Embodiments of the present invention generally relate to apparatus and methods for operating a tong.
Construction of oil or gas wells usually requires making long tubular strings that make up casing, risers, drill pipe, or other tubing. Due to the length of these strings, sections or joints of tubulars are progressively added to or removed from the tubular strings as they are lowered or raised from a drilling platform. Tongs are devices used on oil and gas rigs for gripping and/or rotating tubular members, such as casing, drill pipe, drill collars, and coiled tubing (herein referred to collectively as tubulars and/or tubular strings). Tongs may be used to make-up or break-out threaded joints between tubulars. Tongs typically resemble large wrenches, and may sometimes be referred to as power tongs, torque wrenches, spinning wrenches, and/or iron roughnecks. Tongs typically use hydraulic power to provide sufficiently high torque to make-up or break-out threaded joints between tubulars.
Historically, tongs have been either manually operated or controlled remotely by an operator in the driller's cabin. Onboard tong control has heretofore not been achievable due to control system size, power, and safety requirements.
Onboard control of a tong may provide improved handling, greater reliability, and increased safety and efficiency.
Embodiments of the present invention generally relate to apparatus and methods for operating a tong.
A tong includes a frame having jaws configured to engage a tubular and a tong control assembly disposed on the frame. The tong control assembly includes a toggle lever configured to control a rotational speed of the jaws.
A tong includes a frame having jaws configured to engage a tubular and a tong control assembly disposed on the frame. The tong control assembly includes a housing connected to the frame, a handle connected to the housing, and a toggle lever configured to control a rotational speed of the jaws. The toggle lever is located at a suitable position on the housing, whereby the toggle lever is configured to be operated while the shutoff switch is depressed.
A tong includes a frame having jaws configured to engage a tubular, a tong control assembly disposed on the frame. The tong control assembly includes a housing connected to the frame, a shutoff switch, and a toggle lever located at a suitable position on the housing, whereby the toggle lever is configured to be operated while the shutoff switch is depressed, and wherein the toggle lever is configured to control at least one of: a rotational speed of the jaws and a rotational direction of the jaws.
A tong includes a frame having jaws configured to engage a tubular, a tong control assembly disposed on the frame including a housing connected to the frame, a handle connected to the housing, and a toggle lever configured to control a rotational speed and a rotational direction of the jaws.
A method for operating a tong includes clamping a first tubular using first jaws of the tong, clamping a second tubular using second jaws of the tong, rotating the first tubular relative to the second tubular, controlling a rotational speed of the first tubular using a toggle lever disposed on a frame of the tong.
A method includes installing a tong control assembly on a frame having jaws configured to engage a tubular, the tong control assembly including a toggle lever and controlling a rotational speed of the jaws using the toggle lever.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
Embodiments of the present invention generally relate to apparatus and methods for operating a tong.
In some embodiments, a tong control system may be small (e.g., less than about 2 feet in any dimension; for example 16″ by 16″ by 6″), so that it can be placed on the tong. Consequently, existing tongs may be beneficially retrofitted.
A tong control system may monitor and actuate several parts of the tong. For example, the tong control system may monitor and actuate components of the tong to provide varying torque and/or angular displacement. Disconnection of a tubular joint may require both a high-torque/low-angular displacement “break” action to disengage the contact shoulders, and a low-torque/high-angular displacement “spin” action to screw-out the threads. Connection of a tubular joint may occur in the reverse sequence. In the make/break action, torque may be high (e.g., 10,000-100,000 ft-lbf), having a small (e.g., 0.12-0.24 revolutions) angular displacement. In the spin action, torque may be low (e.g., 1,000-3,000 ft-lbf), having a large (e.g., 3-5 revolutions) angular displacement.
As another example, the tong control system may monitor and actuate components of the tong to provide varying clamping and rotation actions. Upper and lower jaws of the tong may turn relative to each other to break a connection between upper and lower tool joints. The upper jaw may then be released while the lower jaw remains clamped onto the lower tool joint. A spinning wrench, commonly separate from the torque wrench and mounted higher up on the carriage, may engage the stem of the upper joint of drill pipe to spin the upper joint until it is disconnected from the lower joint. Upper and lower jaws of the tong may turn relative to each other to make-up two joints of pipe. The lower jaw may grip the lower tool joint while the upper pipe is brought into position. The spinning wrench may engage the upper joint to spin it into the lower joint. The torque wrench may clamp the pipe and tighten the connection.
