Apparatus and methods for treating root canals of teeth

Information

  • Patent Grant
  • 11918432
  • Patent Number
    11,918,432
  • Date Filed
    Wednesday, March 27, 2019
    5 years ago
  • Date Issued
    Tuesday, March 5, 2024
    a month ago
Abstract
Apparatus and methods for endodontic treatment of teeth provide effective cleaning of organic material (such as pulp and diseased tissue) from the root canal system. In an embodiment, a compressor system generates high pressure liquid (e.g., water) that flows through an orifice to produce a high-velocity collimated jet of liquid. The high-velocity jet is directed toward a surface of a tooth, for example, an exposed dentinal surface, and impingement of the jet onto the surface generates an acoustic wave that propagates throughout the tooth. The acoustic wave effectively detaches organic material from dentinal surfaces and tubules. The detached organic material is flushed from the root canal system by the liquid jet and/or by additional irrigation.
Description
BACKGROUND
Field of the Disclosure

The present disclosure generally relates to methods and apparatus for removing organic matter from a body location and, more particularly, to methods and apparatus for removing organic matter from a root canal system of a tooth.


Description of the Related Art

In conventional root canal procedures, an opening is drilled through the crown of a diseased tooth, and endodontic files are inserted into the root canal system to open the canal and remove organic material therein. The root canal is then filled with solid matter such as gutta percha, and the tooth is restored. However, this procedure will not remove all organic material from all canal spaces. The action of the file during the process of opening the canal creates a smear layer of dentinal filings and diseased organic material on the dentinal walls, which is extremely difficult to remove. The organic material and necrotic tissue that remain in the canal spaces after completion of the procedure often result in post-procedure complications such as infections.


SUMMARY

In an embodiment, an apparatus for removing organic material from a root canal of a tooth is provided. The apparatus may comprise a liquid jet assembly having a liquid pressurization portion which pressurizes a liquid and a liquid beam forming portion in fluid communication with the pressurization portion. The beam forming portion may comprise an orifice that receives the pressurized liquid. The orifice may be sized and shaped to convert the pressurized liquid into a high velocity collimated beam that produces an acoustic wave upon impact with a surface of the tooth. The energy of the wave may cause organic material within the canal to be detached from the surrounding dentinal surface along a length of the canal. The length of the canal may extend at least to an apical portion of the tooth.


In another embodiment, a method of removing organic material that fills a root canal of a tooth is provided. The method comprises propagating an acoustic wave through the tooth. The method may also comprise detaching organic material filling the canal from the surrounding dentinal tissue using energy of the acoustic wave.


In another embodiment, a method of removing organic material from dentinal tubules which extend laterally from a root canal is provided. The method comprises introducing energy into a plurality of tubules through dentinal tissue such that at least a portion of an odontoblastic process within the tubules is detached from surrounding dentinal tissue and released from the tubule.


In another embodiment, a method for removing organic material from a root canal of a tooth is provided. The method comprises impacting dentin with an energy beam of a sufficiently high level to cause cavitations in fluid within the root canal. The cavitations maybe caused at least at locations in the root canal remote relative to the location of energy impact such that organic material within the canal may be detached from surrounding dentinal tissue.


In another embodiment, a method of removing organic material from a root canal comprises directing a liquid jet into the pulp chamber of a tooth through an opening in a side of the tooth at a substantial angle to the long axis of a root canal.


In another embodiment, a method of removing organic material from a root canal using a high velocity liquid jet is provided. The method comprises providing a handpiece for directing the liquid jet and positioning a contact member of the handpiece against a tooth to be treated. The method may also comprise using a sensor to sense contact of the contact member with the tooth. The method also may comprise activating the liquid jet only after the contact is sensed by the sensor.


In another embodiment, a method of removing organic material from a tooth is provided. The method comprises using acoustic energy to detach organic material from surrounding dentin within a plurality of root canals of a single tooth substantially simultaneously.


In another embodiment, an apparatus for removing organic material from a root canal of a tooth is provided. The apparatus comprises an acoustic energy generator arranged to couple acoustic energy to a dentinal surface of the tooth. The acoustic energy may be sufficient to cause organic material in the tooth to be detached from surrounding dentin at locations remote from the acoustic coupling surface.


In another embodiment, a method of removing organic material from a pulp cavity of a tooth is provided. The method comprises providing a liquid jet beam by passing liquid through an orifice. The method may also comprise using a positioning member to position the orifice relative to an opening into a pulp cavity of the tooth such that the jet beam passes through the opening.


For purposes of this summary, certain aspects, advantages, and novel features of the invention are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-section view schematically illustrating a root canal system of a tooth.



FIG. 2 is a scanning electron microscope photograph of a dentinal surface within a canal system in a tooth and shows numerous dentinal tubules on the dentinal surface.



FIG. 3 is a block diagram schematically illustrating an embodiment of a compressor system adapted to produce a high-velocity liquid jet.



FIGS. 4 and 4A are cross-section views schematically illustrating an embodiment of a handpiece that can be used to maneuver the high-velocity liquid jet.



FIG. 5A is cross-section view schematically illustrating a distal end of an embodiment of a handpiece configured to deliver a high-velocity liquid jet.



FIG. 5B is a graph showing an example velocity profile of a coherent collimated jet.



FIG. 6A is a cross-section view schematically showing an endodontic method in which a high-velocity jet is directed toward dentin through an opening in the top of a tooth.



FIG. 6B is a cross-section view schematically showing another endodontic method in which the high-velocity jet is directed toward the dentin through an inlet opening in a side of the tooth and a relief opening in the top of the tooth is provided to reduce pressure buildup, if present, and to permit debridement.



FIG. 6C is a cross-section view schematically illustrating an embodiment of a positioning member prior to adherence to a tooth.



FIG. 6D is a cross-section view schematically illustrating an embodiment of a positioning member adhered to a side of a tooth and used to assist coupling the distal end of the handpiece to the side of the tooth so that the high-velocity jet may be directed through the inlet opening.



FIG. 7 schematically illustrates production of an acoustic wave caused by impingement of a high-velocity liquid jet onto a dentinal surface.



FIG. 8A is a cross-section view schematically illustrating cavitation bubbles formed near odontoblasts at the dentinal surface.



FIG. 8B schematically illustrates collapse of a cavitation bubble and formation of a cavitation jet near a dentinal surface.



FIGS. 9A-9C are scanning electron microscope photographs of dentinal surfaces following treatment of the tooth with the high-velocity jet; FIG. 9A shows dentinal tubules in an apical area of a mature tooth magnified 1000×; FIGS. 9B and 9C show dentin and dentinal tubules magnified 1000× in an inclusion area of a juvenile tooth (FIG. 9B) and in a medial area of a mature root (FIG. 9C). A bar at the top left of each photo indicates the linear scale (in microns) for each photograph.



FIGS. 10A-10H schematically illustrate embodiments of a cap that may be attached to a distal end of a handpiece and fitted onto a tooth. FIGS. 10A and 10C-10H are side views, and FIG. 10B is a partially exploded cross-section view.



FIG. 11 schematically illustrates a method for generating an acoustic wave using a piezoelectric transducer.



FIG. 12 is a cross-sectional side view of an embodiment of a guide tube.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present disclosure provides various apparatus and methods for dental treatments that overcome possible disadvantages associated with conventional root canal treatments. In certain embodiments, endodontic treatment methods (e.g., root canal therapy) comprise directing a high-velocity liquid jet toward a tooth. Impact of the jet causes acoustic energy to propagate from a site of impact through the entire tooth, including the root canal system of the tooth. The acoustic energy is effective at detaching substantially all organic material in the root canal system from surrounding dentinal walls. In many embodiments, the detached organic material can be flushed from the root canal using low-velocity irrigation fluid. As used herein organic material (or organic matter) includes organic substances typically found in healthy or diseased root canal systems such as, for example, soft tissue, pulp, blood vessels, nerves, connective tissue, cellular matter, pus, and microorganisms, whether living, inflamed, infected, diseased, necrotic, or decomposed.



FIG. 1 is a cross section schematically illustrating a typical human tooth 10, which comprises a crown 12 extending above the gum tissue 14 and at least one root 16 set into a socket (alveolus) within the jaw bone 18. Although the tooth 10 schematically depicted in FIG. 1 is a molar, the apparatus and methods described herein may be used on any type of tooth such as an incisor, a canine, a bicuspid, or a molar. The hard tissue of the tooth 10 includes dentin 20 which provides the primary structure of the tooth 10, a very hard enamel layer 22 which covers the crown 12 to a cementoenamel junction 15 near the gum 14, and cementum 24 which covers the dentin 20 of the tooth 10 below the cementoenamel junction 15.


A pulp cavity 26 is defined within the dentin 20. The pulp cavity 26 comprises a pulp chamber 28 in the crown 11 and a root canal space 30 extending toward an apex 32 of each root 16. The pulp cavity 26 contains dental pulp, which is a soft, vascular tissue comprising nerves, blood vessels, connective tissue, odontoblasts, and other tissue and cellular components. The pulp provides innervation and sustenance to the tooth through the epithelial lining of the pulp chamber 26 and the root canal space 30. Blood vessels and nerves enter/exit the root canal space 30 through a tiny opening, the apical foramen 32, near a tip of the apex 32 of the root 16.



FIG. 2 depicts a pulpal surface of the dentin 20. The dentin 20 comprises numerous, closely-packed, microscopic channels called dentinal tubules 34 that radiate outwards from the interior walls of the canal space 30 through the dentin 20 toward the exterior cementum 24 or enamel 22. The tubules 34 run substantially parallel to each other and have diameters in a range from about 1.0 to 3.0 microns. The density of the tubules 34 is about 5,000-10,000 per mm2 near the apex 32 and increases to about 15,000 per mm2 near the crown.


The dentin 20 is continuously formed by specialized cells called odontoblasts that secrete a mineralized substance that hardens into dentin. Odontoblasts form a single layer of cells between the dentin 20 and the pulp. An odontoblast has a cell body that is located on the pulpal surface of the dentin 20 on a tubule 34 and a cytoplasmic portion, called the odontoblastic process, that extends into and substantially fills the associated tubule 34. The odontoblasts are connected to each other with interodontoblastic collagen, and collagen fibrils may attach the odontoblast layer to the pulp. As a person ages, the odontoblasts continue to form dentin, which causes the root canal space 30 to decrease in diameter.



FIG. 3 is a block diagram that schematically illustrates a compressor system 38 adapted to generate a high-velocity jet of fluid for use in dental procedures. The compressor system 38 comprises a source of compressed gas 40 such as a pressurized air or gas source commonly available in dental service installations. The compressed gas 40 may be pressurized in a range from about 50 pounds per square inch (psi) to 150 psi including, for example, 100 psi. The compressed gas 40 may comprise any suitable commercially available gas including, for example, air, nitrogen, carbon dioxide, or a combination thereof. The compressed gas 40 is pneumatically connected to a pump 46 via a regulator 42. The regulator 42 can be used to regulate the pressure of the input gas to a desired pressure such as, for example, 40 psi. In some embodiments, the pump 46 comprises an air-driven hydraulic pressure intensifier that uses the compressed gas 40 to increase the pressure of liquid received from a fluid source 44. For example, a pressure intensifier having a 330:1 pressure intensification ratio can increase the pressure of the liquid to about 13,200 psi using pressurized gas at 40 psi from the regulator 42. Different pressure intensification ratios may be used in different embodiments. By adjusting the gas pressure with the regulator 42, the pressure of the liquid output from the pump 46 can be selectably adjusted to a desired value or range of values. In some embodiments, the pressure of the liquid can be adjusted within a range from about 500 psi to about 50,000 psi. In certain embodiment, it has been found that a pressure range from about 2,000 psi to about 11,000 psi produces jets that are particularly effective for endodontic treatments.


The fluid source 44 may comprise a fluid container (e.g., an intravenous bag) holding sterile water, a medical-grade saline solution, an antiseptic or antibiotic solution, an abrasive solution, a solution with chemicals or medications, or any combination thereof. More than one fluid source may be used. In certain embodiments, it is advantageous for jet formation if the liquid provided by the fluid source 44 is substantially free of dissolved gases (e.g., less than 0.1% by volume) and particulates, which can act as nucleation sites for bubbles. In some embodiments, the fluid source 44 comprises degassed distilled water. A bubble detector (not shown) may be disposed between the fluid source 44 and the pump 46 to detect bubbles in the liquid and/or to determine whether liquid flow from the fluid source 44 has been interrupted or the container has emptied. The liquid in the fluid source 44 may be at room temperature or may be heated and/or cooled to a different temperature. For example, in some embodiments, the liquid in the fluid source 44 is chilled to reduce the temperature of the high velocity jet generated by the compressor system 38.


In the embodiment depicted in FIG. 3, the high-pressure liquid from the pump 46 is fed to a regulator 48 and then to a handpiece 50, for example, by a length of high-pressure tubing 49. The regulator 48 may be operable with compressed gas from the source 40 and may be used to regulate the pressure of the liquid to a desired value. For example, in one embodiment, the regulator 48 reduces the 13,200 psi pressure from the pump 46 to about 12,000 psi. The regulator 48 may include water pressure sensors and bleed-off valves (e.g., an air-driven needle valve) to provide the desired pressure and to permit an operator to actuate/deactuate water jet output from the handpiece 50.


The handpiece 50 receives the high pressure liquid and is adapted at a distal end to generate a high-velocity, coherent, collimated beam or jet 60 of liquid for use in dental procedures. The handpiece 50 may be sized and shaped to be maneuverable so that the jet 60 may be directed toward or away from various portions of the tooth 10.


The compressor system 38 may include a controller 51 that controls the operation of the components of the system 38. The controller 51 may comprise a microprocessor, a special or general purpose computer, a floating point gate array, and/or a programmable logic device. In one embodiment, the controller 51 is used to operate the regulators 42, 48 and the pump 46 so that the high-pressure liquid delivered to the handpiece 50 is at a suitable working pressure. The controller 51 may also be used to control safety of the system 38, for example, by limiting system pressures to be below safety thresholds and/or by limiting the time that the jet 60 is permitted to flow from the handpiece 50. In certain embodiments, the controller 51 may be used to vary or cycle the pressure of the liquid delivered to the handpiece 50, for example, by cycling pressures provided by one or both of the regulators 42, 48. In certain such embodiments, sinusoidal or sawtooth pressure variability may be used to provide corresponding variability in the speed of the jet 60. In certain embodiments, cycle time for the pressure variability may be in a range from about 0.1 seconds to about 5 seconds. Additionally and optionally, the controller 51 may regulate a pulse intensifier device (not shown), such as a piezoelectric transducer, that causes pulsations in the jet 60. For example, in certain embodiments, the jet 60 comprises a pulsed jet, which may include a series of discrete liquid pulses, a continuous stream of fluid having spatially varying pressure, velocity, and/or area, or a combination thereof. The controller 51 advantageously may control the amplitude and frequency of the pulsations in the jet 60. In certain embodiments, the amplitude of the pressure variation may be in a range from several hundred to several thousand psi. The pulse frequency may be in a range from about 0.1 Hz to about 10 MHz. For example, in some embodiments, a pulse frequency of about 1 MHz is applied to produce a jet comprising a series of droplets.


