device. The data may be received in any desired formation, such as text, bit mapped, and so forth.
To provide a high position resolution and low cost, it is preferable that the solar cells be fabricated as part of a polymeric circuit element. The sensing means is preferably configured within the solar cell circuit as a parallel to serial shift register, or similar, for allowing the controller to register position without requiring a large number of input lines on the controller.
Another very simple embodiment of a container can be configured with an exterior (or less preferably interior surface) containing electronic ink over a common electrode. The container is configured for insertion within a programming device that surrounds the exterior of the container, or is inserted within the interior, and which has sufficient fixed, or movable, electrodes to program the desired text and or graphics onto the electronic ink by applying a voltage to the separate electrodes in relation to the common electrode. In this way labels can be printed onto bottles without the need to laboriously tape an prescription printout onto the face of the bottle. The bottle can be reused for the refill, with any information on the label being automatically updated, such as the number of remaining refills, the expiration date, dosing, date of filling, as well as contact information.
Gravity Updated Semi-Static Display.
A semi-static display having two slidable engaged elements wherein the output is updated in response to sliding the two parts in relation to one another.
It should be appreciated that a less preferable embodiment can be created by reversing the role of housing and sleeve. Power can be provided from a battery source, or more preferably from solar cells 22 on the unit which charge an energy storage device such as a capacitor.
Data to be written to the display is preferably received by wireless transmission, although it may be received optically, acoustically, by wired connection, or any other convenient data communication mechanism. For example the unit can be configured to receive data from digital radio broadcast, wherein it prints out information on inner sleeve when the unit is inverted so to allow the sleeve to pass by the electrode array. In one example, the unit can be configured with an audio output for the radio, while the unit stores text and/or images associated with the story. At any time the user can flip the unit over if they want to see a picture associated with the audio story being played. The unit can provide for displaying weather reports, time information, information communicated from any devices such as PC, PDA, wireless phones and the like. The unit can also be utilized for providing a low cost display for use with various games.
The electronics can be implemented in a similar manner as those described previously, and any source of data may be used to drive the display.
The electronics for modulating the voltage on the separate electrodes are not shown in this example and are preferably located elsewhere and communicate signals through rod 36 to piston 32. Similarly, the means for registering the motion of piston 32 is depicted as if located within the element which drives the motion of the rod. The continuity between the common electrode and the electrode driving circuit can be established by wiring (not shown). Housing 38 is shown transparent for clarity, however, it is preferably semi-opaque to opaque, when utilizing conventional electronic ink which is not transparent regardless of programmed state. The unit can utilize electronic ink apparatus and methods described elsewhere for creating variable transparency electronic ink materials, wherein the interior of the piston can be lit to increase contrast and readability.
One application particularly well suited to this piston display device is the piston power workout device as found in another application by the inventor, which is incorporated herein by reference.
Electrodes within an electrode array 56 within the interior of second portion 54 can be voltage modulated in relation the voltage on a common electrode underneath electronic ink covering a portions of first portion 52. In this way as the upper portion is slide up from, or down over, the lower portion it programs the state of the electronic ink thus programming any desired text or graphics thereon.
In a similar manner electrodes in electrode array 58 on the exterior of first portion 52 can be voltage modulated in relation to the voltage on a common electrode behind the electronic covering the inner surface of second portion 54 which is transparent allowing the state of the electronic ink to be seen through the housing. Wherein the electronic ink displayed on the exterior of second portion 54 can be updated in response to sliding the two portions together or apart.
Electronics 60 is shown for controlling the modulation of the electrode arrays, and it can be configured to output information contained in a fixed memory, or it may receive information from an external source for display on the first or second portion of the display. It will be appreciated that the display may be made in any cross section insofar as the first and second portions are slidably engaged so that the electrode array passes over the outer and/or inner surfaces which are covered with electronic ink.
These embodiments can provide economical means for displaying a large amount of data, because each transition of the device allows displaying another set of information. It will be appreciated that user inputs may be coupled to any of these embodiments for providing menuing system, selecting moving forward or backward in a group of pages, or otherwise interacting with the display device to control its operation.
Flexible Sliding Display Powered by Piezoelectrics.
A flexible band display having a first portion that is slidably engaged about a second portion. The device is preferably powered by solar cells, and/or piezoelectric transducers which generate a voltage in response to the flexure of the material.
In use the user slide the inner material along to update the display. The display can be configured so that it only display information on a selected portion of the display although material 14 slides around the whole device, this alleviates the need to rotate a body part when the display is being worn as an arm, wrist, or leg band.
Piezoelectric material may be integrated with the band, such on the edges or under the material 14, or even within material 14, wherein power is generated in response to flexure of the device, or even the sliding of material 14 along a non-circular path. In this way the device can be powered when being worn at day or night time. Alternatively or additionally, solar cells or similar electrical energy device can be coupled to the device for providing or augmenting the power.
The piezoelectric material may be incorporated to provide user interface functions, for example for selecting menuing in response to detecting the location where the material is flexed, such as pressing a button or flexing an edge of the device.
Data for the display can be received in any desired manner, such as by wireless means, or wired connection, furthermore the device could display information that it collects or that is has stored internally. A user interface of any convenient form may be coupled to the device, such as along the edges to facilitate user control of display output.