In some embodiments, tong control system 160 may be configured to control how the tong 100 handles tubulars, grips tubulars, turns tubulars, and/or manages hydraulic power for handling, gripping, and/or turning tubulars. In some embodiments, tong control system 160 may be configured to receive input (e.g., from sensors) regarding how the tong 100 interacts with tubulars. In some embodiments, tong control system 160 may be configured to process and/or store data (e.g., pipe size, thread size, thread count, etc.) regarding how the tong 100 interacts with tubulars. In some embodiments, tong control system 160 may be configured to generate and/or send control signals to control how the tong 100 interacts with tubulars. Tong control system 160 may include a torque sensor (e.g., a load cell) and/or a turns counter. In some embodiments, tong control system 160 may be configured to also receive input from a clock. Tong control system 160 may include data storage and/or data processors. Tong control system 160 may include a tubular gripping actuator, a tubular turning actuator, and/or a hydraulic power control actuator (e.g., a dump valve). In some embodiments, tong control system 160 may be configured to send control signals to a tubular gripping actuator, a tubular turning actuator, and/or a hydraulic power control actuator. In some embodiments, tong control system 160 may be configured to also send control signals to a jaw positioning actuator.
The toggle lever 206 may be at least partially disposed in the inner recessed portion of the housing 202. The toggle lever 206 may be biased to a neutral position, as shown in
The electrical connector 208 may be configured to connect to an electrical cable. The electrical connector 208 may be disposed on a wall of the housing 202. The electrical connector 208 may face outwardly of the housing 202. An opposite end of the electrical cable may be connected to the tong control system 160. The electrical cable may transfer signals between the tong control assembly 200 to the tong control system 160. The indicator light 210 may be configured to indicate an operational mode of the tong 100. The indicator light 210 may be disposed on the handle 204. The indicator light 210 may be a light emitting diode. The indicator light 210 may alternate between off, blinking, and steady-on to indicate the current mode of the tong 100. The push-button control 212 may be disposed on the handle 204. The push-button control 212 may be located at any suitable position on the handle 204 whereby the operator may depress the push-button control while grasping the handle 204. In some embodiments, the push-button control 212 may be located at a position on the handle 204 whereby the operator can depress the push-button control with the same hand used to grasp the handle 204. In some embodiments, the push-button control 212 can be used to control the tong 100. In some embodiments, the push-button control 212 can be used to initiate an automatic make-up sequence of the tong 100. The indicator light 210 may be configured to blink to indicate the tong 100 is ready to enter the automatic make-up sequence.
Before makeup begins, the operator may manually enter the size, material, and thread type of the pipe. The operator may also enter a set torque, the maximum torque, and/or maximum rotational speed of the pipe. In the alternative, the control system 160 may calculate a set torque, final torque, final turns, and/or maximum rotational speed of the pipe based on the size, material, and thread type of the pipe. The set torque may correspond to a torque at which the automatic make-up sequence of the tong 100 may be initiated.
In some embodiments, the tong 100 may be operated to add tubulars to a tubular string by the following steps. An operator may grasp the tong 100 by the handle 204. The handle 204 may be configured to allow the operator to move the tong 100 adjacent a string of tubulars being added to. The operator may move the tong 100 adjacent the string of tubulars. The dead man switch 214 may be grasped and held in order to allow for operation of the tong 100 and use of the tong control assembly 200. The toggle lever 206 may be operated to align a recess in the upper jaws 115-U (the jaws may already be in this configuration following the removal of the tong 100 from a previous section of tubing) with an opening at the front of the upper jaws 115-U. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor of the jaws 115-U including the recess. The operator may control the speed at which the rotor rotates using the toggle lever 206. The recess of the rotor may be aligned with the opening at the front of the jaws 115-U to allow tubulars to be inserted into the tong 100. Two tubulars are then introduced into the openings in the upper and lower jaws through the recesses and the lower tubular is clamped in position in the lower jaws 115-L.