The system 38 may also include a user interface 53 that outputs relevant system data and accepts user input. In some embodiments, the user interface 53 comprises a touch screen graphics display. In some embodiments, the user interface 53 may display information including the working liquid pressure in the handpiece 50 and instructions and/or procedures for operating on different tooth types (e.g., incisors, bicuspids, or molars). The user interface 53 may accept user input such as a time setting that sets a maximum time during which the compressor system 38 will deliver the jet 60 and other useful endodontic treatment options. For example, some embodiments permit an operator to select a “ramp up” and/or “ramp down” option in which the working liquid pressure can be gradually increased or decreased, respectively. The ramp up option advantageously may be used for initial aiming of the jet 60 towards a suitable portion of the tooth 10, while the ramp down advantageously may be used if the jet 60 is moved toward a sensitive portion of the tooth 10 (e.g., the apex 32). The compressor system 38 may also include a storage medium (e.g., volatile or nonvolatile memory) configured to store system operating information and executable instructions, user preferences, preferred operating pressures and times, patient data, etc. In some embodiments, the storage medium comprises on-board memory of the controller 51 and/or additional random access or read-only memory, flash memory, removable memory cards, etc.


The compressor system 38 may include additional and/or different components and may be configured differently than shown in FIG. 3. For example, the system 38 may include an aspiration pump that is coupled to the handpiece 50 (or an aspiration cannula) to permit aspiration of organic matter from the mouth or tooth 10. In other embodiments, the compressor system 38 may comprise other pneumatic and/or hydraulic systems adapted to generate the high-velocity beam or jet 60. For example, certain embodiments may utilize apparatus and systems described in U.S. Pat. No. 6,224,378, issued May 1, 2001, entitled “METHOD AND APPARATUS FOR DENTAL TREATMENT USING HIGH PRESSURE LIQUID JET,” and/or U.S. Pat. No. 6,497,572, issued Dec. 24, 2002, entitled “APPARATUS FOR DENTAL TREATMENT USING HIGH PRESSURE LIQUID JET,” the entire disclosure of each of which is hereby incorporated by reference herein.


Moreover, in other embodiments, the high-velocity jet 60 may be generated by systems other than the high-pressure compressor system 38, such as, for example, by a pump system. In one such embodiment, an electric motor drives a pump that is in fluid communication with a liquid reservoir. The pump increases the velocity of the liquid so as to provide a narrow beam of high-velocity liquid from the handpiece 50. In some embodiments, multiple pumps are used. As is well known from Bernoulli's law, the total pressure in a flowing fluid includes static (e.g., thermodynamic) pressure plus dynamic pressure (associated with fluid kinetic energy). A skilled artisan will recognize that static pressures in motor-driven pump systems may be less than static pressures in compressor systems, because the motor-driven pump primarily increases the dynamic pressure (e.g., the fluid velocity) of the liquid. The total pressures (static plus dynamic) achieved are comparable in many embodiments of compressor systems and pump systems.



FIGS. 4 and 4A are cross-section views that schematically illustrate one embodiment of the handpiece 50 adapted for forming the high-velocity jet 60. The handpiece 50 comprises an elongated tubular barrel 52 having a central passageway 54 extending axially therethrough. The handpiece 50 has a proximal end 56 that is adapted to engage tubing from the regulator 48 in order for the passageway 54 to be in fluid communication with the high pressure liquid delivered by the compressor system 38. The barrel 52 may include features 55 that enhance grasping the handpiece with the fingers and thumb of the operator. A distal end 58 of the barrel 52 (shown in closeup in FIG. 4A) includes a threaded recess adapted to engage complementary threads of an orifice mount 62, which is configured to hold an orifice jewel 64 at an end thereof. The orifice mount 62 is tightly screwed into the distal end 58 of the barrel 52 to secure the orifice jewel 64 adjacent to a distal end of the passageway 52.


The orifice jewel 64 may comprise a circular, disc-like element having a small, substantially central orifice 66 formed therein. The orifice jewel 64 may be fabricated from a suitably rigid material that resists deformation under high pressure such as, for example, synthetic sapphire or ruby. The orifice mount 62 advantageously secures the orifice jewel 64 substantially perpendicular to the passageway 54 so that high pressure liquid in the passageway 54 can flow through the orifice 66 and emerge as a highly collimated beam of fluid traveling along a longitudinal jet axis 70 that is substantially coaxial with the barrel 52 of the handpiece 50. In some embodiments, the distal end 58 of the handpiece 50 may include additional components, for example, to assist guiding or directing the jet 60 and/or to provide aspiration. Also, as further described below, the distal end 58 of the handpiece 50 may be adapted to receive various end caps that assist guiding the jet 60 toward the pulp cavity 26.



FIG. 5A is a cross-section schematically illustrating the distal end 58 of an embodiment of the handpiece 50 to further illustrate formation of the jet 60. The orifice jewel 64 is secured at the distal end of the handpiece 50 and forms a tight seal to prevent leakage of high-pressure liquid 68 contained in the passageway 54. In the depicted embodiment, the orifice jewel 64 has a proximal side that is substantially flat and a distal side that is concave (e.g., thinnest near the orifice 66). The orifice 66 has a substantially circular cross-section with a diameter “D.” The axial length of sides 69 of the orifice 66 is “L.” The diameter D may be in a range from about 5 microns to about 1000 microns. Other diameter ranges are possible. In various embodiments, the diameter D may be in a range from about 10 microns to about 100 microns, a range from about 100 microns to about 500 microns, or range from about 500 microns to about 1000 microns. In various preferred embodiments, the orifice diameter D may be in a range of about 40-80 microns, a range of about 45-70 microns, or a range of about 45-65 microns. In one embodiment, the orifice diameter D is about 60 microns. The ratio of axial length L to diameter D may be about 50:1, 20:1, 10:1, 5:1, 1:1, or less. In one embodiment, the axial length L is about 500 microns. In certain embodiments, the ratio of axial length L to diameter D is selected so that transverse width of any boundary layers that may form on the sides 69 of the orifice 66 have a transverse width that is sufficiently small, for example, much less than the diameter D. In preferred embodiments, the orifice diameter is 40-80 microns, and more preferably 45-70 microns, and even more preferably 45-65 microns. The axial length of the orifice is preferably no greater than ten times the diameter of the orifice, and the liquid pressure at the input side of the orifice is 7,000 to 15,000 psi. In one embodiment, the orifice is about 60 microns in diameter, the axial length of the orifice about 500 microns, and the liquid pressure at the input side of the orifice about 11,000 psi. Since the output side of the orifice is at atmospheric pressure, the pressure drop at the orifice will be only slightly less than the pressure at the input side of the orifice. This combination of parameters provides a high velocity, high momentum, collimated, coherent liquid beam that is efficacious for cleaning without significant dentinal erosion.


In certain embodiments, the sides 69 of the orifice 66 are machined, polished, or otherwise processed to be substantially smooth in order to reduce or prevent formation of turbulence, cavitation, bubbles, fluid instabilities, or other effects that may interfere with substantially smooth, laminar flow of the liquid through the orifice 66. For example, in certain such embodiments, the sides 69 have a root-mean-square (rms) surface roughness less than about 10 microns, less than about 1 micron, or less than about 0.1 microns. In other embodiments, the rms surface roughness is much smaller than the diameter D of the orifice such as, for example, less than about 0.1 D, less than about 0.01 D, less than about 0.001 D, or less than about 0.0001 D. Additionally, highly demineralized liquids may be used to reduce buildup of impurities along the sides 69, which advantageously may increase the useful operating lifetime of the orifice jewel 64.


As schematically depicted in FIG. 5A, the high pressure liquid 68 in the passageway 54 emerges through the orifice 66 as a high-velocity, collimated jet 60 traveling substantially along the jet axis 70 with a velocity, v. In some embodiments of the compressor system 38, the jet velocity is estimated to be proportional to (P/ρ)1/2, where P is the liquid pressure in the passageway 54 and ρ is the density of the liquid. In certain embodiments, water pressurized to about 10,700 psi emerges from the orifice as a jet 60 having a velocity of about 220 m/s. By adjusting the liquid pressure delivered by the compressor system 38, the handpiece 50 can deliver jets having different velocities. In some embodiments, the user interface 53 permits the operator to selectively adjust system pressures so that the velocity of the jet is suitable for a particular dental treatment.


In certain embodiments of the system 38, the liquid used to form the jet 60 is substantially free from dissolved gases (e.g., less than about 0.1% per volume). If the dissolved gas content of the liquid is too high, bubbles may formed at the nozzle orifice 66 due to the pressure drop. Additionally, the pressure drop should preferably be sufficiently low to prevent formation of vapor at the distal end of the orifice 66. The presence of substantial vapor, gas or bubbles, or particle contaminants in the liquid may cause a significant portion of the energy of the liquid jet 60 to be depleted, and there may be insufficient kinetic energy (and/or momentum) to provide efficient cleaning of the root canal system. When used for removing tissue and/or organic matter from root canals, the effectiveness of the device disclosed in U.S. Pat. No. 6,497,572, issued Dec. 24, 2002, and entitled “Apparatus for Dental Treatment Using High-Pressure Liquid Jet,” is significantly increased by using liquids that are free (or at least substantially free) of dissolved gases (as well as bubbles) to form the high-velocity jet. Preferably, the liquid is bubble-free distilled water, and the concentration of dissolved gases is no more than e.g. 0.1% by volume. In use, the liquid beam is preferably directed at the floor of the pulp chamber at an oblique angle relative to the long axis of the root canals. Although the chamber fills with liquid, the beam has sufficient velocity to impact the submerged dentin with great force. Upon impingement, the primary, collimated coherent beam from the jet apparatus generates a high-energy acoustic pressure wave that propagates along the body of the tooth. At the dentinal surfaces of the main and side canals, the acoustic wave causes any surrounding liquid to cavitate. This cavitation is a surface effect cavitation caused by conversion of the water (or other liquid) from a liquid state to a vapor state. Due to the high energy required for such conversion, collapse of the cavitation bubble occurs with great force against the surface of the dentin and cleans through creation of cavitation-induced sub-jets which radiate inward toward the surface from the point of collapse of the cavitating vapor. The substantially gas-free liquid is preferred for the above described cavitation process. If the dissolved gas content of the liquid is too high, bubbles will be formed at the nozzle orifice due to the pressure drop. Additionally, the pressure drop should preferably be sufficiently low to prevent formation of vapor at the nozzle orifice. The presence of significant vapor, gas or bubbles causes much of the energy of the beam to be depleted, and there will be insufficient energy to generate the liquid to vapor-phase cavitation, which is a surface effect.


The jet 60 emerges from the distal end of the orifice 66 as a beam of fluid traveling substantially parallel to the jet axis 70. Such jets are called “collimated” jets. In certain embodiments, the angular divergence of the jet 60 is less than about 1 degree, less than about 0.1 degree, or less than about 0.01 degree. In other embodiments, jet beams with different angular divergences may be used. In some embodiments, the jet 60 can travel as a collimated beam for a distance of about 1 to 3 inches before the jet 60 begins to disperse (e.g., due to entrainment of air). In certain embodiments, the jet 60 may travel a distance at least several thousand times the jet diameter D before beginning to disperse.


As described above, it may be advantageous for the sides 69 of the orifice 66 to be sufficiently smooth that liquid flows through the orifice 66 in a substantially laminar manner. In certain embodiments, the transverse width of any boundary layers formed along the sides 69 of the orifice 66 is much smaller than the diameter D, and, away from the boundary layers, the speed of the jet 60 is substantially constant across the width of the orifice. FIG. 5B is a graph schematically illustrating an example velocity profile of the jet 60 after it has emerged from the distal end of the orifice 66. The graph depicts flow velocity in the direction of the jet axis 70 versus a distance transverse (e.g., orthogonal) to the jet axis 70. In this example embodiment, away from narrow boundary layers near the outer surface of the jet 60 (e.g., near 0 and D on the graph), the jet velocity is substantially constant across the width of the jet. Jets having substantially constant velocity profiles are called “coherent” jets. In other embodiments, the velocity profile of the jet 60 is not substantially constant across the width of the jet 60. For example, the jet velocity profile in certain embodiments is a parabolic profile well-known from pipe flow.


In certain embodiments, the compressor system 38 is configured to deliver a coherent, collimated jet 60 of high-velocity liquid. A coherent, collimated jet will be denoted herein as a “CC jet.” The following example provides various representative properties of a CC jet 60 that can be generated using an embodiment of the system 38. In this example system, the diameter D and the axial length L of the orifice 66 are 60 microns and 500 microns, respectively. In one embodiment, the pressure of the liquid (degassed, distilled water) in the handpiece 50 is about 8,000 psi, which produces a jet velocity of about 190 m/s. The mass discharge rate of the jet is about 0.5 g/s, and the jet can produce a force of about 0.1 Newton when impacting a surface at normal incidence. The jet provides a kinetic power of about 10 Watts. If the jet is directed toward a tooth for about 10 seconds, the jet can deliver a momentum (or impulse) of about 1 kg m/s and an energy of about 100 Joules (about 23 calories).


In other embodiments, the CC jet is produced from liquid pressurized to about 2500 psi. The jet velocity is about 110 m/s, and volume flow rate is about 0.3 mL/s. The CC jet can produce about 2 W of kinetic power. The jet 60 may remain substantially collimated over propagation lengths from about 1 cm to about 30 cm in various embodiments.


The energy flux produced by the liquid jet is the kinetic power of the jet divided by the transverse area of the jet beam. The energy flux may be in a range from about 1 kW/cm2 to about 1000 kW/cm2. In some embodiments, the energy flux is in a range from about 50 kW/cm2 to about 750 kW/cm2, including, for example, 70 kW/cm2, 175 kW/cm2, 350 kW/cm2, and 550 kW/cm2. In one experiment, a CC jet was directed toward a dentinal surface of a tooth, and widespread acoustic noise (possibly due to acoustic cavitation) was detected in the tooth when the energy flux of the jet exceeded about 75 kW/cm2. At the onset of detectable acoustic noise, the CC jet had the following properties: velocity of about 110 m/s, kinetic power of about 2 W, and mass flow rate of about 0.3 g/s. The pressure producing the CC jet was about 2500 psi.


By using different fluid working pressures and/or orifice diameters, jets having different properties can be generated. For example, in certain embodiments, the mass discharge rate may be in a range from about 0.01 g/s to about 1 g/s, the jet velocity may be in range from about 50 m/s to about 300 m/s, the jet force may be in a range from about 0.01 N to about 1 N, and the jet power may be in a range from about 0.1 W to about 50 W. In various endodontic treatments, the jet is applied to a tooth for a time in a range from about 1 second to 120 seconds. Accordingly, in such treatments, the jet can deliver momentum (or impulse) in a range of about 0.01 kg m/s to about 100 kg m/s, and energy in a range of about 0.1 J to about 500 J. In some embodiments, an energy range from about 20 J to about 400 J may be effective at providing cleaning of the root canal system without causing substantial erosion of dentin. A person of ordinary skill will recognize that the compressor system 38 can be configured to provide liquid jets having a wide range of properties that may be different from the example values and ranges provided herein, which are intended to be illustrative and non-limiting.


In various dental treatments, the compressor system 38 delivers a jet 60, which advantageously may be a CC jet, that is directed toward one or more portions of a tooth in order to, for example, excise and/or emulsify organic material, provide irrigation, and/or generate acoustic energy for delaminating organic matter from the pulp cavity 26.