It will be appreciated that photo cells can be alternatively, or more preferably additionally incorporated within the device to provide at least a portion of the operating power for the device. The flexing of the display can generate power utilized for activating the device and/or for discerning specific user input, such as on a user interface.
Alternatively, but less preferably the device can contain embedded row and column for dynamically controlling the output of the display, wherein the piezoelectric materials provide the necessary operating power. Furthermore, unless the display is sufficiently flexed, or flexure is applied to a specific location, the power output from the piezoelectric transducer material is utilized for charging an energy storage device, such as a capacitor. The capacitor itself may be distributed between layers in the device or retained with the electronics which can be operatively coupled to the display device.
Tilt Response Semi-Static Display.
A display that is updated in response to being tilted, for example every minute, wherein an electrode array moves across the unit and can reprogram the electronic ink to new display settings.
A sliding device 16 is shown at a first end in
Controller 30 modulates the setting of electrodes in electrode array 42, such as by means of a serial to parallel converter 40. If the controller is located in base 15, then the pixel output must be communicated 44 to sliding device 16, such as through a serial connection (i.e. through the wheels, sliding connectors, or a wireless connection).
Data for output to the display is preferably received by an interface 46 coupled to controller 30. Interface 46 receives data via wired connection 48 or wireless connection 50. It will be appreciated that the wireless connection (as in all devices described herein) may comprise an RF device, magnetic field communication, inductive communication, optical link, acoustic link, and so forth.
Tracked Semi-Static Display.
A tracked display that is updated in response to the motion of a vehicle over a portion of a display board. Vehicle motion may be via a track (linear) or without a track (2D). The vehicle can contain all the control electronics and can update a display of arbitrary length.
Controller 30 outputs display information as pixels for driving the electrodes in electrode array 42, such as via a serial to parallel converter 44. Data to be output on the display is preferably received wirelessly, such as shown through an interface 46 coupled to a radio-frequency communication link 48. Preferably the display data is received from a transmitter coupled to a computer system in the vicinity.
As the vehicle traverses a path, which may be around a room, or even following a corkscrew path covering the room more than once, it updates the display. It should be appreciated that a large scale display of this magnitude using LEDs could cost over a hundred thousand dollars and consume a great deal of power while being maintenance intensive, however, utilizing the present invention it could be implemented for about one hundred dollars and the technique applicable to a wide variety of display board situations.
Swinging Arc Sign.
An text and graphics display which outputs data in the form of an arc. The display can be produced at low cost and can simultaneously provide analog meter functions as well as controlling what is programmed on the backing (legend) of the display.
The system and method is configured for displaying text and graphics in a planar arc in response to the back and forth movement of an arm having a plurality of electrodes configured for programming electronic ink contained on a backing material into a first or second state. The arm is moved back and forth by an actuator when the display needs to be updated, periodically, or in a continuous manner such as appearing like a metronome.
In addition, the position of the arm itself can provide information in addition to the information which is programmed on the electronic ink the display material. For example, the arm can be used to display a measured value, such as volts, decibels, current, applause, danger level and so forth. The unit can thus be used for switching between the display of different functions with additional information being written on the backing of the display, such as what is measured along with warnings, calculations based on the collected information, trend lines, history of the data and so forth.
An arm 18 is configured having a pivot 20 and a first side 22 on which a plurality of electrodes 23 are disposed (not visible as on reverse of arm adjacent material 12). It The electrode area 23 is shown spanning only a portion of arm 18, however, the electrodes can alternatively span the entire length of the arm, even extending to the opposing side of arm 18, specifically 26 which can be elongated. The arc area being covered by arm 18 may be extended to any size arc, including up to a full circle. Additionally, other arms may extend from pivot 20 to allow writing on portions of the eink with less movement of the arms, therefore faster and with less energy. Still further, the geometry of the arms can be different than that shown, and even change shape during use. For example the arm may extend by means of an actuator (i.e. muscle wire, or electromagnetic) in response to commands from the controller, thus allowing the size of the display output to change based in the conditions.
The second end of arm 18 is coupled to an actuator 24, exemplified as a magnet which can be pulled toward electromagnet 28a or electromagnet 28b, thereby swinging the arm across the face of the material holding the electronic ink. Other mechanisms can also be utilized for moving the arm back and forth across the arc 12.
A controller 30 with memory 32 is configured for controlling the voltages applied between the plurality of electrodes 23 and base electrode 13. The RAM memory is configured for retaining data to be displayed on the electronic ink 14 of material 12. Preferably, controller 30 outputs a serial bit stream through a conductor to electrodes 23 which are preferably implemented as a serial-to-parallel output electrode driver control as described in a related application from inventor. The controller preferably determines the position of arm 18 based on the timing and duty cycle being applied to arm 18 and empirical data about arm movement collected while implementing the display. Furthermore, a means for sensing arm motion can be incorporated to assure correct pixel output in response to position. One simple sensing means being provided as one or more position sensors 44a, 44b along the span of base 12, such as a electrical contacts 44a, 44b allowing the controller to detect when arm 18 touches the contact. The controller can use this information to correct for variable conditions, such as the drag induced by bearing 20, and similar disturbances from the nominal design.