Next, the toggle lever 206 may be operated to clamp the upper tubular in position in the upper jaws 115-U. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor. The operator may control the speed at which the rotor rotates using the toggle lever 206. The operator may lower the speed at which the rotor rotates by moving the toggle lever 206 closer to the neutral position, shown in
In the next step of the operation, the push-button control 212 may be pressed. The push-button control 212 may send a signal from the tong control assembly 200 to the control system 160 to initiate the automatic make-up sequence. The control system 160 may control the operation of the tong 100 until the connection is fully tightened. The control system 160 may monitor the torque and/or turns of the tubulars to determine if the connection is fully tightened. The control system 160 may compare the torque and/or turns to inputs (e.g., final torque, final turns) provided by the operator and/or calculated by the control system 160 based on the thread type, size, and material of the tubulars. The indicator light 210 may be steady on during the automatic make-up sequence of the tong 100.
After finishing make-up of the connection between the tubular and the tubular string, the toggle lever 206 may be operated to release the clamping force from the tubular. Optionally, the control system 160 may require release and reengagement of the dead man switch 214 after finishing make-up of the connection and before manually operating the tong control assembly 200. The toggle lever 206 may be operated to control the tong 100. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor of the jaws. Rotation of the rotor may cause the gripping members to retract outward, thereby releasing the clamping force on the tubular. The toggle lever 206 may control the rotational speed of the rotor. After releasing the clamping force on the tubular, the toggle lever 206 may be operated to rotate the rotor and align the recess of the rotor with the opening of the tong 100. Once aligned, the tong 100 may be removed from the tubular string. The above operation may be repeated to add the desired number of tubulars to the tubular string.
In some embodiments, the tong 100 may be operated to remove tubulars from a tubular string by the following steps. An operator may grasp the tong 100 by the handle 204. The handle 204 may be configured to allow the operator to move the tong 100 adjacent a string of tubulars being broken up. The operator may move the tong 100 adjacent the string of tubulars. The dead man switch 214 may be grasped and held in order to allow for operation of the tong 100 and use of the tong control assembly 200. The toggle lever 206 may be operated to align the recess in the upper jaws 115-U (the jaws may already be in this configuration following the removal of the tong 100 from a previous section of tubing) with the opening at the front of the upper jaws 115-U. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor of the jaws including the recess. The operator may control the speed at which the rotor rotates using the toggle lever 206. The recess of the rotor may be aligned with the opening at the front of the jaws 115-U to allow the tubular string to be inserted into the tong 100. The tubular string is then introduced into the openings in the upper and lower jaws through the recesses and the lower tubular is clamped in position in the lower jaws 115-L.
Next, the toggle lever 206 may be operated to clamp the upper tubular in position in the upper jaws 115-U. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor. The operator may control the speed at which the rotor rotates using the toggle lever 206. The operator may lower the speed at which the rotor rotates by moving the toggle lever 206 closer to the neutral position, shown in
After finishing break-out of the connection between the tubular and the tubular string, the toggle lever 206 may be operated to release the clamping force from the tubular. Optionally, the control system 160 may require release and reengagement of the dead man switch 214 after finishing break-out of the connection and before manually operating the tong control assembly 200. The toggle lever 206 may be operated to control the tong 100. The toggle lever 206 may send a signal to the control system 160 to rotate the rotor. Rotation of the rotor may cause the gripping members to retract outward, thereby releasing the clamping force on the tubular. The toggle lever 206 may control the rotational speed of the rotor. After releasing the clamping force on the tubular, the toggle lever 206 may be operated to rotate the rotor and align the recess of the rotor with the opening of the tong 100. Once aligned, the tong 100 may be removed from the tubular and the tubular string. The above operation may be repeated to remove the desired number of tubulars from the tubular string.
Conventional tongs may be retrofitted with one or more embodiments of the tong control assembly.
In one or more of the embodiments described herein, a tong includes a frame having jaws configured to engage a tubular, a tong control assembly disposed on the frame, the tong control assembly including a toggle lever configured to control a rotational speed of the jaws.
In one or more of the embodiments described herein, the tong control assembly further includes a housing connected to the frame of the tong.
In one or more of the embodiments described herein, wherein the toggle lever is movable through a continuous range of rotational speeds.
In one or more of the embodiments described herein, the toggle lever is configured to control a continuous range of rotational speeds of the jaws.
In one or more of the embodiments described herein, wherein the toggle lever is pivotally movable.
In one or more of the embodiments described herein, wherein the toggle lever is configured to rotate the jaws bi-directionally.
In one or more of the embodiments described herein, wherein the toggle lever is configured to control a rotational speed of a tubular engaged by the jaws.