FIG. 6A schematically illustrates one embodiment of an endodontic treatment for diseased pulp in the tooth 10. A drill or grinding tool is initially used to make an opening 80 in the tooth 10. The opening 80 may extend through the enamel 22 and the dentin 20 to expose and provide access to pulp in the pulp cavity 26. The opening 80 may be made in a top portion of the crown 12 of the tooth 10 (as shown in FIG. 3) or in another portion such as a side of the crown 12 or in the root 16 below the gum 14. The opening 80 may be sized and shaped as needed to provide suitable access to the diseased pulp and/or some or all of the canal spaces 30. In some treatment methods, additional openings may be formed in the tooth 10 to provide further access to the pulp and/or to provide dental irrigation.


The handpiece 50 may be used to deliver a jet 60 of liquid to a portion of the tooth 10. The jet 60 advantageously may, but need not, be a CC jet. The jet 60 can be used to cut through organic material in the pulp chamber 28. Additionally, as will be further described below, the jet 60 may be directed toward hard surfaces of the tooth 10 (e.g., the dentin 20) to generate acoustic energy, which may propagate through the dentin 20, the dentinal tubule, and the organic material in the root canal space 30. The acoustic energy causes detachment of organic material from the dentin 20 without requiring that the jet directly impact the organic material. In certain embodiments, the acoustic energy has been found to be effective in causing detachment of the entire body of pulp (and other organic material) from within the pulp chamber 28 and/or root canal space 30, without the use of endodontic files. The jet 60 preferably should have insufficient energy, energy flux, and/or momentum to damage or substantially erode the dentin 20.


In some treatment methods, the operator can maneuver the handpiece 50 to direct the jet 60 around the pulp chamber 28 during the treatment process. The distal end of the handpiece 50 may be held about 1 inch from the tooth 10 so that the liquid impacts a portion of the tooth 10 as a substantially collimated coherent beam. The jet 60 may provide sufficient force to cut through and/or emulsify some or all of the organic material in the pulp chamber 28. The flow of liquid from the jet 60 may create sufficient swirling or turbulent flow to remove the cut and/or emulsified organic material from the pulp cavity 26 so that it can be aspirated from the mouth of the patient. In other treatment embodiments, pulpal tissue in the pulp chamber 28 may be removed via conventional techniques prior to (and/or during) liquid jet treatment to expose a portion of the dentin 20. The jet 60 may then be directed to the exposed portion.


The jet 60 may be directed toward the floor 82 of the pulp chamber 28 (see, e.g., FIG. 7). In some methods, the jet 60 is directed toward the floor 82 (and/or walls) of the pulp chamber 28 advantageously at a substantial angle (e.g., 15-50 degrees) relative to the long axis of the root canal space 30 to ensure that the jet does not directly impact the apical portion of the canal space 30, thereby reducing a possibility that the force (and/or pressure) imparted by the jet 60 will cause damage to healthy tissue around the apical foramen 34. Accordingly, certain disclosed treatment methods advantageously may be used on “open apex” teeth having underdeveloped and/or enlarged apices, because impingement of the jet 60 in the pulp chamber 28 will not harm the periapical portion of the tooth 10. Additionally or optionally, the jet 60 can be directed toward one or more sides of the pulp chamber 28 so as to impact the dentin 20. In some embodiments, the jet is directed to several locations in or on the tooth 10. An advantage of some methods is that the impact of the jet 60 on the dentin 20 does not cause significant erosion or destruction of the dentin 20 within the tooth 10. Accordingly, such methods may be minimally invasive in comparison with conventional root canal procedures.


The pulp cavity 26 may fill with fluid during the treatment. For sufficiently high working pressures, the jet 60 will have sufficient velocity to impact submerged dentin 20 with enough force to provide effective treatment. In certain embodiments of the treatment method, one or more properties of the jet 60 are temporally varied during the treatment. For example, the working pressure may be varied to ramp up or ramp down the jet velocity or to cause the jet to alternate between high-speed flow and low-speed flow. The jet 60 may comprise a pulsed jet with pulsation amplitude and/or frequency selected to provide effective treatment. A combination of the above treatment methods may be used, serially or in alternation.


As noted above, detachment of the organic material within the root canal system from the surrounding dentin 20 does not require that the jet 60 impact the organic material in the root canal space 30. Rather, the jet 60 may be directed against a dentinal wall (e.g., in the pulp chamber 28), which couples acoustic energy to the tooth 10 so as to cause detachment of the organic material. In some methods, the detachment occurs relatively quickly after the jet 60 impinges on the dentinal wall (e.g., within a few seconds) and may occur substantially simultaneously throughout one or more root canal spaces 30 of the tooth 10.


In one presently preferred method schematically illustrated in FIG. 6B, the jet beam 60 is introduced into an inlet opening 84 formed in the side (e.g., buccal or lingual surface) of the tooth 10 with a conventional dental drill. The opening 84 may be formed near the cementoenamel junction 15. In some procedures, a portion of the gum 14 is depressed to provide access to the intended position of the opening 84 near the cementoenamel junction 15. The opening 84 may have a diameter in a range from about 1 mm to about 2 mm and may extend from the exterior surface of the tooth 10 to the pulp chamber 28. In some embodiments, the diameter is about 1.2 mm. Different diameters may be used in other embodiments. The opening 84 is thus generally transverse to the long axis of any root canal space 30 and ensures that the energy of the jet 60 will not be directed down any canal spaces 30. A benefit of providing the opening 84 in the side of the tooth 10 is that less hard tissue of the tooth 10 is damaged than if the opening were formed through the occlusal surface of the tooth 10. Although it is presently preferred to use a single inlet opening 84 to reduce invasiveness of the procedure, in other methods, two or more inlet openings may be used.



FIGS. 6C and 6D are cross-section views schematically illustrating an embodiment of a positioning member 130 that may be used to assist coupling and orienting the distal end 58 of the handpiece 50 to the tooth 10 so that the high-velocity jet 60 is directed through the inlet opening 84 in the side of the tooth 10. In the illustrated embodiment, the positioning member 130 comprises a collar portion 134 that may be generally disk-like in shape. The collar portion 134 may have a width in a range from about 1 mm to about 10 mm. The collar portion 134 may have a substantially central opening 136 having a diameter approximately equal to the diameter of the inlet opening 84. In some embodiments, the collar portion 134 is formed from a flexible material (such as an elastomer) so that it can conform to the surface of the tooth 10. An adhesive (such as a light-cured orthodontic adhesive) may be included on a surface 134a of the collar portion 134 to enable the positioning member 130 to adhere to the tooth 10. In some embodiments, a detachable, elongated peg 138 may be used to position the position member 130 so that the central opening 136 in the collar portion 134 is aligned with the inlet opening 84 in the tooth 10. A distal end of the peg 138 may be sized to fit within the opening 84. When the positioning member 130 is in position on the tooth 10 and the adhesive has sufficiently cured, the peg 138 may be removed, leaving the positioning member 130 adhered to the side of the tooth 10 (see FIG. 6D). Additionally or alternatively, the collar portion 134 may include alignment guides disposed near the opening 136 to assist positioning the member 130 over the opening 84. For example, a circular ridge, having an outside diameter slightly smaller than the inside diameter of the opening 84, may be formed on the surface 134a around the opening 136 and used to align the openings 84 and 136.


The positioning member 130 may include mounting portions 132a configured to engage complementary mounting portions 132b disposed on the distal end 58 of the handpiece 50. For example, the mounting portions 132a, 132b may comprise a standard, quick-turn connector such as a Luer-lock. FIG. 6D schematically illustrates the handpiece 50 before (or after) engagement with the positioning member 130. When engaged with the positioning member 130, the handpiece 50 advantageously is oriented so that the jet axis 70 is substantially longitudinally aligned with the inlet opening 84. Moreover, the positioning member 130 may stabilize the handpiece 50 against unwanted movement. Accordingly, upon actuation, the jet 60 will be directed through the opening 84 and into the pulp cavity 26. As further described below with reference to FIG. 10B, the distal end 58 of the handpiece 50 may comprise one or more pressure sensors adapted to sense when the distal end 58 is securely engaged with the positioning member 130. In such embodiments, the system may not permit the jet 60 to be actuated until a sufficiently secure fit and proper alignment are indicated by signals from the pressure sensors.


When the distal end 58 of the handpiece 50 is engaged with the positioning member 130, the jet 60 may be directed through the inlet opening 84 so that it impacts the dentinal wall and causes detachment of the organic material in the root canal spaces 30. After the treatment is completed, the positioning member 130 may be removed from the tooth 10 using any well-known technique for releasing the adhesive. Remaining adhesive, if present, may function as bonding for restorative material used to close the defect.


To reduce possible buildup of fluid pressure within the pulp cavity 26, a relief opening 88 may be formed in the top side (e.g., occlusal surface) of the tooth 10. The relief opening 88 may be formed on a buccal or lingual surface. The diameter of the relief outlet or opening 88 may be larger than that of the inlet opening 84, for example, about 2 mm to about 3 mm. In some methods, the diameter of the relief opening 88 may be about the same as (or smaller than) the diameter of the inlet opening 84 (e.g., about 1.2 mm in one embodiment). The relief opening 88 also serves to facilitate debridement and evacuation of the detached organic material. The diameter of the relief opening 88 advantageously may be large enough to permit flushing out pulp fragments. In some methods, two or more relief openings 88 may be used.


Those skilled in dentistry will recognize that the inlet and relief openings 84, 88 are quite small relative to the openings required for conventional root canal procedures, thus preserving valuable tooth structure. For example, in some methods, even though two openings 84, 88 are used, less tooth material is removed than in a conventional root canal procedure using a single, standard-sized occlusal opening. Moreover, many patients have existing coronal defects (e.g., decay, restorations, preparations, etc.), and it may be possible to form one or both of the openings simply by removing material other than healthy tooth tissue, such as a filling. Fillings on one or more sides of the tooth 10 may also be used to form the openings 84, 88. In any event, once the jet has caused acoustically induced detachment of the organic material, low pressure flushing fluid (such as water) may be introduced into either or both the openings 84, 88 to irrigate the canal space 30 and flush out the organic material. Additionally and optionally, manual extraction of organic material may be performed with a dental instrument.


Certain teeth, particularly molars and/or wisdom teeth, may be difficult to access in conventional root canal therapies due to limited working space in the back of the mouth. Due to the difficulties or inconvenience of coronal access to these teeth in conventional root canal therapies, some of these teeth, which would otherwise be treatable, may instead be extracted. An advantage of some embodiments of the disclosed methods is that by permitting a wider range of access with the liquid jet 60 (e.g., on or through coronal, lingual, and/or buccal surfaces), the acoustic-induced detachment of organic material can save the tooth and reduce the likelihood of its extraction.


Without subscribing to any particular theory of operation, FIG. 7 schematically illustrates an explanation for the effectiveness of the treatment methods described herein. FIG. 7 depicts the jet 60 impacting the dentin 20 of the tooth 10. Upon impact, a portion of the energy and/or momentum carried by the jet 60 generates an acoustic pressure wave 100 that propagates through the body of the tooth 10. In addition to propagating through the dentin 20, the acoustic wave 100 may propagate through organic material in the root canal space 30 and in the tubules of the dentin 20. The acoustic wave 100 may include acoustic energy with acoustic frequencies in a range from about 1 Hz to above 5 MHz such as, for example, up to about 10 MHz. The acoustic wave 100 may have frequency components in the ultrasonic frequency range, e.g., above about 20 kHz. In some cases, the frequency range may include megasonic frequencies above about 1 MHz. The acoustic wave 100 may include other frequencies as well.


At the dentinal surfaces of the root canal space 30 and tubules, the acoustic wave 100 may cause surrounding liquid to cavitate. This cavitation may be a surface effect cavitation caused by conversion of the water (or other liquid) from a liquid state to a vapor state. If the acoustic energy in the wave 100 is sufficiently large, the cavitation processes may include inertial cavitation wherein sufficiently low pressures caused by the acoustic wave 100 induce formation and collapse of bubbles in liquid near the dentinal surfaces. For smaller acoustic energies, non-inertial (or gas) cavitation may play a more significant role. In such cases, dissolved gases, tissue debris, and impurities act as nucleation centers for the formation of cavitation bubbles. Cavitation may also occur at pore sites across the microporous surface of the dentin 20. The cavitation bubbles oscillate in response to the acoustic wave 100, and amplitude of the oscillations may grow as additional gas is absorbed by the bubble.


Due to the relatively high energy required for formation of cavitation bubbles, collapse of the cavitation bubble occurs with great force against the surface of the dentin 20. Bubble collapse near a surface is known to occur asymmetrically and may result in formation of cavitation jets that radiate toward the surface and produce locally very high pressures and/or elevated temperatures. In some cases, the acoustic wave 100 may also generate fluid motions (acoustic streaming) that enhance disruption of organic matter. Acoustic streaming also may be effective at transporting or flushing detached organic matter out of the root canal space 30 and/or the tubules.


Accordingly, in certain methods, the acoustic wave 100 cleans the root canal system through processes including formation and collapse of cavitation bubbles, radiation of cavitation jets toward dentinal surfaces, acoustic streaming, or a combination thereof. In the process, the organic material may be broken into small pieces or particles, which can be irrigated from the pulp cavity 26. In some treatment methods, these cavitation processes may produce transient, localized high pressure and/or elevated temperature zones that disrupt, detach, and/or delaminate organic matter near root canal surfaces. For example, cavitation-induced effects may detach odontoblasts from the dentinal surface and effectively remove a portion of the odontoblastic process from the tubule. Cavitation-induced effects may also disrupt and/or detach the collagen fibrils that attach the odontoblast layer to the pulp in the interior of the canal space 30. Cavitation-induced effects may also occur in interior regions of the pulp cavity 26 (e.g., away from the dentinal surfaces) and may disrupt and/or loosen organic material in the interior regions, thereby making this material more readily removable from the pulp cavity 26.


Cavitation effects are believed to be formed everywhere the acoustic wave 100 propagates with sufficient energy. Accordingly, it is advantageous for the jet 60 to have sufficient energy and/or momentum to generate an acoustic wave 100 capable of causing cavitation effects throughout substantially the entire root canal system but without causing harm to the tooth 10. For example, if the jet diameter D is too small and the momentum of the jet beam too high, impact of the beam may cause significant dentinal erosion. On the other hand, if the beam diameter D is too large and the momentum of the jet beam too low, the beam may have insufficient energy to produce an acoustic pressure wave 100 capable of causing cavitation. For example, in certain methods, the jet energy incident on the tooth is greater than about 20 J to provide effective cleaning but less than about 400 J to prevent dentinal erosion. In some methods, acoustic cavitation effects occur substantially throughout the root canal system when certain jet 60 properties are above threshold values. For example, in one experiment mentioned above, widespread acoustic noise (possibly caused by acoustic cavitation) was detected in a tooth only when the energy flux of the jet 60 was greater than about 75 kW/cm2. At the onset of detectable acoustic noise, the jet had a power of about 2 W, a velocity of about 115 m/s, a mass flow rate of about 0.3 g/s, and provided a force of about 0.03 N. The efficiency of conversion of jet kinetic energy into acoustic energy was estimated to be about 2%.


A portion of the acoustic wave 100 may also propagate through tissue and bone adjacent the tooth 10. However, the energy carried by this portion of the acoustic wave 100 may be relatively small due to the acoustic impedance mismatch between the dentin 20 and nearby tissues and bone. Accordingly, cavitation-induced effects may be substantially reduced in tissues surrounding the tooth 10, and the endodontic methods described herein will not significantly damage the surrounding tissues.