Optional voltage level shifting interfaces 34, 36 are shown for translating the voltage levels to the electrodes so that sufficient programming voltages are provided. For example the highs and lows from controller 30 can be translated to a V+ and a V− with a sufficient voltage swing from ground to program the eink into a first alterative second state. If the output voltage of the controller is sufficiently high, then the level translator for the base can be used as a voltage divider wherein the controller outputs of low and high correspond to setting the eink into a first or second state.
Controller 30 can receive data for display 10 in any convenient manner, depicted is an interface driver 38 shown coupled to a wired interface 40, such as USB, Firewire, other standards or proprietary connections, and to a wireless interface 42, such as RFID, BlueTooth, and so forth.
Controller 30 can also generate signals for controlling the position of arm 18 wherein its position on base 12 is indicative of some measure, preferably for which a legend is printed on base 12 either printed permanently or in response to programming of the electronic ink. The actuator 24 may be configured to respond directly to voltage or current levels in a “linear mode” to indicate a position in the manner of a conventional old-style meter, however, with controller 30 programming the optical state of the electronic ink on base 12.
In one embodiment the frequency with which a given signal level is reached is indicated by the motion of arm 18, wherein the display shows current historical norms. Consider an example in which 100 electrode segments are contained along arm 18, wherein in response to movement of arm 18 the controller then activates a number of electrode corresponding to the number of times that position has been reached by the movement of arm 18 in a “linear mode”. and Preferably, controller 30 is configured to also control actuator 24 (or adjacent actuator) to move the arm for writing on any location of base 12 at a speed known to the controller.
The actuator may comprise a motor, solenoid, voice coil, or other form of electromagnetic actuator. Furthermore actuation may be accomplished using other than electromagnetic actuators, for example muscle wire may be used to actuate against a biasing means, a piezoelectric motor can be used, and other mechanisms capable of generating a sufficient force for moving arm 18. Embodiments can also be created in which arm 18 is moved in response to non-electrical activity, such as for example moving in response to pressure changes as in a barometer, or similar mechanisms. The controller can provide for writing historical information on the backing 12, and preferably having an override is desired to allow writing over the entire display area for conveying alerts and other information as desired.
The resultant display is very low cost, consumes very little power and can provide a “retro” look which is popular in many applications. It will be appreciated that this can be utilized in a wide variety of applications. The display can be powered from conventional AC power, adapters, batteries, solar cells and so forth. It should also be recognized that the controller need support very few output lines, unlike the number of outputs necessary for controlling an LCD or similar row and column form of display.
Matrix Addressed Electrode Array.
An method and system of actively driving electronic ink display areas using a voltage combination provided on a first side in relation to a common electrode on a second side of the display. A novel form of row-column addressing for electronic ink displays is described which provides a number of advantages over conventional active electronic ink addressing techniques.
In
In this present invention the electronic ink pixel programming voltages are provided in response to the combination of the voltages V1+V2 on first and second conductors in relation to the common electrode 28. For example, consider the common electrode at ground potential and that programming of the eink in this embodiment requires a voltage of Vpth. By applying a positive voltage to line 14a and line 20a and no voltage to the remainder of the lines, the area at the junction of lines 14a and 20a is programmed to a new optical state, wherein the remainder of the display is erased. The voltage on lines 14a and 20a do not program the remainder of these lines because the voltage field generated is only about half of that required. In other embodiments the unused lines can be biased to a slightly negative voltage thus increasing noise margin, and at a higher negative voltage can erase that portion of the display.
The sizes of the conductive patterns can be adapted to suit the method of driving. For example, in the embodiment shown the electronic ink layer 26 is less sensitive to the voltage applied on first electrode 14a than to the voltage applied to the second electrode layer 20a, wherein the size the conductive area of 14a is enlarged relative to that of conductive area 22a. By using opposite voltage it will be appreciated that the programming voltage applied on 14a can be fully or partially nulled out by an opposing voltage applied on electrode 20a.
It should also be appreciated that this technique can be applied for more than two layers on the top surface, and various other mechanisms for combining the voltages to produce sufficient voltage at the given distance to program the optical state of the electronic ink.
It should also be appreciated that common electrode 28 can be replaced by a row or column, or more preferably another row-column combination. The use of row-columns on each face can provide a flexible input and output system, in which inputs and outputs can be provided on both sides of the material.
This form of eink active display driving has a large number of advantages.
(1) It will be appreciated that this form of display can still be programmed using a moving plurality of electrodes over the surface containing first and second electrodes; a voltage being applied to the moving electrodes in relation to the common electrode 28.
(2) It should also be appreciated that only side of the material is being processed in this approach.
(3) Furthermore, the proximity of the electrodes near the upper surface of the material allows for sensing inputs on the surface. For example in a simple embodiment, the insulator between conductor 16 and 22 is interrupted by a gap 30. Pressure applied to the top of conductor 16 causes contact with conductor 22. To sense the input, the electronics can either sense the current path between the electrodes, or more simply be switching itself between an input mode and an output mode. The output mode preferably being entered only when no inputs are being pressed. It will be appreciated that the input can be sensed capacitively, inductively, based on electric field changes or with respect to induced RF. Therefore, the present invention allows the traces laid for controlling an active eink display (or similar static electric-field programmed display technology) to also be utilized for collecting user input.
(4) Still further, inputs on the front surface of the display can be registered automatically as a change in optical state of the eink, without the need of processor interaction. For example, if material 24 is compliant, has compliant or void spots 32, the pressure applied to the surface moves the electrodes closer to the electronic ink resulting in a programming at a lesser voltage, such as applied during the read cycle, which in and of itself is insufficient for programming the display elements.
