This disclosure relates generally to downhole environments and, more particularly, to apparatus and methods for testing inductively coupled downhole systems.
A completion system is installed in a well to produce hydrocarbon fluids, commonly referred to as oil and gas, from reservoirs adjacent the well or to inject fluids into the well. In many cases, the completion system includes electrical devices that have to be powered and which communicate with an earth surface or downhole controller. Such electrical devices may be associated with a reservoir monitoring and control (RMC) system and/or any other systems associated with a downhole environment (e.g., in a wellbore or borehole penetrating one or more subterranean formations).
Power and/or communication signals (e.g., electrical signals) may be provided to an RMC system and/or other downhole systems via a network of electrical cables or lines and inductive couplers. The inductive couplers may be used to magnetically convey electrical signals between different sections of electrical cable or lines. In this manner, the inductive couplers eliminate the need for conductive electrical connection between certain sections of the network. For example, a mother or main borehole may have a number of lateral branches or lateral boreholes, each of which includes electrical cables or lines that are coupled via an inductive coupler pair (i.e., mating male and female couplers) to a cable and/or lines (e.g., a bus) extending along the main borehole.
Certain examples are shown in the above-identified figures and described in detail below. In describing these examples, like or identical reference numbers are used to identify the same or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic for clarity and/or conciseness. Additionally, several examples have been described throughout this specification. Any features from any example may be included with, a replacement for, or otherwise combined with other features from other examples.
In accordance with the examples described herein, inductive couplers may be used to provide electrical signals within a downhole environment. For example, inductive couplers may be used to distribute power and/or communication signals between a main wellbore or borehole and one or more lateral boreholes. In other words, the inductive couplers may be used to magnetically couple electrical signals between an electrical cable or lines (e.g., a bus or busses) extending along a main borehole and the one or more lateral boreholes, thereby eliminating the need to make conductive electrical connections between the electrical lines in the main borehole and the electrical lines extending along the lateral boreholes.
However, in practice, a well site may be developed in phases such that a mother or main borehole may be completed first and one or more additional lateral boreholes may be completed during different later phases. Similarly, the electrical systems associated with the well site may be deployed in one or more phases associated with the development of the various boreholes making up the well site. As a result, at any given time during the development of the well site, one or more of the electrical systems may be only partially completed, which can complicate the testing and/or use of these systems. In some cases, it may not be safe or practical to operate such partially completed systems.
In the case of RMC systems and/or other downhole systems, one or more inductive couplers may be connected in parallel along a main cable or lines (e.g., one or more signal busses) extending along a main borehole. These inductive couplers may be female type couplers that are fixed to a completion lining the main borehole. Ultimately, each of the female inductive couplers of the completion are to be mated with male inductive couplers, each of which couples electrical signals from its corresponding female coupler and, thus, the main lines or buss(es) to electrical devices located along a respective lateral borehole. However, during development of the well site, one or more of the female couplers may not be mated with corresponding male couplers. For example, lateral boreholes corresponding to female inductive couplers in the main borehole may not yet be drilled or completed and, thus, the male inductive couplers for these lateral boreholes are not installed (i.e., mated to corresponding female inductive couplers).
As described in greater detail below, female inductive couplers that have not been mated with a male inductive coupler exhibit a relatively low inductance or high reluctance and, thus, subject the main electrical cables or lines (e.g., the bus or busses) to a high, reactive electrical load. The electrical load (e.g., current consumption) associated with the unmated female coupler(s) may be sufficiently high to inhibit or prevent the operation and/or testing of the various electrical devices that may be receiving electrical signals (e.g., power and/or communications) via the main electrical cable or lines. For example, it may be necessary or desirable to operate and/or test the operation an RMC system in a downhole environment in which a main borehole has been completed but where one or more lateral boreholes have not yet been completed. With many known systems and methods, such operation and/or testing would be very difficult or impossible due to the excessive power consumption of the unmated female inductive couplers.
The example apparatus and methods described herein may be used to substantially reduce the reluctance (increase the inductance) of an inductive coupler (e.g., a female inductive coupler fixed to a completion) that has not been mated with its corresponding inductive coupler (e.g., a male inductive coupler). In this manner, the example apparatus and methods described herein may be used to enable operation and/or testing of one or more electrical devices of an RMC system or other downhole system in which one or more female inductive couplers provide electrical signals to the electrical devices of the downhole system while one or more other female inductive couplers connected in parallel along the main cable, lines or buss(es) remain unmated with a corresponding male inductive coupler.
More specifically, in one example described herein, an inductive coupler assembly for use in a wellbore includes a female inductive coupler fixed to a completion in the wellbore, a drill pipe, a portion of which is to be located adjacent (e.g., within) to the inductive coupler. In addition, a sleeve may surround the portion of the drill pipe to reduce a reluctance of a magnetic circuit including the inductive coupler.