FIGS. 8A and 8B are cross-section views that schematically illustrate some of the cavitation processes that clean a surface 104 of the dentin 20. As depicted in FIG. 8A, odontoblasts 106 are located near the surface and the odontoblastic process extends into the tubules 108. The acoustic wave 100 induces oscillation and collapse of cavitation bubbles 110, which generates transient localized heat and/or pressure that disrupts and detaches the odontoblasts 106 from the dentinal surface 104. Cavitation bubbles may also form and collapse within the tubules 108, thereby causing disruption of the odontoblastic processes in the tubules 108. FIG. 8B schematically depicts collapse of an initially spherical cavitation bubble 110 (shown in (i)) located near the body of organic matter 112 adjacent the dentinal surface 104 and filling the canal. In (ii), the side of the bubble 110 away from the surface 104 is perturbed from its spherical shape. In (iii), fluid 114 from the interior of the pulp cavity 26 penetrates the perturbed side of the bubble 110. In (iv) the fluid 114 has formed a cavitation jet 116 radiating toward the surface 104. The energy and momentum of the cavitation jet 116 breaks up and disperses the organic matter 112.



FIGS. 9A-9C are scanning electron microscope photographs of the dentinal surface showing the surprising effectiveness of the removal of organic matter by the acoustic effect. FIG. 9A shows dentinal tubules in an apical area of a mature tooth magnified 1000×. FIGS. 9B and 9C show dentin and dentinal tubules magnified 1000× in an inclusion area of a juvenile tooth (FIG. 9B) and in a medial area of a mature root (FIG. 9C). A bar at the top left of each photo indicates the linear scale (in microns) for each photograph. As can be seen in FIGS. 9A-9C, the dentinal surfaces are almost entirely free from organic matter, which appears to have been literally ripped away from the dentin. Flow of liquid in the root canal space 30 flushes and irrigates the organic matter from substantially all the root canal space 30 and the tubules. Returning to FIG. 2, this photograph shows an apical area of a mature tooth magnified 2000× and viewed at a slight slant from perpendicular to show that the tubules have been cleaned down to a distance of about 3 microns. FIGS. 2 and 9A-9C demonstrate that cleaning of the dentinal surface is very effective and that almost no remnants of organic material remain after treatment.


As mentioned previously, it has been found that the cleaning does not require that the liquid jet 60 be aimed down the root canal space 30, although that may be beneficial in certain isolated cases where the canal space 30 is very narrow and/or filled with dry material. Additionally, it has been found in some embodiments that the pulp cavity 26 need not be prepared or pre-treated (e.g., by removing root canal matter with one or more endodontic files) before application of the jet. Impingement of the jet 60 onto the dentin 20 in the pulp chamber 28 is sufficient in most cases to generate the acoustic wave 100 that causes the cleaning. Accordingly, in most cases, it is the acoustic wave 100 and not direct impact of the jet 60 that causes the cleaning, particularly for the dentinal surfaces near the apex of the root canal space 30, which are remote from the pulp chamber 28. For example, examination of FIGS. 2 and 9A-9C shows that organic material has been removed from apical dentinal tubules, which are not possible to reach directly with the liquid jet beam. In certain embodiments, the jet beam 60 is capable of delivering sufficient energy to the tooth 10 to remove at least 90 percent of the organic material from the root canal system. In other embodiments, at least 95 percent of the organic material is removed. Preferably, the jet beam should be capable of removing substantially all the organic material from the root canal space 30 and from at least a portion of the tubules. The treatment time during which the high-velocity jet is directed toward the tooth 10 may range from about 1 second to about 120 seconds. In some embodiments, the treatment time is from about 10 seconds to about 30 seconds. In other embodiments, the treatment time is no more than 10 seconds such as, for example, less than about 5 seconds, less than about 2 seconds, less than about 1 second, less than about 0.5 second, or less than about 0.1 second.


The high-velocity jet 60 may produce significant mechanical power (e.g., tens of Watts in some embodiments). When the jet 60 is directed toward the tooth 10, a fraction of this mechanical power may go toward heating the tooth 10 as well as nearby teeth and gums. To avoid discomfort to the patient, in some embodiments, excess heat, if present, may be removed by, for example, irrigating the tooth under treatment with a stream of liquid (e.g., water at room temperature or cooler). The stream of liquid can absorb and carry away some or all of the excess heat, if present, that may be produced by the jet 60. The stream of liquid may be aspirated from the patient's mouth.


The methods described herein may be used as standalone treatments for root canal procedures, or they may be used in conjunction with other dental treatments (which may or may not involve liquid jet methods).


The high-velocity jet treatment methods described herein may be particularly effective in certain system operating ranges. For example, a jet having an energy flux greater than about 75 kW/cm2 may be particularly effective.


The apparatus and methods described above may include additional devices and components configured to provide additional functionality to the endodontic treatment system. FIGS. 10A-10H schematically illustrate embodiments of a contact member configured as a cap 120 that may be attached to and detached from the distal end 58 of the handpiece 50. In some embodiments, the cap 120 may have threads that engage complimentary threads on the distal end 58 of the handpiece 50 (see, e.g., FIG. 10B). The cap 120 can be fitted around the crown 12 of the tooth 10 and used to orient the jet 60 toward a suitable opening into the pulp chamber 26. The cap 120 may be used to orient the distal end 58 of the handpiece 50 so that the liquid jet 60 is directed obliquely at a dentinal surface on the floor 82 (and/or sides) of the pulp cavity 26 and not directly down any of the canal space 30. The cap 120 may be formed from a transparent or translucent material and may be sufficiently flexible to fit around teeth having a range of sizes. In some embodiments, the distal end 58 of the handpiece 50 may be rotatable and/or extendable with respect to the cap 120 so that the jet 60 may be moved closer to or further from a desired tooth portion. In some embodiments, a guide tube can extend distally and axially from the distal end 58 of the handpiece 50, and provides a shielded pathway for the high velocity jet emanating from the orifice 66. With regard to FIG. 12, a guide tube 137 includes a distal opening aligned with the axis of the tube, and the interior bore of the tube is provided with a helical surface, similar to a rifling surface, that influences the passing jet beam to impart a turbulent, swirling effect thereto. This effect broadens the impact zone of the jet and reduces the cutting action, while augmenting other aspects of the jet effect, such as abrasion and emulsification. The cap 120 may include an outflow opening to permit organic material and liquid to be evacuated from the tooth 10. Alternatively, the cap may include a suction port so that fluid may be removed from the pulp chamber at substantially the same volume as it is introduced. The suction port thus prevents any of the removed diseased tissue and liquid from entering the patient's mouth. Another aspect of the invention comprises introducing a volume of liquid in the form of a jet into a pulp chamber of a tooth and removing a volume of liquid from the pulp chamber at substantially the same rate that it is introduced. Preferably, removal is accomplished by suction. In certain embodiments, the distal end 58 of the handpiece 50 may include multiple orifices which provide multiple jets, and the cap 120 may be used to orient the handpiece 50 such that jets are directed not only at the floor 82 (and/or sides) of the pulp chamber 28, but also towards entrances to the canal spaces 30. In some embodiments, the handpiece 50 may also be tilted and rotated to allow the jet 60 to be aimed axially into all canal openings.


As schematically shown in FIGS. 10C-10H, a plurality of caps 120 may be configured to fit over teeth of different sizes and shapes. Advantageously, each different cap 120 may be color coded to permit easy selection by the dentist during a treatment procedure. The cap 120 may also be sized and shaped to fit within an opening formed in the tooth 10 at the beginning of certain endodontic procedures (such as the openings 80, 84, and 88; see FIGS. 6A-6C), rather than fitting over or around the exterior of the tooth 10.


As depicted in the partially exploded cross-section view shown in FIG. 10B, the distal end 58 of the handpiece 50 may include one or more pressure sensors 124. As the cap 120 is urged onto a tooth (or into an opening in the tooth), the pressure sensor 124 provides a signal that indicates when a sufficiently “tight” fit has been achieved. The pressure sensor 124 may be electrically connected to the controller 52, and enables the jet 60 to operate only when the sensor senses contact. A suitable audible, visible, and/or tactile signal may be output (e.g., by the user interface 54 or by an output device on the handpiece 50) to indicate that the cap 120 is in position on the tooth 10.


The system may also include a distance sensor to indicate the distance between the distal end 58 of the handpiece 50 and a surface of the tooth 10. The distance sensor may provide an audible, tactile, and/or visible indication when the distal end 58 is at a suitable distance from the surface for operation of the liquid jet 60 (e.g., not too close to damage the tooth and not too far for the jet to be ineffective). In one embodiment, the distance sensor comprises a pair of optical elements mounted on the handpiece and spaced from each other. Each optical element directs an optical beam that intersects the other beam a predetermined distance away from the handpiece 50. The operator of the handpiece 50 can maneuver the handpiece 50 until the intersecting beams illuminate a desired portion of the tooth 10 and then actuate the liquid jet 60. The optical elements may comprise light-emitting diodes (LEDs) and/or lasers. In some embodiments, more than two optical elements may be used (e.g., to indicate a range of distances).


A person of ordinary skill will recognize that a wide variety of sensors may be used in addition to or instead of the pressure sensor 124 and/or the distance sensor. For example, certain embodiments utilize one or more electric, magnetic, acoustic, and/or optical sensors to determine position and/or orientation of the handpiece 50 (or portions thereof) in the mouth. For example, proximity sensors, including capacitive sensors, ultrasonic sensors, light reflectance sensors, magnetic inductance sensors, and so forth, may be used. Certain embodiments may comprise one or more orientation sensors (e.g., accelerometers) configured to sense the orientation of the longitudinal jet axis 70 relative to one or more reference landmarks in the mouth (e.g., a portion of the tooth 10 such as the openings 80, 84, 88). The system may include a timer configured to deactuate the jet 60 after a predetermined time interval to reduce likelihood of damage to the tooth 10 and/or root canal system. Systems comprising one or more such sensors advantageously may provide increased safety. For example, certain such embodiments may prevent (or inhibit) an operator from actuating the liquid jet 60 until the distal end 58 of the handpiece 50 is suitably positioned and/or oriented adjacent the tooth 10.


As described herein, acoustic energy capable of producing cavitation may be particularly effective at cleaning the root canal system. It has been found that this acoustic energy may be efficiently produced by directing a high-velocity beam of liquid onto a portion of the tooth. However, the scope of the present disclosure is not limited to methods using high-velocity jets. In other embodiments, the acoustic energy is generated by vibrating mechanical devices (e.g., a piezoelectric transducer), ultrasonic (or megasonic) generators (e.g., an ultrasonic and/or a megasonic horn), or any other component capable of producing acoustic vibrations. FIG. 11 schematically illustrates one method for generating the acoustic wave 100 using a piezoelectric transducer 144. In this method, an enclosure 142 is attached to the tooth 10. The enclosure 142 comprises a chamber 140 filled with a liquid (e.g., water). The transducer 144 is disposed in or on the chamber 140. When actuated, the transducer 144 vibrates, which causes the acoustic wave 100 to propagate through the surrounding fluid and the tooth 10. The acoustic wave 100 cleans the root canal system substantially as described above. Because the vibrating transducer 144 is not in direct contact with the tooth 10, possible damage to the tooth 10 is reduced or eliminated. Although in FIG. 11 a mechanical transducer 144 is used to generate the acoustic wave 100, in other embodiments, the acoustic wave 100 may be produced by, for example, directing the high-velocity liquid jet into or onto the enclosure 142. In such embodiments, the enclosure 142 acts as an “acoustic waveguide” converting jet kinetic energy into acoustic energy that propagates through the tooth 10 as the acoustic wave 100. Beneficially, the liquid in the chamber 140 may absorb excess mechanical energy which may otherwise produce unwanted heat in the tooth 10. In another embodiment, an ultrasonic horn is disposed near the enclosure 142 and used to generate the acoustic wave 100.


Any of the procedures described herein may be carried out with the use of a rubber dam. Further although the tooth 10 depicted in the figures is a molar, one of ordinary skill in the art will appreciate that the procedures may be performed on any type of tooth such as an incisor, a canine, a bicuspid, or a molar. Also, the disclosed methods are capable of cleaning root canal spaces having a wide range of morphologies, including highly curved root canal spaces which are difficult to clean using conventional dental techniques. Moreover, the disclosed methods may be performed on human teeth (including children's teeth) and/or on animal teeth.


The foregoing description sets forth various preferred embodiments and other illustrative but non-limiting embodiments of the inventions disclosed herein. The description provides details regarding combinations, modes, and uses of the disclosed inventions. Other variations, combinations, modifications, equivalents, modes, uses, implementations, and/or applications of the disclosed features and aspects of the embodiments are also within the scope of this disclosure, including those that become apparent to those of skill in the art upon reading this specification. Additionally, certain objects and advantages of the inventions are described herein. It is to be understood that not necessarily all such objects or advantages may be achieved in any particular embodiment. Thus, for example, those skilled in the art will recognize that the inventions may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. Also, in any method or process disclosed herein, the acts or operations making up the method/process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence.


Accordingly, the scope of the inventions disclosed herein is to be determined according to the following claims and their equivalents.