Rewritable CD Labeling (Radial).
In order to mark media such as CDs, DVDs, tapes and the like, the user has been required in the past to purchase specialized labels, print the label such as on a printer, and then adhere the label to the media. This process is time consuming and there is no easy way to replace the label with an updated one, especially when rewritable media is utilized. The present system and method provides these capabilities.
To provide a low cost method and system for marking Media. The system utilizes elnk, or another form of non-volatile display programmed with voltage field, retained on a media in combination with an electrode plane, that when utilized with a writing device containing a set of electrodes and a connection for the electrode plane allow setting the pixels of the elnk to a desired state, thus writing on the media. The media may be printed upon within a separate device, although the invention provides an apparatus wherein the media may be labeled when recorded or otherwise retained within a player.
Electronic ink may be statically programmed using voltage fields from nearby electrodes to change the color state of the ink from a first state to a second state, or back again to the first state. By passing pixel electrodes over a surface of electronic ink under which a separate opposing power plane exists, the areas of the electronic ink may be written to. The present invention utilizes these effects for printing rewritable labels on media. The method and system of the invention is particularly well suited for use with rewritable media as both the contents and labels may be easily rewritten. The following will describe a few embodiments of the invention.
Media with Electronic Ink Writable Area.
The following description is based on a DVD or CD style media of any size. It will be appreciated that labels for any form of media having a regular surface may be printed using the present invention, thereby allowing the label to be rewritten at any time without the burden and mess of removing paper or ink adhered to the media surface.
Media according with the present invention is configured with a first conductive plane (i.e. ground plane) over which electronic ink is deposited, and a sealing layer that may be optionally overlaid over the ink layer for protection and aesthetics. Optionally a second transparent electrode grid may be placed coupled to the top of the media allowing the entire portion of the electronic ink to be set or reset at once, or at least regions sandwiched between the opposing large area electrodes in response to a programming voltage field.
To simplify making contact with the conductive layer, it may be extended into the center spindle and/or the perimeter. Furthermore, the conductive layer may be extended to at least a portion of the opposing side of the disk, such as near the center spindle hole or the perimeter. In this way electrical contact may be established with the conductive layer from either side of the disk depending on the construction of the printing device. Although the disk can be contacted on any portion of the electrode, this method eliminates the possibility of subjecting the data areas on the surface of the disk to damage, such as if a disk were to be incorrectly inserted with the data side in the incorrect direction, or on disks having data stored on both sides with printing being performed on only a portion of the surface such as on a ring about the spindle hole.
Optionally, rotational angle marks may be encoded onto the disk so that the position of the disk can be readily discerned when being “printed”. By way of example a series of optically responsive markers, such as pits, color bands, dots, and so forth are aligned at a fixed spacing on the outer, or inner, perimeter of the top surface. These angle marks may be alternatively, or additionally, located on the underside of the disk. These marks can be used for synchronizing the output to the electrode bar with the surface of the CD/DVD when being written.
It should be appreciated that it may be desirable in some thin forms of media to eliminate the underlying electrode, wherein an additional area electrode is provided on the writing device which is retained sufficiently close to the media to allow the electronic ink to be written to with a voltage field output on opposing sides of the media.
Player/Duplicator Media Carrier with Elnk Printing Head.
The present invention incorporates an electrode bar 16 and background electrode 17 configured for “printing” on a planar media having a surface containing electronic ink, or similar composition having areas that can be set to a first or second optical state in response to the application of a sufficient electric field. Electrode bar 16 is configured with a series of separate electrodes that may be set to a voltage that is above or below the voltage of background electrode 17 for programming the pixels in the elnk to either a first or second state.
Background electrode 17 may be retained at a fixed voltage or it may be varied with a voltage that depends on whether the disk is to be written to a first state or a second state.
As disk 18 (a media according to the present invention with electronic ink surface) within carrier 14 is retracted into the housing 12, or is ejected from housing 12, the electrodes write a label on the surface of disk 18 by modulating the voltages on the electrode with respect to the background electrode the time spent per pixel being dependent on the velocity of travel for the tray.
A sensor assembly 20a, 20b can be utilized for indicating to the software when the tray is open and when closed. The software preferably maintains a time value for the motion of the tray that can be divided by pixel pitch, with offsets for spacing on either side of the media. The software can thus modulate the voltage on the elements of the electrode bar at the proper timing to label the surface of the media. The drive may additionally register the actual travel rate wherein write speed to the elnk is matched to actual travel which can prevent irregular spacing particularly on older drives.
Programming executing on the system allows the user to enter label information, or to accept label information written in other programs, for example a text and graphics file written in a word processor. The programming may be contained in a separate application program or it may be integrated within a routine configured for accessing the media, in particular a program which allows writing data to the media. The present invention allows the disk to be relabeled whenever it is written, or otherwise at the discretion of the user since the data need not be written to allow a label to be written on the media.
The example above illustrates the use of slide drawer that linearly draws (moves) the media over an electrode array (bar), however, it should be appreciated that the media may be drawn in a circular pattern over the electrode with similar effect.
Rotating Label Writing Device.