In one or more of the embodiments described herein, the tong control assembly further includes a handle connected to the housing, a shutoff switch, an indicator light, and a push-button.
In one or more of the embodiments described herein, the shutoff switch, the indicator light, and the push-button disposed on the handle.
In one or more of the embodiments described herein, the indicator light configured to indicate an operational mode of the tong.
In one or more of the embodiments described herein, wherein the push-button is configured to initiate an automatic make-up sequence of the tong.
In one or more of the embodiments described herein, wherein the shutoff switch is configured to be depressed to operate the tong control assembly.
In one or more of the embodiments described herein, wherein the toggle lever is located at a suitable position on the housing, whereby the toggle lever is configured to be operated while the shutoff switch is depressed.
In one or more of the embodiments described herein, a tong includes a frame having first jaws configured to engage a tubular, a tong control assembly disposed on the frame, the tong control assembly including a housing connected to the frame, a handle connected to the housing, a shutoff switch, and a toggle lever configured to control a rotational speed of the first jaws, wherein the toggle lever is located at a suitable position on the housing, whereby the toggle lever is configured to be operated while the shutoff switch is depressed.
In one or more of the embodiments described herein, a method of operating a tong includes clamping a first tubular using first jaws of the tong, clamping a second tubular using second jaws of the tong, rotating the first tubular relative to the second tubular, controlling a rotational speed of the first tubular using a toggle lever disposed on a frame of the tong.
In one or more of the embodiments described herein, the method further includes while controlling the rotational speed of the first tubular, connecting the first tubular and the second tubular.
In one or more of the embodiments described herein, the method further includes while controlling the rotational speed of the first tubular, breaking a connection between the first tubular and the second tubular.
In one or more of the embodiments described herein, the method further includes controlling the rotational speed of the first tubular to reach a set torque.
In one or more of the embodiments described herein, the method further includes initiating an automatic connection sequence after reaching the set torque
In one or more of the embodiments described herein, the method further includes while controlling a rotational speed of the first tubular, depressing a shutoff switch of a tong control assembly disposed on the tong.
In one or more of the embodiments described herein, wherein controlling the rotational speed of the first tubular comprises pivotally moving the toggle lever.
In one or more of the embodiments described herein, a method includes installing a tong control assembly on a frame of a tong, the tong control assembly including a toggle lever and controlling a rotational speed of the first jaws using the toggle lever.
In one or more of the embodiments described herein, a tong includes a frame having a first jaws configured to engage a tubular, a tong control assembly disposed on the frame. The tong control assembly includes a housing connected to the frame, a shutoff switch, and a toggle lever located at a suitable position on the housing, whereby the toggle lever is configured to be operated while the shutoff switch is depressed, and wherein the toggle lever is configured to control at least one of: a rotational speed of the first jaws and a rotational direction of the first jaws.
In one or more of the embodiments described herein, a tong includes a frame having a first jaws configured to engage a tubular, a tong control assembly disposed on the frame including a housing connected to the frame, a handle connected to the housing, and a toggle lever configured to control a rotational speed and a rotational direction of the first jaws.
In one or more of the embodiments described herein, the toggle lever is configured to control a rotational speed and a rotational direction of a tubular engaged by the first jaws.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a Continuation of application Ser. No. 15/682,427 filed on Aug. 21, 2017, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5049020 | McArthur | Sep 1991 | A |
5988299 | Hansen et al. | Nov 1999 | A |
6119557 | Penisson | Sep 2000 | A |
8733213 | Taggart | May 2014 | B2 |
20020178871 | Hauk et al. | Dec 2002 | A1 |
20080011470 | Hobgood | Jan 2008 | A1 |
20130255446 | Taggart | Oct 2013 | A1 |
20150107850 | Mosing et al. | Apr 2015 | A1 |
20160076356 | Krems et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2160807 | Jan 1986 | GB |
Entry |
---|
International Search Report and Written Opinion in application PCT/US2018/046736 dated Oct. 29, 2018. |
International Preliminary Report on Patentability in application PCT/US2018/046736 dated Feb. 25, 2020. |
Extended European Search Report in related application EP 20179556.4 dated Sep. 1, 2020. |
Number | Date | Country | |
---|---|---|---|
20200072002 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15682427 | Aug 2017 | US |
Child | 16678519 | US |