Claims
  • 1. An apparatus for treating a tooth, the apparatus comprising: an enclosure having a mounting surface configured to be positioned against a tooth surface over a treatment region of the tooth, the enclosure configured to define a chamber to be filled with a liquid when the enclosure is positioned against the tooth; anda pressure wave generator coupled with the enclosure, the pressure wave generator configured to direct a coherent, collimated energy beam through the liquid, the coherent, collimated energy beam comprising a liquid jet,wherein, when the coherent, collimated energy beam passes through the liquid, the coherent, collimated energy beam generates pressure waves that propagate through the liquid, the apparatus configured such that the generated pressure waves create at least some cavitation in the liquid, the generated pressure waves having sufficient energy to clean the treatment region, andwherein the pressure wave generator comprises a liquid jet device, the liquid jet device comprising a liquid pressurization portion which pressurizes the liquid and a liquid beam forming portion in fluid communication with the pressurization portion, the beam forming portion comprising an orifice that receives the pressurized liquid, the orifice sized and shaped to convert the pressurized liquid into the liquid jet.
  • 2. The apparatus of claim 1, wherein said orifice has a transverse width in a range from about 10 microns to about 200 microns.
  • 3. The apparatus of claim 1, wherein said orifice has an axial length in a range from about 50 microns to about 1000 microns.
  • 4. The apparatus of claim 1, wherein a diameter of the orifice is in a range from about 10 microns to about 100 microns.
  • 5. The apparatus of claim 4, wherein the diameter of the orifice is in a range from about 45 microns to about 65 microns.
  • 6. The apparatus of claim 1, wherein sides of the orifice have a root-mean-square surface roughness less than about 10 microns.
  • 7. The apparatus of claim 1, wherein a pressure of the liquid used to produce the liquid jet is in a range from about 2,000 psi to about 11,000 psi.
  • 8. The apparatus of claim 1, wherein a pressure of the liquid used to produce the liquid jet is in a range from about 7,000 psi to 15,000 psi.
  • 9. The apparatus of claim 1, wherein the liquid jet has an energy flux in a range from about 50 kW/cm2 to about 1000 kW/cm2.
  • 10. The apparatus of claim 1, wherein the liquid jet has a velocity in a range from about 50 m/s to about 300 m/s.
  • 11. The apparatus of claim 1, further comprising a pump configured to pressurize the liquid that forms the liquid jet.
  • 12. The apparatus of claim 1, wherein the pressure waves comprises frequencies comprising widespread acoustic noise.
  • 13. The apparatus of claim 12, wherein the frequencies comprise frequencies in a range from about 1 Hz to about 10 MHz.
  • 14. The apparatus of claim 1, wherein the enclosure comprises a cap configured to be applied to the tooth to substantially retain the liquid in a tooth chamber in the tooth.
  • 15. The apparatus of claim 14, the cap further including an outflow opening to permit organic material and liquid to be evacuated from the tooth.
  • 16. The apparatus of claim 14, wherein the cap includes a suction port configured to remove fluid from the tooth at substantially the same rate that it is introduced.
  • 17. The apparatus of claim 1, further comprising a suction port configured to remove liquid from the chamber of the enclosure.
  • 18. The apparatus of claim 17, wherein a distal end of the pressure wave generator is disposed in the chamber.
  • 19. The apparatus of claim 17, wherein the enclosure comprises a contact member on a distal end of a handpiece, said contact member configured to contact the tooth and stabilize the handpiece against unwanted movement relative to the tooth.
  • 20. The apparatus of claim 1, further comprising a controller in operable communication with the pressure wave generator.
  • 21. An apparatus for treating a tooth, the apparatus comprising: an enclosure having a mounting surface configured to be positioned against a tooth surface over a treatment region of the tooth, the enclosure configured to define a chamber to be filled with a liquid when the enclosure is positioned against the tooth; anda pressure wave generator coupled to the enclosure, the pressure wave generator configured to direct a coherent, collimated energy beam into or onto the enclosure through the liquid to generate pressure waves having energy sufficient to clean the treatment region, the coherent, collimated energy beam comprising a liquid jet,wherein the pressure wave generator comprises a liquid jet device, the liquid jet device comprising a liquid pressurization portion which pressurizes the liquid and a liquid beam forming portion in fluid communication with the pressurization portion, said beam forming portion comprising an orifice that receives the pressurized liquid, said orifice sized and shaped to convert the pressurized liquid into the liquid jet.
  • 22. The apparatus of claim 21, further comprising a pump configured to pressurize the liquid that forms the liquid jet.
  • 23. The apparatus of claim 21, wherein the pressure waves comprises frequencies comprising widespread acoustic noise.
  • 24. The apparatus of claim 23, wherein the frequencies comprise frequencies in a range from about 1 Hz to about 10 MHz.
  • 25. The apparatus of claim 21, further comprising a suction port configured to remove fluid from the tooth.
  • 26. The apparatus of claim 21, further comprising a controller in operable communication with the pressure wave generator.
  • 27. The apparatus of claim 21, further comprising a fluid source configured to be filled with and to deliver a substantially gas-free liquid to the tooth.
  • 28. The apparatus of claim 27, wherein the substantially gas-free liquid includes less than 1% dissolved gases by volume.
  • 29. An apparatus for treating a tooth, the apparatus comprising: an enclosure having a mounting surface configured to be positioned against a tooth surface over a treatment region of the tooth, the enclosure configured to define a chamber to be filled with a liquid when the enclosure is positioned against the tooth; anda pressure wave generator coupled with the enclosure, the pressure wave generator configured to direct a coherent, collimated energy beam into or onto the enclosure through the liquid to generate pressure waves in the liquid having energy sufficient to clean the treatment region, the coherent, collimated energy beam comprising a liquid jet,wherein the pressure waves generated in the liquid comprise frequencies comprising widespread acoustic noise,wherein the pressure wave generator comprises a liquid jet device, wherein the liquid jet device comprises a liquid pressurization portion which pressurizes the liquid and a liquid beam forming portion in fluid communication with the pressurization portion, said beam forming portion comprising an orifice that receives the pressurized liquid, said orifice sized and shaped to convert the pressurized liquid into the liquid jet.
  • 30. The apparatus of claim 29, wherein the frequencies comprise frequencies in a range from about 1 Hz to about 10 MHz.
  • 31. The apparatus of claim 29, further comprising a pump configured to pressurize the liquid that forms the liquid jet.
  • 32. The apparatus of claim 29, further comprising a fluid source, the fluid source configured to be filled with and to deliver a substantially gas-free liquid to the tooth.
  • 33. The apparatus of claim 32, wherein the substantially gas-free liquid includes less than 1% dissolved gases by volume.
  • 34. The apparatus of claim 29, wherein the pressure wave generator extends through at least a portion of the chamber of the enclosure.
  • 35. An apparatus for removing organic material from a treatment region of a tooth, comprising: a fluid source arranged to deliver a substantially gas-free liquid to the treatment region;an enclosure having a mounting surface configured to be positioned against a tooth surface over the treatment region of the tooth, the enclosure configured to define a chamber to be filled with the substantially gas-free liquid when the enclosure is positioned against the tooth; anda pressure wave generator coupled with the enclosure, the pressure wave generator configured to direct a coherent, collimated energy beam, through the delivered liquid to propagate pressure waves through the delivered liquid, the coherent, collimated energy beam comprising a liquid jet,wherein the pressure waves have sufficient energy to cause organic material in the treatment region to be detached from surrounding dentin when the substantially gas-free liquid is at the treatment region,wherein the pressure wave generator comprises a liquid jet device, wherein the liquid jet device comprises a liquid pressurization portion which pressurizes the liquid and a liquid beam forming portion in fluid communication with the pressurization portion, said beam forming portion comprising an orifice that receives the pressurized liquid, said orifice sized and shaped to convert the pressurized liquid into the liquid jet.
  • 36. The apparatus of claim 35, wherein the pressure waves comprises frequencies comprising widespread acoustic noise.
  • 37. The apparatus of claim 36, wherein the frequencies comprise frequencies in a range from about 1 Hz to about 10 MHz.
  • 38. The apparatus of claim 35, further comprising a suction port to remove liquid from the chamber of the enclosure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/247,650, filed Aug. 25, 2016, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” which is a continuation of U.S. patent application Ser. No. 15/217,843, filed Jul. 22, 2016, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” which is a continuation of U.S. patent application Ser. No. 14/628,500, filed Feb. 23, 2015, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” which is a continuation of U.S. patent application Ser. No. 14/304,737, filed Jun. 13, 2014, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” which is a continuation of U.S. patent application Ser. No. 11/737,710, filed Apr. 19, 2007, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 60/793,452, filed Apr. 20, 2006, entitled “APPARATUS AND METHODS FOR TREATING ROOT CANALS OF TEETH,” the entire contents of each of which is hereby incorporated by reference herein.