A rotation stem 44 is shown extending near the proximal end of device 30 as a convenient means for the user to grasp the device and rotate it about media 18. Stem 44 preferably is configured to rotate so it is subject to less friction between the user's fingers in response to rotation. Alternatively stem 44 may be non-rotating but configured with a smooth exterior that easily slips on the user's skin under rotation. A sensor may be coupled to a rotating stalk to sense the motion of the printing unit over the media for controlling the rate at which pixels are programmed.
A programming port 46 is shown, herein exemplified as a USB port. The unit may be alternately configured to communicate with a source of pixel programming using any convenient communications medium, such as Firewire™, IR, RFID, wireless, RS-232, or any other means of transferring data from a host system.
The printing device may be powered from any convenient source of power, such as batteries, fuel cells, capacitors, solar cells, inductive charging, power drawn through the programming port, and so forth. This embodiment draws power from the USB port during programming to charge a capacitor that supplies programming power. A battery may be used in the unit for retaining device memory if that is important for a given application.
The embodiment is shown having a USB port through which power and programming are loaded into the device. The device is shown as a separate unit, however it may be implemented for accepting a USB memory device wherein the unit itself need not contain much memory or a USB interface. This can be performed in a similar manner that some current MP3 players are connected to a USB memory unit that has been loaded with MP3 tunes.
To use the device, the device is connected to a programming source and the printer memory is programmed to the desired pattern, such as on a personal computer, laptop computer, PDA, or other electronic device configured for generating a desired label pattern. Preferably, application software is provided on a target machine, such as a PC, that allows the user to create a label using an interface similar to a word processing interface. Once created, the data is converted to a bitmap pattern following a polar pattern for loading into the device. It will be appreciated that using a polar pattern allows the device to directly modulate the pixels in response to rotational movement wherein it need not transform Cartesian coordinates to polar coordinates on the fly.
Once loaded the user locks it into the center hub, and then uses a handle to rotate it about the disk. The rotation of the handle can be sensed as the angular speed of the device for synchronizing the writing pixels comprising the label onto the surface. In this way the disks need not have any angular markings present on the disk.
Incorporate within Other Forms of Players.
The techniques described above may be utilized for printing a pattern on elnk coated media within a number of different record or playback devices. By way of example a top loading media player may incorporate an electrode bar similar to that of
Other Forms of Media.
The technique described above may be utilized with other forms of media, such as credit cards, smart cards, memory cards, memory sticks, USB based devices, tape cassette, video cassettes and so forth. It will be appreciated that the pixels of elnk or similar are joined over a background electrode that is accessible to the writer, and the surface of the label being slid across a pixelated electrode (electrode bar with individually controllable electrodes the width of a pixel), as the pixel electrode voltages are modulated according to a pattern suited to the label being printed.
Voice Input Printing.
Label printing according to the invention may be configured to generate pixel programming for a label in response to other forms of input that is converted to a pixel bitmap. By way of example voice input may be utilized to enter text that is to be printed as a label, and the user may be prompted for text strings corresponding to title, author, date, volume label, description and so forth. It will be recognized that some devices do not naturally (without connecting to a system with a more sophisticated user interface) lend themselves to keyboard input, such as a portable CD/DVD recorder/player, or camera. In this case the system is configured to receive voice information, which is converted to text with voice recognition. If a display screen is available, the system can display the text prior to it being printed on the disk surface. Otherwise, the disk surface can be printed, and if wrong rewritten.
Another embodiment is described for the system and method of printing rewritable labels (text and/or graphics) on media. In the parent application the printing of media is described in one embodiment as being performed as the media is slid into the media writing device (i.e. CD/DVD drive, floppy disk slot, or other media receiving mechanism). The typical embodiment described therein, showed a series of electrodes configured for programming the state of the media as it was inserted or removed, wherein the writing is oriented in a Cartesian format, in a manner similar to the lines of text on this page.
It should be well understood, however, that the programming of the text can be any desired orientation or system of positioning. Herein is described in more detail an embodiment in which the text (or graphics) is printed in a polar format in response to rotation of a rotatable media, such as CDs, DVDs, or other media in which the exposed surface of the media can rotate within the media drive housing.
During printing the media may be rotated by the conventional spindle drive, by a separate drive assembly, or in response to user rotation (or mechanical user energy input which is then converted to rotational motion). It should be appreciated that the speed at which the electronic ink (or similar electric field programmable display) can be set to at least a first or second optical state, is limited by the speed by which the material can change states. Some forms of electronic ink may be capable of changing state at a sufficient rate, however, mechanisms are also described for reducing the effective rotation rate to “print” the rewritable label on the media.
A means 14 for receiving the media is shown, such as within a slidable drawer 16, or alternately beneath a lid (not shown). The receiving means in the case of a slidable drawer is moved into a ready position 18. A means 20 for generating a plurality of pixel voltages is shown, which may comprise one electrode bar or two separated electrode bars 22, 24. The electrode bars 22, 24 are shown positioned crossing the center of the circular media, wherein under rotation of the media 12 all portions of the media surface can be accessed (if desired) by an electrode bar (or bars) of sufficient length. Alternatively, or additionally, the electrode bars may be placed at another position and not across the center of the media. For example, a single electrode 26 is shown at the entrance of the drive slot. This electrode can be utilized for programming the optical state of the media in a horizontal line (Cartesian manner), or optionally, the drive motion can be stopped approximately centered over the electrode wherein motion of the media be means of an actuator, motor, or even manually, can allow programming of the media surface with radial (polar) oriented text and/o graphics.