The sleeve comprises a magnetic material (e.g., carbon steel) having, for example, a permeability greater than one. To reduce eddy currents and, thus, power consumption associated with the use of the sleeve, the example sleeve may include openings or slots extending along the length of the sleeve. Such openings or slots increase the path lengths of any circulating currents and, thus, the effective resistance of the sleeve. Alternatively, the sleeve may be a multi-layer structure formed using alternating layers of a metal material (e.g., a ferrous material) and an electrically insulating material. In some examples, these layers of material may be formed by co-wrapping these materials about a cylindrical form.
In use, the example sleeve may surround a portion of a drill pipe and the sleeve and the portion of drill pipe may be lowered into a wellbore to be aligned with or disposed adjacent (e.g., within) an unmated female inductive coupler, thereby substantially increasing the inductance, decreasing the reluctance and decreasing the reactive electrical load imparted by the female coupler on the main cable or bus. Additional sleeves may be employed such that a sleeve is disposed adjacent to each unmated female inductive coupler. Once the drill pipe and/or sleeves have been positioned adjacent to or aligned with the unmated female inductive couplers, testing of a downhole system (e.g., an RMC system) can be performed. For example, one or more electrical tests of one or more devices associated with the downhole system may be performed.
Now turning in detail to the figures,
The surface unit 120 may provide power and/or communication signals (e.g., electrical signals) via an electrical cable or line(s) 124 that is coupled to a main bus 126 via the coupler pair 102. The main bus 126 extends along the main borehole 114 and female inductive coupler portions 104b, 106b and 108b corresponding to the respective inductive coupler pairs 104, 106 and 108 are electrically connected in parallel to the main bus 126. A male coupler portion 104a of the coupler pair 104 is electrically connected to a lateral bus 128 extending along the lateral borehole 110. One or more monitoring and/or control nodes 130 and 132 may be electrically connected to the lateral bus 128 and, thus, may receive power and/or engage in communications with (e.g., send and/or receive data, commands, etc. to) the surface unit 120 via the lateral bus 128. Similarly, a male coupler portion 106a of the coupler pair 106 is electrically connected to a lateral bus 134 extending along the lateral borehole 112. Monitoring and/or control nodes 136 and 138 may be electrically connected to the lateral bus 134. Additionally, a male inductive coupler 108a of the inductive coupler pair 108 is electrically connected to a bus 140, which is electrically connected to monitoring and/or control nodes 142 and 144 located within the main borehole 114.
In the architecture 100 shown in
In Equation 1, l is the length of the magnetic circuit, s is the cross-sectional area of the magnetic circuit and μ is the permeability of the magnetic circuit. The inductance of the magnetic circuit can be calculated using the reluctance R from Equation 1 and Equation 2 below.
In Equation 2, the variable N is the number of turns of the coupler winding.
Applying Equations 1 and 2 to the equivalent circuit shown in
Wherein the 1000 value is for exemplary purposes. Thus, the reluctance of a coupled or mated female inductive coupler is relatively low and the inductance is relatively high.
Thus, the reluctance of the unmated female inductive coupler is substantially higher and its inductance is substantially lower (i.e., twenty times lower) than that provided by the coupled or mated inductive coupler pair analyzed above in connection with
Thus, as can be seen from Equations 7 and 8 above, the presence of the drill pipe 500 significantly decreases the reluctance (and increases the inductance) relative to an unmated female inductive coupler. However, the drill pipe 500 presents a relatively small load (e.g., 100 microhenries) and incurs losses in the form of eddy currents that may be induced in the drill pipe 500. In some examples, an unmated female inductive coupler having a portion of drill pipe disposed therein may consume about 57 Watts (VA), which is a 40% reduction as compared to an unmated female inductive coupler.
As can be seen from Equations 9 and 10 above, the use of the slotted sleeve 700 further reduces reluctance and increases inductance relative to drill pipe alone as depicted in
The example method 1000 of
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
12290049 | Feb 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/025240 | 2/8/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/119884 | 8/15/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4901069 | Veneruso | Feb 1990 | A |
5563512 | Mumby | Oct 1996 | A |
6768700 | Veneruso | Jul 2004 | B2 |
7436183 | Clark | Oct 2008 | B2 |
7525315 | Fredette | Apr 2009 | B2 |
8497673 | Wang | Jul 2013 | B2 |
9217327 | Tarayre | Dec 2015 | B2 |
20010035288 | Brockman | Nov 2001 | A1 |
20020171560 | Ciglenec | Nov 2002 | A1 |
20040060708 | Clark | Apr 2004 | A1 |
20090085701 | Veneruso et al. | Apr 2009 | A1 |
20110011580 | Clark | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
2395503 | May 2004 | GB |
2407334 | Apr 2005 | GB |
2339791 | Nov 2008 | RU |
2013142381 | Sep 2013 | WO |
Entry |
---|
Extended European Search Report issued in related EP Application No. 12290049.1 dated Jul. 13, 2012 (7 pages). |
Official Action issued in related KZ Application No. 2014/1693.1 dated Feb. 4, 2016, and English translation by agent (5 pages). |
International Search Report and Written Opinion issued in related International Application No. PCT/US2013/025240 dated Apr. 4, 2013 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20140374085 A1 | Dec 2014 | US |