US Referenced Citations (958)
Number Name Date Kind
1500107 Chandler Jul 1924 A
2108558 Jackman Feb 1938 A
3023306 Kester Feb 1962 A
3225759 Drapen et al. Dec 1965 A
3401690 Martin Sep 1968 A
3460255 Hutson Aug 1969 A
3514328 Malin May 1970 A
3521359 Harris Jul 1970 A
3522801 Seymour Aug 1970 A
3547110 Balamuth Dec 1970 A
3561433 Kovach Feb 1971 A
3590813 Roszyk Jul 1971 A
3593423 Jones et al. Jul 1971 A
3624907 Brass et al. Dec 1971 A
3703170 Ryckman, Jr. Nov 1972 A
3731675 Kelly May 1973 A
3739983 Jousson Jun 1973 A
3745655 Malmin Jul 1973 A
3747216 Bassi et al. Jul 1973 A
3756225 Moret et al. Sep 1973 A
3828770 Kuris et al. Aug 1974 A
3871099 Kahn Mar 1975 A
3921296 Harris Nov 1975 A
3930505 Wallach Jan 1976 A
3962790 Riitano et al. Jun 1976 A
4021921 Detaille May 1977 A
4060600 Vit Nov 1977 A
4071956 Andress Feb 1978 A
4215476 Armstrong Aug 1980 A
4247288 Yoshii et al. Jan 1981 A
4274555 Sneider Jun 1981 A
4276880 Malmin Jul 1981 A
4293188 McMahon Oct 1981 A
4330278 Martin May 1982 A
4376835 Schmitt et al. Mar 1983 A
4386911 Maloney et al. Jun 1983 A
4424036 Lokken Jan 1984 A
4474251 Johnson, Jr. Feb 1984 A
4462803 Landgraf et al. Jul 1984 A
4492575 Mabille Jan 1985 A
4522597 Gallant Jun 1985 A
4534542 Russo Aug 1985 A
4539987 Nath et al. Sep 1985 A
4554088 Whitehead et al. Nov 1985 A
4595365 Edel et al. Jun 1986 A
4608017 Sadohara Aug 1986 A
4659218 de Lasa et al. Apr 1987 A
4661070 Friedman Apr 1987 A
4671259 Kirchner Jun 1987 A
4676586 Jones et al. Jun 1987 A
4676749 Mabille Jun 1987 A
4684781 Frish et al. Aug 1987 A
4732193 Gibbs Mar 1988 A
4789335 Geller et al. Dec 1988 A
4818230 Myers et al. Apr 1989 A
4872837 Issalene et al. Oct 1989 A
4917603 Haack Apr 1990 A
4935635 O'Harra Jun 1990 A
4941459 Mathur Jul 1990 A
4957436 Ryder Sep 1990 A
4973246 Black et al. Nov 1990 A
4985027 Dressel Jan 1991 A
4992048 Goof Feb 1991 A
4993947 Grosrey Feb 1991 A
5013300 Williams May 1991 A
5020995 Levy Jun 1991 A
5029576 Evans, Sr. Jul 1991 A
5037431 Summers et al. Aug 1991 A
5046950 Favonio Sep 1991 A
5055048 Vassiliadis et al. Oct 1991 A
5066232 Negri et al. Nov 1991 A
5094256 Barth Mar 1992 A
5112224 Shirota May 1992 A
5116227 Levy May 1992 A
5118293 Levy Jun 1992 A
5122060 Vassiliadis et al. Jun 1992 A
5123845 Vassiliadis et al. Jun 1992 A
5151029 Levy Sep 1992 A
5151031 Levy Sep 1992 A
5169318 Levy Dec 1992 A
5171150 Levy Dec 1992 A
5173049 Levy Dec 1992 A
5173050 Dillon Dec 1992 A
5180304 Vassiliadis et al. Jan 1993 A
5188532 Levy Feb 1993 A
5188634 Hussein et al. Feb 1993 A
5194005 Levy Mar 1993 A
5194723 Cates et al. Mar 1993 A
5195952 Solnit et al. Mar 1993 A
5224942 Beuchat et al. Jul 1993 A
5228852 Goldsmith et al. Jul 1993 A
5232366 Levy Aug 1993 A
5232367 Vassiliadis et al. Aug 1993 A
5236360 Levy Aug 1993 A
5249964 Levy Oct 1993 A
5257935 Vassiliadis et al. Nov 1993 A
5267856 Wolbarsht et al. Dec 1993 A
5267995 Doiron et al. Dec 1993 A
5269777 Doiron et al. Dec 1993 A
5273713 Levy Dec 1993 A
5275564 Vassiliadis et al. Jan 1994 A
5281141 Kowalyk Jan 1994 A
5290274 Levy et al. Mar 1994 A
5292253 Levy Mar 1994 A
5295828 Grosrey Mar 1994 A
5304167 Freiberg Apr 1994 A
5306143 Levy Apr 1994 A
5307839 Loebker et al. May 1994 A
5310344 Vassiliadis et al. May 1994 A
5318562 Levy et al. Jun 1994 A
5322504 Doherty et al. Jun 1994 A
5324200 Vassiliadis et al. Jun 1994 A
5326263 Weissman Jul 1994 A
5326264 Al Kasem Jul 1994 A
5334016 Goldsmith et al. Aug 1994 A
5334019 Goldsmith et al. Aug 1994 A
5342196 Van Hale Aug 1994 A
5342198 Vassiliadis et al. Aug 1994 A
5374266 Kataoka et al. Dec 1994 A
5380201 Kawata Jan 1995 A
5387376 Gasser Feb 1995 A
5390204 Yessik et al. Feb 1995 A
D356866 Meller Mar 1995 S
5399089 Eichman et al. Mar 1995 A
5409376 Murphy Apr 1995 A
5415652 Mueller et al. May 1995 A
5422899 Freiberg et al. Jun 1995 A
5428699 Pon Jun 1995 A
5435724 Goodman et al. Jul 1995 A
5474451 Dalrymple et al. Dec 1995 A
5484283 Franetzki Jan 1996 A
5490779 Malmin Feb 1996 A
5503559 Vari Apr 1996 A
5507739 Vassiliadis et al. Apr 1996 A
5540587 Malmin Jul 1996 A
5545039 Mushabac Aug 1996 A
5547376 Harrel Aug 1996 A
5554896 Hogan Sep 1996 A
5562692 Bair Oct 1996 A
5564929 Alpert Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5591184 McDonnell et al. Jan 1997 A
5601430 Kutsch et al. Feb 1997 A
5611797 George Mar 1997 A
5620414 Campbell, Jr. Apr 1997 A
5621745 Yessik et al. Apr 1997 A
5622501 Levy Apr 1997 A
5639239 Earle Jun 1997 A
5642997 Gregg et al. Jul 1997 A
5643299 Bair Jul 1997 A
5660817 Masterman et al. Aug 1997 A
5662501 Levy Sep 1997 A
5674226 Doherty et al. Oct 1997 A
5688486 Watson et al. Nov 1997 A
5720894 Neev et al. Feb 1998 A
5730727 Russo Mar 1998 A
5735815 Bair Apr 1998 A
5740291 De Lasa et al. Apr 1998 A
5741247 Rizoiu et al. Apr 1998 A
5748655 Yessik et al. May 1998 A
5755752 Segal May 1998 A
5759031 Goldsmith et al. Jun 1998 A
5759159 Masreliez Jun 1998 A
5762501 Levy Jun 1998 A
5785521 Rizoiu et al. Jul 1998 A
5795153 Rechmann Aug 1998 A
5797745 Ruddle Aug 1998 A
5810037 Sasaki et al. Sep 1998 A
5816807 Matsutani et al. Oct 1998 A
5820373 Okano et al. Oct 1998 A
5825958 Gollihar et al. Oct 1998 A
5832013 Yessik et al. Nov 1998 A
5839896 Hickok et al. Nov 1998 A
5842863 Bruns et al. Dec 1998 A
5846080 Schneider Dec 1998 A
5853384 Bair Dec 1998 A
5865790 Bair Feb 1999 A
5868570 Hickok et al. Feb 1999 A
5874677 Bab et al. Feb 1999 A
5879160 Ruddle Mar 1999 A
5885082 Levy Mar 1999 A
5897314 Hack et al. Apr 1999 A
5911711 Pelkey Jun 1999 A
5915965 Ohlsson et al. Jun 1999 A
5921775 Buchanan Jul 1999 A
5968037 Rizoiu et al. Oct 1999 A
5968039 Deutsch Oct 1999 A
5971755 Liebermann et al. Oct 1999 A
5975897 Propp et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6004319 Goble et al. Dec 1999 A
6019605 Myers Feb 2000 A
6022309 Celliers et al. Feb 2000 A
6030221 Jones et al. Feb 2000 A
6033431 Segal Mar 2000 A
6045516 Phelan Apr 2000 A
6053735 Buchanan Apr 2000 A
6079979 Riitano Jun 2000 A
6086367 Levy Jul 2000 A
6096029 O'Donnell, Jr. Aug 2000 A
6104853 Miyagi et al. Aug 2000 A
6106514 O'Donnell, Jr. Aug 2000 A
6122300 Frieberg et al. Sep 2000 A
6129721 Kataoka et al. Oct 2000 A
6139319 Sauer et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6143011 Hood et al. Nov 2000 A
D435651 Hartwein Dec 2000 S
6159006 Cook et al. Dec 2000 A
6162052 Kokubu Dec 2000 A
6162177 Bab et al. Dec 2000 A
6162202 Sicurelli et al. Dec 2000 A
6164966 Turdiu et al. Dec 2000 A
6179617 Ruddle Jan 2001 B1
6190318 Bab et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6213972 Butterfield et al. Apr 2001 B1
6221031 Heraud Apr 2001 B1
6224378 Valdes et al. May 2001 B1
6227855 Hickok et al. May 2001 B1
6231567 Rizoiu et al. May 2001 B1
6245032 Sauer et al. Jun 2001 B1
6254597 Rizoiu et al. Jul 2001 B1
6270342 Neuberger et al. Aug 2001 B1
6282013 Ostler et al. Aug 2001 B1
6288499 Rizoiu et al. Sep 2001 B1
6290502 Hugo Sep 2001 B1
6309340 Nakagawa Oct 2001 B1
6312440 Hood et al. Nov 2001 B1
6315557 Messick Nov 2001 B1
6315565 Slotke et al. Nov 2001 B1
6319002 Pond Nov 2001 B1
6343929 Fischer Feb 2002 B1
6350123 Rizoiu et al. Feb 2002 B1
6354660 Friedrich Mar 2002 B1
6386871 Rossell May 2002 B1
6389193 Kimmel et al. May 2002 B1
6390815 Pond May 2002 B1
6428319 Lopez et al. Aug 2002 B1
6440103 Hood et al. Aug 2002 B1
D463556 Bareth et al. Sep 2002 S
6454566 Lynch et al. Sep 2002 B1
6464498 Pond Oct 2002 B2
6485304 Beerstecher et al. Nov 2002 B2
6497572 Hood et al. Dec 2002 B2
6511493 Moutafis et al. Jan 2003 B1
6514077 Wilk Feb 2003 B1
6527766 Bair Mar 2003 B1
6533775 Rizoiu Mar 2003 B1
6538739 Visuri et al. Mar 2003 B1
6544256 Rizoiu et al. Apr 2003 B1
6561803 Rizoiu et al. May 2003 B1
6562050 Owen May 2003 B1
6567582 Rizoiu et al. May 2003 B1
6572709 Kaneda et al. Jun 2003 B1
6592371 Durbin et al. Jul 2003 B2
6602074 Suh et al. Aug 2003 B1
6610053 Rizoiu et al. Aug 2003 B1
6616447 Rizoiu et al. Sep 2003 B1
6616451 Rizolu et al. Sep 2003 B1
6638219 Asch et al. Oct 2003 B1
6641394 Garman Nov 2003 B2
6644972 Mays Nov 2003 B1
6663386 Moelsgaard Dec 2003 B1
6669685 Rizoiu et al. Dec 2003 B1
6676409 Grant Jan 2004 B2
6679837 Daikuzono Jan 2004 B2
6744790 Tilleman et al. Jun 2004 B1
6783364 Juan Aug 2004 B1
6817862 Hickok Nov 2004 B2
6821272 Rizoiu et al. Nov 2004 B2
D499486 Kuhn et al. Dec 2004 S
6827766 Carnes et al. Dec 2004 B2
6829427 Becker Dec 2004 B1
6881061 Fisher Apr 2005 B2
6886371 Arai et al. May 2005 B2
6893259 Reizenson May 2005 B1
6910887 Van Den Houdt Jun 2005 B2
6942658 Rizoiu et al. Sep 2005 B1
6948935 Nusstein Sep 2005 B2
6971878 Pond Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6981869 Ruddle Jan 2006 B2
6997714 Schoeffel Feb 2006 B1
7008224 Browning et al. Mar 2006 B1
7011521 Sierra et al. Mar 2006 B2
7011644 Andrew et al. Mar 2006 B1
7014465 Marais Mar 2006 B1
7029278 Pond Apr 2006 B2
7044737 Fu May 2006 B2
7068912 Becker Jun 2006 B1
7090497 Harris Aug 2006 B1
7108693 Rizoiu et al. Sep 2006 B2
7115100 McRury et al. Oct 2006 B2
7144249 Rizoiu et al. Dec 2006 B2
7147468 Snyder et al. Dec 2006 B2
7163400 Cozean et al. Jan 2007 B2
7187822 Rizoiu et al. Mar 2007 B2
7194180 Becker Mar 2007 B2
7226288 Schoeffel Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7238342 Torabinejad et al. Jul 2007 B2
7261558 Rizoiu et al. Aug 2007 B2
7261561 Ruddle et al. Aug 2007 B2
D550358 Nakanishi Sep 2007 S
7269306 Koeneman et al. Sep 2007 B1
7270544 Schemmer et al. Sep 2007 B2
7270657 Rizoiu et al. Sep 2007 B2
7288086 Andriasyan Oct 2007 B1
7290940 Boutoussov Nov 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7296318 Mourad et al. Nov 2007 B2
7303397 Boutoussov Dec 2007 B2
7306459 Williams et al. Dec 2007 B1
7306577 Lemoine et al. Dec 2007 B2
7320594 Rizoiu et al. Jan 2008 B1
7326054 Todd et al. Feb 2008 B2
7356208 Becker Apr 2008 B2
7356225 Loebel Apr 2008 B2
7384419 Jones et al. Jun 2008 B2
7415050 Rizoiu et al. Aug 2008 B2
7421186 Boutoussov et al. Sep 2008 B2
7424199 Rizoiu et al. Sep 2008 B2
7445618 Eggers et al. Nov 2008 B2
7448867 Aloise et al. Nov 2008 B2
7458380 Jones et al. Dec 2008 B2
7461658 Jones et al. Dec 2008 B2
7461982 Boutoussov et al. Dec 2008 B2
7467946 Rizoiu et al. Dec 2008 B2
7470124 Bornstein Dec 2008 B2
7485116 Cao Feb 2009 B2
7549861 Ruddle et al. Jun 2009 B2
7563226 Boutoussov Jul 2009 B2
7575381 Boutoussov Aug 2009 B2
7578622 Boutoussov Aug 2009 B2
7620290 Rizoiu et al. Nov 2009 B2
7621745 Bornstein Nov 2009 B2
7630420 Boutoussov Dec 2009 B2
7641668 Perry et al. Jan 2010 B2
7665467 Jones et al. Feb 2010 B2
7670141 Thomas et al. Mar 2010 B2
7695469 Boutoussov et al. Apr 2010 B2
7696466 Rizoiu et al. Apr 2010 B2
7697814 Rizoiu et al. Apr 2010 B2
7702196 Boutoussov et al. Apr 2010 B2
7748979 Nahlieli Jul 2010 B2
7751895 Jones et al. Jul 2010 B2
7766656 Feine Aug 2010 B1
7778306 Marincek et al. Aug 2010 B2
7815630 Rizoiu et al. Oct 2010 B2
7817687 Rizoiu et al. Oct 2010 B2
7833016 Gharib et al. Nov 2010 B2
7833017 Hof et al. Nov 2010 B2
7845944 DiGasbarro Dec 2010 B2
7867223 Van Valen Jan 2011 B2
7867224 Lukac et al. Jan 2011 B2
7878204 Van Valen Feb 2011 B2
7891363 Jones et al. Feb 2011 B2
7891977 Riva Feb 2011 B2
7901373 Tavger Mar 2011 B2
7909040 Jones et al. Mar 2011 B2
7909817 Griffin et al. Mar 2011 B2
7916282 Duineveld et al. Mar 2011 B2
7942667 Rizoiu et al. May 2011 B2
7957440 Boutoussov Jun 2011 B2
7959441 Glover et al. Jun 2011 B2
7967017 Jones et al. Jun 2011 B2
7970027 Rizoiu et al. Jun 2011 B2
7970030 Rizoiu et al. Jun 2011 B2
7980854 Glover et al. Jul 2011 B2
7980923 Olmo et al. Jul 2011 B2
7997279 Jones et al. Aug 2011 B2
7998136 Jones et al. Aug 2011 B2
8002544 Rizoiu et al. Aug 2011 B2
8011923 Lukac et al. Sep 2011 B2
8023795 Rizoiu et al. Sep 2011 B2
8033825 Rizoiu et al. Oct 2011 B2
8037566 Grez Oct 2011 B2
8047841 Jefferies Nov 2011 B2
8052627 Gromer et al. Nov 2011 B2
8056564 Jones et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8100482 Kito et al. Jan 2012 B2
8128401 Ruddle et al. Mar 2012 B2
8152797 Boutoussov et al. Apr 2012 B2
8204612 Feine et al. Jun 2012 B2
8221117 Rizoiu et al. Jul 2012 B2
8235719 Ruddle et al. Aug 2012 B2
8241035 Jones et al. Aug 2012 B2
8256431 Van Valen Sep 2012 B2
D669180 Takashi et al. Oct 2012 S
D669583 Kagawa Oct 2012 S
8276593 Jones et al. Oct 2012 B2
8295025 Edel et al. Oct 2012 B2
8297540 Vijay Oct 2012 B1
8298215 Zinn Oct 2012 B2
8317514 Weill Nov 2012 B2
8322910 Gansmuller et al. Dec 2012 B2
8328552 Ruddle Dec 2012 B2
8366702 Van Valen Feb 2013 B2
8371848 Okawa et al. Feb 2013 B2
8388345 Ruddle Mar 2013 B2