In one embodiment of the invention, the contact for the background electrode is provided within or about the circular hub, therein electrical contact is established when placing the media on the hub of the programmer/player device. Other contact arrangements for the background electrode can be implemented, however, it will be appreciated that since the disk is attached and driven from the hub, there is necessarily contact about the hub area. Also since this area does not contain data use of this area for a contact does not hinder size or use. The contact is preferably integrated as ac conductive layer over the disk, over which the electronic ink material is deposited over a large portion of the surface of the disk, excepting at least on side of the hub wherein contact is made with an electrode in the hub drive.
An optional manual input 28 is shown, such as a wheel, crank, push or pull device or other mechanical rotation means allowing the user to manually rotate the disk. This manual mode is preferably only provided in media drives that are incapable of driving the disk at a sufficiently slow speed for programming the media surface. The manual input can comprise any direct drive mechanism, means for storing and delivering rotations energy (i.e. flywheel, wound spring, etc.), or means of changing the gearing or engagement of the motor to alter the rotational speed of the drive during writing of the label.
Controller 32 is configured to receive commands and data for programming the optical state of the electronic ink. Data is preferably retained in a memory buffer 48 therein reducing the workload of the host processor and eliminating the need to synchronize communications during the writing of the label on the media. Preferably the memory is sufficiently large to retain the text and/or graphics to be written on the disk surface. Once loaded with the data the controller is activated to program the electronic ink on the media surface, wherein it modulates the voltages on the electrodes, and optionally the base electrode while the disk is rotating.
If the drive is to be utilized for writing labels in a horizontal orientation, such as shown with the electrode bar 26 (in place of electrode bar 20), then the linear motion of the media must be detected during programming, such as by sense wheel 50 and sensor 52 (i.e. optical, hall effect, etc.). In addition, to switch between modes a detent, or sensor 54 is needed to detect when the media is centered over electrode bar 20 (or 26).
It should be appreciated that the rewritable media labeling system and method described can be economically implemented on a number of different systems and applications.
Electronic Ink Stamping.
Inked stamps are for marking both personal and business documents. Examples of common stamps include: “PAID”, return address, “Received O” date stamps, “COPY”, “Proprietary”, and so forth. Currently individual stamps are purchased with preprogrammed messages with seprate or integrated ink retention that must be periodically inked. These stamps have limited utility and are often messy, and once programmed can not be rewritten.
A method and system for stamping two dimensional surfaces containing electronic ink with a user selected indicia which is retained thereafter on the article, until reprogrammed. An electronic ink stamp is taught having a similar look and feel as conventional pressure applied ink stamps. The unit is pressed onto a surface containing electronic ink, wherein it “stamps” a message from memory, or received from an external device, onto the surface as state changes of the electronic ink. The stamp unit has a grid of electrodes and configured for “stamping” text and/or graphics onto surfaces containing spheres of electronic ink, or similar materials with voltage field responsive optical properties that remain static after the voltage field is removed. A common electrode is also retained under the electronic ink, either deposited beneath the electronic ink, or as a separate voltage plane for retention behind the area of electronic ink. (alternatively, the plane can be in front with individual pixel electrodes providing programming from the rear)
A number of messages can be preloaded onto the stamp which are user selected. Preferably the unit is also configured for interfacing with a computer, PDA, or similar computational device having a user interface. It may be interfaced by wire, or wireless communication.
Electronic ink stamp device 712 is depicted positioned for stamping information on a field 720 of electronic ink upon envelope 722 to which postage and return address have already been attached. It will be appreciated that the stamp device may be utilized for adding return addresses or electronic postage to an envelope. For example electronic postage is added by writing the indicia over a area of electronic ink on the envelope (or other form of mailing package). Once positioned, the user presses down on the unit wherein the state of the electronic ink is set to the message by applying sufficient voltages to each of the pixel electrodes and to the common electrode. It will be appreciated that areas of electronic ink can be programmed to either of at least two states (i.e. typically either “set” to a color, or “reset” to white, or other background color).
A common electrode may be fabricated beneath the label of electronic ink to which the stamp unit makes contact upon pressing the stamp unit down upon the label. For example a surface of the envelope (paper, bag, or other article) may be plated with sufficient nickel (i.e. similar to that applied to conductive nickel bags used for static protection), or other conductive material. An optional primer layer may be applied over the common electrode if desired, and the electronic ink layer added, over which another optional protective layer may be applied.
The method of operation preferably comprises: (a) detecting user applied pressure exceeding a threshold; (b) detecting continuity between at least two common electrode contacts; (c) outputting a proper voltage to all common electrode contacts; (d) outputting a programming voltage for a sufficient programming interval to each pixel in response to a message pattern retained in memory; (e) switching off programming voltages. Optionally, the end of the cycle can be annunciated, such as with an audio annunciator, LED output, or other form annunciator, letting the user know they can remove pressure and lift the stamper. If the user made a mistake, they can simply reposition the stamp unit and restamp another message on the material.
Alternatively, the common electrode need not be contained within the area to be stamped, but may be on a conductive surface 724, shown connected 725 to the computer as a source of ground voltage (about which the pixelated programming voltage are set (+/−) to allow setting areas of electronic ink in either desired state).