8403922 Boutoussov et al. Mar 2013 B2
8419719 Rizoiu et al. Apr 2013 B2
8439676 Florman May 2013 B2
8439904 Jones et al. May 2013 B2
8448645 Jones et al. May 2013 B2
8470035 Cruise et al. Jun 2013 B2
8474635 Johnson Jul 2013 B2
8479745 Rizoiu Jul 2013 B2
8485818 Boutoussov et al. Jul 2013 B2
8506293 Pond Aug 2013 B2
8525059 Berger et al. Sep 2013 B2
8544473 Rizoiu et al. Oct 2013 B2
8568392 Jones et al. Oct 2013 B2
8588268 Boutoussov et al. Nov 2013 B2
8602033 Jones et al. Dec 2013 B2
8603079 Van Valen Dec 2013 B2
8617090 Fougere et al. Dec 2013 B2
8653392 Berger et al. Feb 2014 B2
8672678 Gramann et al. Mar 2014 B2
D701971 Valen et al. Apr 2014 S
8684956 McDonough et al. Apr 2014 B2
8709057 Tettamanti et al. Apr 2014 B2
RE44917 Tuttle May 2014 E
8740957 Masotti Jun 2014 B2
8747005 Kemp et al. Jun 2014 B2
8753121 Gharib et al. Jun 2014 B2
8758010 Yamanaka et al. Jun 2014 B2
8764739 Boutoussov et al. Jul 2014 B2
8792251 Shih Jul 2014 B2
8801316 Abedini Aug 2014 B1
D713538 Van Valen et al. Sep 2014 S
8821483 Boutoussov et al. Sep 2014 B2
8827990 Van Valen et al. Sep 2014 B2
8834450 Mccrary et al. Sep 2014 B1
8834457 Cao Sep 2014 B2
8926323 Mossle Jan 2015 B2
8944814 Mossle Feb 2015 B2
8977085 Walsh et al. Mar 2015 B2
8978930 Bublewitz et al. Mar 2015 B2
D726324 Duncan et al. Apr 2015 S
9022959 Fusi, II et al. May 2015 B2
9022961 Fougere et al. May 2015 B2
9025625 Skrabelj et al. May 2015 B2
9050157 Boyd et al. Jun 2015 B2
9052805 Boutoussov et al. Jun 2015 B2
9060845 Van Valen et al. Jun 2015 B2
9084651 Laufer Jul 2015 B2
9101377 Boutoussov et al. Aug 2015 B2
9186222 Marincek et al. Nov 2015 B2
D745966 Piorek et al. Dec 2015 S
9204946 Kotlarchik et al. Dec 2015 B2
9216073 McDonough et al. Dec 2015 B2
9308326 Hunter et al. Apr 2016 B2
9333060 Hunter May 2016 B2
9341184 Dion et al. May 2016 B2
9408781 Qian et al. Aug 2016 B2
9492244 Bergheim et al. Nov 2016 B2
9504536 Bergheim et al. Nov 2016 B2
9545295 Sung et al. Jan 2017 B2
9566129 Browning et al. Feb 2017 B2
9572632 Lukac et al. Feb 2017 B2
9579174 Yamamoto et al. Feb 2017 B2
9597168 Black et al. Mar 2017 B2
9603676 Bochi Mar 2017 B1
9610125 Kazic et al. Apr 2017 B2
9675426 Bergheim et al. Jun 2017 B2
9696893 Boutoussov et al. Jul 2017 B2
9700382 Pond et al. Jul 2017 B2
9700384 Yamamoto et al. Jul 2017 B2
9700394 Yamamoto et al. Jul 2017 B2
9713511 Lifshitz Jul 2017 B2
9730773 Uchitel et al. Aug 2017 B2
9743999 Policicchio Aug 2017 B2
9788899 Sivriver et al. Oct 2017 B2
9820827 Feine et al. Nov 2017 B2
9820834 Maxwell et al. Nov 2017 B2
9864485 Patton et al. Jan 2018 B2
9867997 Boutoussov et al. Jan 2018 B2
9872748 Schoeffel Jan 2018 B2
9877801 Khakpour et al. Jan 2018 B2
D812231 Duncan et al. Mar 2018 S
D813391 Duncan et al. Mar 2018 S
9931187 Fregoso et al. Apr 2018 B2
9956039 Boutoussov et al. May 2018 B2
9987200 Kishen Jun 2018 B2
10010388 Gharib et al. Jul 2018 B2
10016263 Gharib et al. Jul 2018 B2
D824935 Boutoussov et al. Aug 2018 S
10039625 Gharib et al. Aug 2018 B2
10039932 Van Valen Aug 2018 B2
10098708 Pond Oct 2018 B2
10098717 Bergheim et al. Oct 2018 B2
10105289 Guzman Oct 2018 B2
10130424 Boutoussov et al. Nov 2018 B2
10314671 Lifshitz et al. Jun 2019 B2
10321957 Boutoussov et al. Jun 2019 B2
10327866 Lifshitz et al. Jun 2019 B2
10335249 Hiemer et al. Jul 2019 B2
10363120 Khakpour et al. Jul 2019 B2
10420629 Buchanan Sep 2019 B2
10420630 Bergheim et al. Sep 2019 B2
10430061 Boutoussov et al. Oct 2019 B2
10450656 Sivriver et al. Oct 2019 B2
10518299 Lukac et al. Dec 2019 B2
10561560 Boutoussov et al. Feb 2020 B2
D881394 Classen et al. Apr 2020 S
10617498 Gharib et al. Apr 2020 B2
10631962 Bergheim et al. Apr 2020 B2
10702355 Bergheim et al. Jul 2020 B2
10722325 Khakpour et al. Jul 2020 B2
10729514 Buchanan Aug 2020 B2
D896827 Boutoussov et al. Sep 2020 S
10779908 Dresser et al. Sep 2020 B2
10779920 Buchanan Sep 2020 B2
10806543 Bergheim et al. Oct 2020 B2
10806544 Khakpour et al. Oct 2020 B2
10835355 Gharib et al. Nov 2020 B2
D903868 Goisser et al. Dec 2020 S
10877630 Patton et al. Dec 2020 B2
D923038 Boutoussov et al. Jun 2021 S
11103309 Boutoussov et al. Aug 2021 B2
11103333 Khakpour et al. Aug 2021 B2
11141249 Evans et al. Oct 2021 B2
11160455 Islam Nov 2021 B2
11160645 Bergheim et al. Nov 2021 B2
11173010 Boutoussov et al. Nov 2021 B2
11173019 Bergheim et al. Nov 2021 B2
11193209 Sivriver et al. Dec 2021 B2
11202687 Boutoussov et al. Dec 2021 B2
11213375 Khakpour et al. Jan 2022 B2
11250941 Patton et al. Feb 2022 B2
11284978 Bergheim et al. Mar 2022 B2
11350993 DiVito et al. Jun 2022 B2
11426239 DiVito et al. Aug 2022 B2
11680141 Gomurashvili et al. Jun 2023 B2
11684421 DiVito et al. Jun 2023 B2
11701202 Khakpour et al. Jul 2023 B2
20010041324 Riitano Nov 2001 A1
20020012897 Tingley et al. Jan 2002 A1
20020014855 Rizoiu et al. Feb 2002 A1
20020072032 Senn et al. Jun 2002 A1
20020086264 Okawa et al. Jul 2002 A1
20020090594 Riitano et al. Jul 2002 A1
20020108614 Schultz Aug 2002 A1
20020142260 Pond Oct 2002 A1
20020168610 Papanek et al. Nov 2002 A1
20020183728 Rosenberg et al. Dec 2002 A1
20030013063 Goldman Jan 2003 A1
20030013064 Zirkel Jan 2003 A1
20030022126 Buchalla et al. Jan 2003 A1
20030023234 Daikuzono Jan 2003 A1
20030027100 Grant Feb 2003 A1
20030096213 Hickok et al. May 2003 A1
20030121532 Coughlin et al. Jul 2003 A1
20030124485 Teraushi Jul 2003 A1
20030129560 Atkin Jul 2003 A1
20030158544 Slatkine Aug 2003 A1
20030191429 Andrew et al. Oct 2003 A1
20030207231 Nance Nov 2003 A1
20030207232 Todd et al. Nov 2003 A1
20030211083 Vogel et al. Nov 2003 A1
20030215768 Aumuller et al. Nov 2003 A1
20030236517 Appling Dec 2003 A1
20040038170 Hiszowicz et al. Feb 2004 A1
20040048226 Garman Mar 2004 A1
20040063073 Kajimoto et al. Apr 2004 A1
20040063074 Fisher Apr 2004 A1
20040068256 Rizoiu et al. Apr 2004 A1
20040072122 Hegemann Apr 2004 A1
20040073374 Lockhart et al. Apr 2004 A1
20040092925 Rizoiu et al. May 2004 A1
20040101809 Weiss et al. May 2004 A1
20040102782 Vercellotti et al. May 2004 A1
20040126732 Nusstein Jul 2004 A1
20040127892 Harris Jul 2004 A1
20040166473 Cohen Aug 2004 A1
20040193236 Altshuler Sep 2004 A1
20040210276 Altshuler et al. Oct 2004 A1
20040224288 Bornstein Nov 2004 A1
20040259053 Bekov et al. Dec 2004 A1
20050064371 Soukos et al. Mar 2005 A1
20050065497 Levatino Mar 2005 A1
20050096529 Cooper et al. May 2005 A1
20050112525 McPherson et al. May 2005 A1
20050136375 Sicurelli, Jr. et al. Jun 2005 A1
20050142517 Frysh et al. Jun 2005 A1
20050155622 Leis Jul 2005 A1
20050170312 Pond Aug 2005 A1
20050175960 Wiek et al. Aug 2005 A1
20050186530 Eagle Aug 2005 A1
20050199261 Vanhauwemeiren et al. Sep 2005 A1
20050256517 Boutoussov Nov 2005 A1
20050271531 Brown, Jr. et al. Dec 2005 A1
20050272001 Blain et al. Dec 2005 A1
20050277898 Dimalanta et al. Dec 2005 A1
20050281530 Rizoiu et al. Dec 2005 A1
20050281887 Rizoiu Dec 2005 A1
20050283143 Rizoiu Dec 2005 A1
20060019220 Loebel et al. Jan 2006 A1
20060021642 Sliwa et al. Feb 2006 A1
20060036172 Abe Feb 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060110710 Schemmer et al. May 2006 A1
20060142743 Rizoiu et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060142745 Boutoussov Jun 2006 A1
20060184071 Klopotek Aug 2006 A1
20060189965 Litvak et al. Aug 2006 A1
20060227653 Keller Oct 2006 A1
20060234182 Ruddle et al. Oct 2006 A1
20060234183 Ruddle et al. Oct 2006 A1
20060240381 Rizoiu et al. Oct 2006 A1
20060240386 Yaniv et al. Oct 2006 A1
20060241574 Rizoiu Oct 2006 A1
20060246395 Pond Nov 2006 A1
20060257819 Johnson Nov 2006 A1
20060264808 Staid et al. Nov 2006 A1
20070003604 Jones Jan 2007 A1
20070009449 Kanca Jan 2007 A1
20070014517 Rizoiu et al. Jan 2007 A1
20070016176 Boutoussov et al. Jan 2007 A1
20070016177 Vaynberg et al. Jan 2007 A1
20070016178 Vaynberg et al. Jan 2007 A1
20070020576 Osborn et al. Jan 2007 A1
20070042315 Boutoussov et al. Feb 2007 A1
20070042316 Pichat et al. Feb 2007 A1
20070049911 Brown Mar 2007 A1
20070054233 Rizoiu et al. Mar 2007 A1
20070054235 Rizoiu et al. Mar 2007 A1
20070054236 Rizoiu et al. Mar 2007 A1
20070059660 Rizoiu et al. Mar 2007 A1
20070060917 Andriasyan Mar 2007 A1
20070072153 Gross et al. Mar 2007 A1
20070083120 Cain et al. Apr 2007 A1
20070087303 Papanek et al. Apr 2007 A1
20070088295 Bankiewicz Apr 2007 A1
20070099149 Levy et al. May 2007 A1
20070104419 Rizoiu et al. May 2007 A1
20070128576 Boutoussov Jun 2007 A1
20070135797 Hood et al. Jun 2007 A1
20070148615 Pond Jun 2007 A1
20070175502 Sliwa Aug 2007 A1
20070179486 Welch et al. Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070190482 Rizoiu Aug 2007 A1
20070208328 Boutoussov et al. Sep 2007 A1
20070224575 Dieras et al. Sep 2007 A1
20070265605 Vaynberg et al. Nov 2007 A1
20070287125 Weill Dec 2007 A1
20070298369 Rizoiu et al. Dec 2007 A1
20080014545 Schippers Jan 2008 A1
20080032259 Schoeffel Feb 2008 A1
20080033411 Manvel Artyom et al. Feb 2008 A1
20080044789 Johnson Feb 2008 A1
20080050702 Glover et al. Feb 2008 A1
20080065057 Andriasyan Mar 2008 A1
20080070185 Rizoiu et al. Mar 2008 A1
20080070195 DiVito et al. Mar 2008 A1
20080085490 Jabri Apr 2008 A1
20080097417 Jones et al. Apr 2008 A1
20080102416 Karazivan et al. May 2008 A1
20080125677 Valen May 2008 A1
20080138761 Pond Jun 2008 A1
20080138764 Rizoiu Jun 2008 A1
20080138772 Bornstein Jun 2008 A1
20080151953 Rizoiu et al. Jun 2008 A1
20080155770 Grez Jul 2008 A1
20080157690 Rizoiu et al. Jul 2008 A1
20080159345 Bornstein Jul 2008 A1
20080160479 Ruddle et al. Jul 2008 A1
20080160480 Ruddle et al. Jul 2008 A1
20080160481 Schoeffel Jul 2008 A1
20080188848 Deutmeyer et al. Aug 2008 A1
20080199831 Teichert et al. Aug 2008 A1
20080209650 Brewer et al. Sep 2008 A1
20080219629 Rizoiu et al. Sep 2008 A1
20080221558 Becker Sep 2008 A1
20080255498 Houle Oct 2008 A1
20080274438 Schemmer Nov 2008 A1
20080276192 Jones et al. Nov 2008 A1
20080285600 Marincek et al. Nov 2008 A1
20080311045 Hardy Dec 2008 A1
20080311540 Gottenbos et al. Dec 2008 A1
20080314199 Niemi et al. Dec 2008 A1
20090004621 Quan et al. Jan 2009 A1
20090011380 Wang Jan 2009 A1
20090031515 Rizoiu et al. Feb 2009 A1
20090035717 Rizoiu et al. Feb 2009 A1
20090042171 Rizoiu et al. Feb 2009 A1
20090047624 Tsai Feb 2009 A1
20090047634 Calvert Feb 2009 A1
20090054881 Krespi Feb 2009 A1
20090059994 Nemes et al. Mar 2009 A1
20090067189 Boutoussov et al. Mar 2009 A1
20090092947 Cao et al. Apr 2009 A1
20090105597 Abraham Apr 2009 A1
20090105707 Rizoiu et al. Apr 2009 A1
20090111068 Martinez Apr 2009 A1
20090111069 Wagner Apr 2009 A1
20090130622 Bollinger et al. May 2009 A1
20090143775 Rizoiu et al. Jun 2009 A1
20090170052 Borczyk Jul 2009 A1
20090208898 Kaplan Aug 2009 A1
20090211042 Bock Aug 2009 A1
20090220908 Divito et al. Sep 2009 A1
20090225060 Rizoiu et al. Sep 2009 A1
20090227185 Summers et al. Sep 2009 A1
20090263759 Van Herpern Oct 2009 A1
20090275935 McKee Nov 2009 A1
20090281531 Rizoiu et al. Nov 2009 A1
20090298004 Rizoiu Dec 2009 A1
20100015576 Altshuler et al. Jan 2010 A1
20100042040 Arentz Feb 2010 A1
20100047734 Harris et al. Feb 2010 A1
20100068679 Zappini Mar 2010 A1
20100086892 Riozoui et al. Apr 2010 A1
20100092922 Ruddle Apr 2010 A1
20100125291 Rizoiu et al. May 2010 A1
20100143861 Gharib Jun 2010 A1
20100151406 Boutoussov et al. Jun 2010 A1
20100151407 Rizoiu et al. Jun 2010 A1
20100152634 Dove Jun 2010 A1
20100160838 Krespi Jun 2010 A1
20100160904 McMillan et al. Jun 2010 A1
20100167226 Altshuler et al. Jul 2010 A1
20100167228 Rizoiu et al. Jul 2010 A1
20100185188 Boutoussov et al. Jul 2010 A1
20100190133 Martinez Jul 2010 A1
20100206324 Paschke Aug 2010 A1
20100209867 Becker et al. Aug 2010 A1
20100229316 Hohlbein et al. Sep 2010 A1
20100233645 Rizoiu Sep 2010 A1
20100233649 McPeek et al. Sep 2010 A1
20100261136 Schulte et al. Oct 2010 A1
20100272764 Latta et al. Oct 2010 A1
20100273125 Janssen et al. Oct 2010 A1
20100279250 Pond et al. Nov 2010 A1
20100279251 Pond Nov 2010 A1
20100330539 Glover et al. Dec 2010 A1
20110020765 Maxwell et al. Jan 2011 A1
20110027746 McDonough et al. Feb 2011 A1
20110027747 Fougere et al. Feb 2011 A1
20110070552 Bornstein Mar 2011 A1
20110072605 Steur Mar 2011 A1
20110076638 Gottenbos et al. Mar 2011 A1
20110087605 Pond Apr 2011 A1
20110096549 Boutoussov et al. Apr 2011 A1
20110111365 Gharib et al. May 2011 A1
20110117517 Bergheim et al. May 2011 A1
20110129789 Rizoiu et al. Jun 2011 A1
20110136935 Khor et al. Jun 2011 A1
20110143310 Hunter Jun 2011 A1
20110151394 Rizoiu et al. Jun 2011 A1