A message selector 726 allows the user to select which message is to be output on the electrodes of the electronic stamp. These messages can be preprogrammed, such as shipped with the unit, downloaded from a web site of stamp patterns, or created by the user for a single use or repeated use, captured by the user from a screen image shown on a computer screen, PDA, email. A cable interface 728 is shown connecting to a computer, such as an RS-232 interface, USB interface, and so forth. The cable interface can be left attached to the unit, wherein the user can pop up a screen of messages and select from them for immediate or later use. A wired or wireless port 730 may be alternatively incorporated allowing communication with an external device, via wireless RF (i.e. Bluetooth™), Infrared link, and so forth, or using a wired link, such as through USB port 730. The wired link can be used temporarily, wherein the user connects the stamp unit to the computer, such as a USB port, and then loads message data onto the stamp unit. The unit can then be removed and used for stamping. Any desired form of selector may be utilized on the unit. A simple push button may be utilized for selecting from preprogrammed messages, while the multiposition selector shown allows the user to reprogram any selected stamp message within the set of messages stored on the unit. Optionally, a small display (i.e. elnk, LCD, OLED, etc.) can be incorporated to display the currently selected stamp image, allowing a user to readily switch messages, such as pressing a button to scroll through a set of images, or select a category followed by an specific stamp image.
Although a display may be incorporated to allow the user to see the patterns, it is preferable that a cover 732 be adapted with electronic ink wherein each time the position of the selector is changed with the cover on the electronic ink is written with the new pattern, allowing the user quickly find the desired stamp pattern. The case is preferably configured to sense that cover 732 is attached, such as a switch, conductive path, or so forth, wherein the operation changes based on presence of cover (i.e. such as outputting pattern immediately upon changing pattern, and mirror imaging the pattern for proper viewing by the user). The cover preferably has the electronic ink deposited on the inner surface with a transparent ground plane over the exterior providing the opposing electrode that is retained at a particular voltage in relation to the programming voltage on the pixelated electrodes.
In the figure, computer display 718 is shown with an application display 734 from which the user has performed a right click to pop up a function screen 736 from which they selected a capture of screen information 738. The programming that downloads the message information to the stamp unit preferably provides user controlled formatting of the bit image, such as on a separate pop up screen, before transmitting it for use on the stamp unit. Data may be collected by the programming in a textual format or a graphic format. When captured in a text format then the program allows the user to select font and printed textual attributes, such as size, bolding, underlining, and so forth.
The base 744 of the stamp 712 is shown fabricated from insulating material from which conductive electrodes 746 extend to make contact with a buried common electrode.
A power controller 766 is shown with multiple outputs for detecting the continuity between common electrode contacts and when programming to supply the desired voltage to all common electrode outputs.
A number of interfaces are shown for connecting to external equipment, such as a wired port 768 with connector 770, such as USB. The unit can be hardwared, such as through interface 772 and cable 774. A wireless connection can also be established, such as RF or infrared, herein an RF interface is depicted 776. Optionally, the unit can be configured with a full user interface 778, providing user inputs and/or display outputs. This user interface may be similar to that provided for a conventional ink based label printer. An audio annunciator 780 is preferably incorporated to signal stamp completion, errors, and other status information.
A multiposition message selector 782 is depicted for selecting messages contained within the memory of the unit. A switch 784 is shown for detecting user application of pressure in response to a “stamping” operation. A detect switch 786 is also shown for optionally detecting the presence of the electronic ink cover 732, wherein the operation of the unit preferably changes as described.
A number of embodiments of the stamp unit can be implemented with a variety of features, which may be utilized separately or in combinations, the following being provided by example.
Date field—The stamp unit can be configured to independently retain a date (and optionally time), or to obtain a proper date when connected to a computer, or to obtain a time and date from a GPS time signal, or other RF timing signal, such as a widely distributed signal linked to an atomic clock. A message then can include a date field, wherein the message need not be changed for each date. A real-time clock can be coupled to a microprocessor for maintaining the proper date.
User ID—the date and time from the unit, can be utilized with a means for identifying each user, such as within a timecard system. For example, a thumbprint scan pad on the unit identifies the user when the stamp unit is grasped, wherein the date, time, and person is included in the stamp message output onto a time record containing electronic ink. The electronic information may be retained for downloading into a billing system, wherein both a paper record and electronic record is maintained. The user ID can also be utilized for controlling the use of device features. For example, only a given individual may utilize the unit for directly stamping postage to prevent unwarranted use in a corporate setting. This may be applicable to a mode in which the unit is configured to automatically generate a desired level of postage when a stamp impression is performed.
Field data from external device—other external devices can provide field data for use within a stamp message. For example, the stamp unit may be connected to a scale (wired or wireless) or a scale may be incorporated within the stamp unit. Electronic postage stamps are automatically created by the unit in the correct value to suit the weight category of the piece.
Series field—The stamp unit can be configured with a field that the microprocessor updates after each stamp impression. For example, a serial number field, which changes with each depression of the stamp by an amount set by the user.
List mode—A list of messages can be downloaded from a computer to the stamp unit, wherein with each stamp impression the next message in the list is selected. This mode is particularly well suited for stamping addresses on a number of envelopes from a contact list, contact manager, or similar program retaining an address list. A user input is preferably provided allowing the user to roll back to the previous element in the list in case a mistake is made during stamping.
Capture mode—a portion of a screen (either used in captured graphical format or captured as the associated textual or images) is marked for imprinting by the stamp. The area selected is then adjusted to fit the pixel of the stamp, for example a area of 400 pixels×150 may be selected, wherein the stamp unit may contain 200 pixels×100 pixels. Also the color range of the captured area is preferably adjusted to the electronic system utilized, typically monochrome. The modified image may be shown on the computer prior to downloading or output on the stamp unit with elnk cover as described above, wherein the user can see how the output will be rendered, wherein they can make changes to the masking color contrast and so forth to reach the desired result.
Voice Capture—in a few applications it may be desirable to capture voice commands and select or create an output image in response. A microphone and voice processing routines executing on a microprocessor, signal processor, and/or other processing element is required to provide this level of user interface. For example, upon pressing a input selector a text string can be received in voice and converted by the processor into a string of text for output by the stamp device.
Common Electrode.
The continuity testing between common electrodes which are pressed down to make contact with a possibly buried (overlying insulator) common electrode can be incorporated within the rolling wheel common electrode contactor, wherein the test is performed between contacts on the same wheel, or preferably between contact on two wheels. Signals are preferably generated while the electronic ink is being printed if continuity is lost. The test can be performed periodically, wherein instead of outputting on each contact, one contact is set to output with others set to input, wherein the connection can be checked, such as based on charging or discharing the input capacitance. In this way the programming voltage can be supplied while the user is given feedback as to how well they are making contact with the common electrode, for example to allow the user to modulate the pressure applied.
Programmed Inked Deposition Operations.
The reprogrammable stamp described in
It has not been fully appreciated in the creation of small portable stamping units that certain inks can be electrostatically charged, wherein they are repelled by a first polarity of charge and stick to surface containing a second polarity of charge.
In this embodiment of the invention a charged-aerosol inking station is provided for stamp unit. Once the stamp image has been selected the user places the stamp unit in the inker and activates inking. At that time the stamp electrodes are activated and the electrostatically charged ink is expelled as an aerosol within the base unit and adheres to a first portion of the pad of the stamp, while being repelled from other portions. Once inked the user pulls the unit from the inker and can make an inked impression on any material. The user can repeatedly charge and stamp the device if multiple impressions of the same image are needed. The image of the inked stamp is the image created from the pixels of the electrode array as programmed by the controller in response to user input. It should be appreciated that if the user wishes to change the stamp image being inked, that the electrode area on the pad of the stamp must be thoroughly cleaned, such as with a cleaning wipe, before reinking the stamp in the base station.
An embodiment can be created which can be utilized for either electronic ink based materials without ink, or with ink for conventional materials.
Accordingly, it will be seen that this invention provides a number of devices, systems, and methods associated with the display of text and/or graphics in a variety embodiments which incorporate electronic ink.
It will be appreciated that aspects of the invention can be combined with one another, and with what is known in the art, in an unlimited number of ways wihout departing from the teachings of the present invention.
The aspects, modes, embodiments, variations, and features described are considered beneficial to the embodiments described or select applications or uses; but are illustrative of the invention wherein they may be left off or substituted for without departing from the scope of the invention. Preferred elements of the invention may be referred to whose inclusion is generally optional, limited to specific applications or embodiment, or with respect to desired uses, results, cost factors and so forth which would be known to one practicing said invention or variations thereof. For example, one of ordinary skill may find other suitable substitutes for certain applications, such as the following which are described without limitation: numerous types and configurations of electronic ink used in the embodiments; configuration, placement, number of electrodes, background contacts, as well as variations of the input methods.
Moreover, static and semi-static displays according to the various embodiments of the invention may be provided with all of the features described herein, or only portions thereof, which combinations may be practiced and/or sold together or separately. For example, an programmable label CD may be manufactured and sold separately from the writer, although the teachings of the present invention describe their use in combination. In this regard it will be appreciated that the invention assumes that these items can be sold individually, without departing from the present invention, the claims preferably drawn to covering each element separately or in combination. In addition each aspect described may be “adapted to” include or otherwise couple to equipment described herein, or equipment in general, without departing from the intended scope hereof.
It should be appreciated that each aspect of the invention may generally be practiced independently, or in combinations with elements described herein or elsewhere depending on the application and desired use. Modes may be utilized with the aspects described or similar aspects of this or other devices and/or methods. Embodiments exemplify the modes and aspects of the invention and may include any number of variations and features which may be practiced with the embodiment, separately or in various combinations with other embodiments.
Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Thus the scope of this invention should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
This application is a continuation/continuation-in-part of copending regular application Ser. No. 60/586,588 filed on Jul. 8, 2004; and also claims priority from provisional patent application Ser. No. 60/586,588 filed Jul. 8, 2004; and provisional patent application Ser. No. 60/266,279 filed Feb. 2, 2001; and provisional patent application Ser. No. 60/267,115 filed Feb. 7, 2001; each of the foregoing application are incorporated herein by reference and priority to which is claimed. This application is also related to copending application Ser. No. 10/891,718 filed Jul. 14, 2004; and provisional patent application Ser. No. 60/487,295 filed Jul. 14, 2005; commonly assigned with the present invention.
Number | Date | Country | |
---|---|---|---|
60586588 | Jul 2004 | US |