20110183284 Yamanaka et al. Jul 2011 A1
20110189627 Gharib et al. Aug 2011 A1
20110189630 Koubi Aug 2011 A1
20110198370 Ho Aug 2011 A1
20110200959 Rizoiu et al. Aug 2011 A1
20110217665 Walsh et al. Sep 2011 A1
20110229845 Chen Sep 2011 A1
20110256503 Fraser Oct 2011 A1
20110269099 Glover et al. Nov 2011 A1
20110270241 Boutoussov Nov 2011 A1
20110281230 Rizoiu et al. Nov 2011 A1
20110281231 Rizoiu et al. Nov 2011 A1
20120065711 Netchitailo et al. Mar 2012 A1
20120077144 Fougere et al. Mar 2012 A1
20120094251 Mössle Apr 2012 A1
20120099815 Boutoussov et al. Apr 2012 A1
20120135368 Rizoiu et al. May 2012 A1
20120135373 Cheng et al. May 2012 A1
20120141953 Mueller Jun 2012 A1
20120148979 Ruddle Jun 2012 A1
20120237893 Bergheim Sep 2012 A1
20120240647 Montemurro Sep 2012 A1
20120276497 Gharib Nov 2012 A1
20120282566 Rizoiu et al. Nov 2012 A1
20120282570 Mueller Nov 2012 A1
20120021375 Binner et al. Dec 2012 A1
20130040267 Bergheim Feb 2013 A1
20130066324 Engqvist et al. Mar 2013 A1
20130084544 Boutoussov et al. Apr 2013 A1
20130084545 Netchitailo et al. Apr 2013 A1
20130085485 Van Valen et al. Apr 2013 A1
20130085486 Boutoussov et al. Apr 2013 A1
20130086758 Boutoussov et al. Apr 2013 A1
20130089829 Boutoussov et al. Apr 2013 A1
20130110101 Van Valen et al. May 2013 A1
20130115568 Jelovac et al. May 2013 A1
20130131656 Marincek et al. May 2013 A1
20130143180 Glover et al. Jun 2013 A1
20130177865 Ostler Jul 2013 A1
20130178847 Rizoiu et al. Jul 2013 A1
20130190738 Lukac et al. Jul 2013 A1
20130190743 Boutoussov et al. Jul 2013 A1
20130216980 Boronkay et al. Aug 2013 A1
20130236857 Boutoussov et al. Sep 2013 A1
20130273494 Boutoussov et al. Oct 2013 A1
20130274724 Rizoiu Oct 2013 A1
20130288195 Mueller Oct 2013 A1
20130296910 Deng Nov 2013 A1
20130330684 Dillon et al. Dec 2013 A1
20130337404 Feine Dec 2013 A1
20140032183 Fisker et al. Jan 2014 A1
20140072931 Fougere et al. Mar 2014 A1
20140080090 Laufer Mar 2014 A1
20140087333 DiVito et al. Mar 2014 A1
20140099597 Bergheim Apr 2014 A1
20140113243 Boutoussov et al. Apr 2014 A1
20140124969 Blaisdell et al. May 2014 A1
20140127641 Hilscher et al. May 2014 A1
20140147804 Yamamoto et al. May 2014 A1
20140170588 Miller et al. Jun 2014 A1
20140205965 Boutoussov et al. Jul 2014 A1
20140220505 Khakpour Aug 2014 A1
20140220511 DiVito et al. Aug 2014 A1
20140242551 Downs Aug 2014 A1
20140257254 Boutoussov et al. Sep 2014 A1
20140261534 Schepis Sep 2014 A1
20140272782 Luettgen et al. Sep 2014 A1
20140303692 Pignatelli et al. Oct 2014 A1
20140342303 Altshuler et al. Nov 2014 A1
20140349246 Johnson et al. Nov 2014 A1
20150010878 Seibel et al. Jan 2015 A1
20150010882 Bergheim Jan 2015 A1
20150017599 Marincek et al. Jan 2015 A1
20150017607 Nelson et al. Jan 2015 A1
20150030991 Sung et al. Jan 2015 A1
20150044630 Gharib et al. Feb 2015 A1
20150044631 Lifshitz et al. Feb 2015 A1
20150044632 Bergheim et al. Feb 2015 A1
20150056567 Fregoso et al. Feb 2015 A1
20150056570 Kansal Feb 2015 A1
20150125811 Lifshitz et al. May 2015 A1
20150126984 Boutoussov et al. May 2015 A1
20150132712 Gharib May 2015 A1
20150140503 Bergheim et al. May 2015 A1
20150147715 Breysse May 2015 A1
20150147717 Taylor et al. May 2015 A1
20150147718 Khakpour May 2015 A1
20150150650 Netchitailo et al. Jun 2015 A1
20150173850 Garrigues et al. Jun 2015 A1
20150173852 Khakpour Jun 2015 A1
20150182283 Boutoussov et al. Jul 2015 A1
20150190597 Zachar et al. Jul 2015 A1
20150216398 Yang et al. Aug 2015 A1
20150216597 Boutoussov et al. Aug 2015 A1
20150216622 Vartanian et al. Aug 2015 A1
20150230865 Sivriver et al. Aug 2015 A1
20150268803 Patton et al. Sep 2015 A1
20150277738 Boutoussov et al. Oct 2015 A1
20150283277 Schafer et al. Oct 2015 A1
20150327964 Bock Nov 2015 A1
20150335410 Zhao Nov 2015 A1
20150342679 Boutoussov et al. Dec 2015 A1
20150359672 Van Valen et al. Dec 2015 A1
20150366634 Gharib Dec 2015 A1
20150367142 Kazic et al. Dec 2015 A1
20150374471 Stangel et al. Dec 2015 A1
20160022392 Chang et al. Jan 2016 A1
20160067149 Kishen Mar 2016 A1
20160095679 Khakpour Apr 2016 A1
20160100921 Ungar Apr 2016 A1
20160113733 Pond et al. Apr 2016 A1
20160113745 Golub et al. Apr 2016 A1
20160128815 Birdee et al. May 2016 A1
20160135581 Pai May 2016 A1
20160149370 Marincek et al. May 2016 A1
20160149372 Marincek et al. May 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160270889 Casabonne et al. Sep 2016 A1
20160324600 Gharib Nov 2016 A1
20160334283 Scurtescu et al. Nov 2016 A1
20170027646 DivVito et al. Feb 2017 A1
20170027647 DiVito et al. Feb 2017 A1
20170036253 Lukac et al. Feb 2017 A1
20170056143 Hyun Mar 2017 A1
20170189149 Golub et al. Jul 2017 A1
20170196658 Schoeffel Jul 2017 A1
20170197071 Gottenbos Jul 2017 A1
20170216579 Becker et al. Aug 2017 A1
20170265965 Chow et al. Sep 2017 A1
20170273758 Bergheim Sep 2017 A1
20170274220 Ertl et al. Sep 2017 A1
20170281305 Bergheim Oct 2017 A1
20170281312 Khakpour Oct 2017 A1
20170300220 Boutoussov et al. Oct 2017 A1
20170319292 Lifshitz et al. Nov 2017 A1
20170325889 DiVito et al. Nov 2017 A1
20170340523 Guzman Nov 2017 A1
20180008347 DeVito et al. Jan 2018 A9
20180021104 Duncan et al. Jan 2018 A1
20180104020 Boutoussov et al. Apr 2018 A1
20180116761 Bergheim May 2018 A1
20180125608 Gottenbos et al. May 2018 A1
20180140865 Boutoussov et al. May 2018 A1
20180214247 Sharma et al. Aug 2018 A1
20180228581 Ouyang Aug 2018 A1
20180228582 Shin Aug 2018 A1
20180257962 Montemurro Sep 2018 A1
20180360563 Khakpour Dec 2018 A1
20190059996 Duncan et al. Feb 2019 A1
20190117078 Sharma et al. Apr 2019 A1
20190142516 Boutoussov et al. May 2019 A1
20190175401 Van Valen et al. Jun 2019 A1
20190183618 Bergheim Jun 2019 A1
20190262109 Gharib et al. Aug 2019 A1
20190282332 Lifshitz et al. Sep 2019 A1
20190336219 DiVito Nov 2019 A9
20200030067 Khakpour Jan 2020 A1
20200038140 Bergheir Feb 2020 A1
20200069402 Gharib Mar 2020 A1
20200085534 Kim et al. Mar 2020 A1
20200139146 Khakpour May 2020 A1
20200146774 Bergheim May 2020 A1
20200179209 Boutoussov et al. Jun 2020 A1
20200197143 Snyder et al. Jun 2020 A1
20200205934 Groves, Jr. et al. Jul 2020 A1
20200253369 De Gentile et al. Aug 2020 A1
20200253702 De Gentile et al. Aug 2020 A1
20200254586 Sanders et al. Aug 2020 A1
20200268491 Shotton et al. Aug 2020 A1
20200281688 Lares et al. Sep 2020 A1
20200297455 Bergheim Sep 2020 A1
20200330184 Boutoussov et al. Oct 2020 A1
20200347191 Gomurashvili Nov 2020 A1
20200360108 Gomurashvili et al. Nov 2020 A1
20210038344 Khakpour Feb 2021 A1
20210068921 Bergheim Mar 2021 A1
20210069756 Lukac et al. Mar 2021 A1
20210077234 Gharib Mar 2021 A1
20210082562 Patton et al. Mar 2021 A1
20210085435 Bergheim Mar 2021 A1
20210106402 Khakpour et al. Apr 2021 A1
20210121275 Parham Apr 2021 A1
20210145538 Boutoussov et al. May 2021 A1
20210153937 Duncan et al. May 2021 A1
20210186824 Gomurashvili Jun 2021 A1
20210267686 DiVito Sep 2021 A1
20210275250 DiVito Sep 2021 A1
20210386510 Li et al. Dec 2021 A1
20210386532 Khakpour et al. Dec 2021 A1
20220015829 Boutoussov et al. Jan 2022 A1
20220022961 Boutoussov et al. Jan 2022 A1
20220031548 Boutoussov et al. Feb 2022 A1
20220054230 Lifshitz et al. Feb 2022 A1
20220071735 Boutoussov et al. Mar 2022 A1
20220186376 Sivriver et al. Jun 2022 A1
20220202525 Boutoussov et al. Jun 2022 A1
20220208334 Patton et al. Jun 2022 A1
20220233291 DeZan et al. Jul 2022 A1
20220296346 Bergheim et al. Sep 2022 A1
20220313405 Bergheim et al. Oct 2022 A1
20220370177 Khakpour et al. Nov 2022 A1
20230022589 Bergheim et al. Jan 2023 A1
20230028923 Gharib et al. Jan 2023 A1
Foreign Referenced Citations (164)
Number Date Country
2012-202315 Apr 2012 AU
2007140780 May 2014 AU
2011316839 Aug 2015 AU
2031739 Jun 1991 CA
2 771 397 Feb 2011 CA
2189448 Feb 1995 CN
1127982 Jul 1996 CN
1169669 Jan 1998 CN
2693189 Apr 2005 CN
2936192 Aug 2007 CN
200953143 Oct 2007 CN
201070397 Jun 2008 CN
201370644 Dec 2009 CN
101632849 Jan 2010 CN
102724929 Oct 2012 CN
103027762 Apr 2013 CN
104470464 Mar 2015 CN
201180057818.1 May 2017 CN
107080697 Aug 2017 CN
107411976 Dec 2017 CN
37 08 801 Sep 1988 DE
4404983 Sep 1994 DE
102 48 336 May 2004 DE
103 31 583 Jul 2004 DE
102005028925 Jan 2007 DE
0 261 466 Mar 1988 EP
0436316 Jul 1991 EP
0685454 Dec 1995 EP
0 830 852 Mar 1998 EP
1 214 916 Jun 2002 EP
0 902 654 Aug 2004 EP
1 723 924 Nov 2006 EP
2 764 859 Aug 2014 EP
2 821 027 Jan 2015 EP
2 836 156 Feb 2015 EP
2 836 157 Feb 2015 EP
2 934 364 Oct 2015 EP
2 959 861 Dec 2015 EP
3 013 277 May 2016 EP
3 184 038 Jun 2017 EP
3 231 385 Oct 2017 EP
2 498 713 Apr 2018 EP
2 951 019 Dec 2018 EP
1 225 547 Jul 1960 FR
2 831 050 Apr 2003 FR
917 633 Feb 1963 GB
2011305 Jul 1979 GB
0513309 Jun 2005 GB
1 188 108 Apr 2014 HK
219169 Apr 2013 IL
51-064791 Apr 1976 JP
01-313048 Dec 1989 JP
05-169039 Sep 1993 JP
H07-155335 Jun 1995 JP
H08-117335 May 1996 JP
H08-1118 Sep 1996 JP
09-84809 Mar 1997 JP
09-276292 Oct 1997 JP
10-33548 Feb 1998 JP
H11-28219 Feb 1999 JP
11-113927 Apr 1999 JP
H11-504843 May 1999 JP
11-244303 Sep 1999 JP
2000-254153 Sep 2000 JP
2000-312867 Nov 2000 JP
2002-191619 Jul 2002 JP
2002-209911 Jul 2002 JP
2004-313659 Nov 2003 JP
3535685 Jun 2004 JP
2004-261288 Sep 2004 JP
2004-267756 Sep 2004 JP
2004-313659 Nov 2004 JP
2005-052754 Mar 2005 JP
2005-080802 Mar 2005 JP
2005-095374 Apr 2005 JP
2006-247619 Sep 2006 JP
2007-533333 Nov 2007 JP
2008-93080 Apr 2008 JP
2008-132099 Jun 2008 JP
2009-114953 May 2009 JP
2010-247133 Nov 2010 JP
5902096 Mar 2016 JP
6241997 Nov 2017 JP
6407140 Sep 2018 JP
10-2008-0105713 Dec 2008 KR
10-2012-0084897 Jul 2012 KR
10-2013-0022553 Mar 2013 KR
10-2013-0141103 Dec 2013 KR
2004-72508 May 2014 KR
2326611 Dec 2011 RU
M 336 027 Jul 2008 TW
WO 1992004871 Apr 1992 WO
WO 1992012685 Aug 1992 WO
WO 1995035069 Dec 1995 WO
WO 1996012447 May 1996 WO
WO 1997021420 Jun 1997 WO
WO 1998023219 Jun 1998 WO
WO 1998025536 Jun 1998 WO
WO 199963904 Dec 1999 WO
WO 2000045731 Aug 2000 WO
WO 2000074587 Dec 2000 WO
WO 2001026577 Apr 2001 WO
WO 200126735 Apr 2001 WO
WO 2001036117 May 2001 WO
WO 200193773 Dec 2001 WO
WO 2002078644 Oct 2002 WO
WO 2003086223 Oct 2003 WO
WO 2004032881 Apr 2004 WO
WO 2004034923 Apr 2004 WO
WO 2004082501 Sep 2004 WO
WO 2005007008 Jan 2005 WO
WO 2005032393 Apr 2005 WO
WO 2005034790 Apr 2005 WO
WO 2005070320 Aug 2005 WO
WO 2005102033 Nov 2005 WO
WO 2005120389 Dec 2005 WO
WO 2005122943 Dec 2005 WO
WO 2006082101 Aug 2006 WO
WO 2007007335 Jan 2007 WO
WO 2007007336 Jan 2007 WO
WO 2007124038 Nov 2007 WO
WO 2007140020 Dec 2007 WO
WO 2008001337 Jan 2008 WO
WO 2008024442 Feb 2008 WO
WO 2008092125 Jul 2008 WO
WO 2008120018 Oct 2008 WO
WO 2009003014 Dec 2008 WO
WO 2009029049 Mar 2009 WO
WO 2009036963 Mar 2009 WO
WO 2009047670 Apr 2009 WO
WO 2009064947 May 2009 WO
WO 2009137815 Nov 2009 WO
WO 2010007257 Jan 2010 WO
WO 2010099538 Sep 2010 WO
WO 2011060327 May 2011 WO
WO 2011077291 Jun 2011 WO
WO 2011114718 Sep 2011 WO
WO 2011136798 Nov 2011 WO
WO 2012054905 Apr 2012 WO
WO 2012069894 May 2012 WO
WO 2012074918 Jun 2012 WO
WO 201315700 Jan 2013 WO
WO 2013057519 Apr 2013 WO
WO 2013061251 May 2013 WO
WO 2013142385 Sep 2013 WO
WO 2013155492 Oct 2013 WO
WO 2013160888 Oct 2013 WO
WO 2013179842 Dec 2013 WO
WO 2014100751 Jun 2014 WO
WO 2014121293 Aug 2014 WO
WO 2015059707 Apr 2015 WO
WO 2015168329 Nov 2015 WO
WO 2016005221 Jan 2016 WO
WO 2017162705 Sep 2017 WO
WO 2017162706 Sep 2017 WO
WO 2019055569 Mar 2019 WO
WO 2019236917 Dec 2019 WO
WO 2020069004 Apr 2020 WO
WO 2020214697 Oct 2020 WO
WO 2020223706 Nov 2020 WO
WO 2020236601 Nov 2020 WO
WO 2020236953 Nov 2020 WO
WO 2020247869 Dec 2020 WO
WO 2022099258 May 2022 WO
Non-Patent Literature Citations (280)
Entry
U.S. Appl. No. 16/865,208, filed May 1, 2020, Gomurashvili et al.
U.S. Appl. No. 16/858,401, filed Apr. 24, 2020, Bergheim et al.
U.S. Appl. No. 16/875,193, filed May 15, 2020, Gomurashvili et al.
U.S. Appl. No. 16/879,093, filed May 20, 2020.
U.S. Appl. No. 61/701,947, filed Sep. 17, 2012, Laufer.
U.S. Appl. No. 61/894,762, filed Oct. 23, 2013, Lifshitz et al.
U.S. Appl. No. 61/895,316, filed Oct. 24, 2013, Lifshitz et al.
U.S. Appl. No. 16/412,919, filed May 15, 2019, Gharib et al.
ADA American Dental Association, “Glossary of Dental Clinical and Administrative Terms,” http://www.ada.org/en/publications/cdt/glossary-of-dental-clinical-and-administrative-ter, downloaded May 4, 2017, in 46 pages.
Adachi et al; Jet Structure Analyses on High-Speed Submerged Water Jets through Cavitation 110 Noises; pp. 568-574; The Japan Society of Mechanical Engineers International Journal—Series B, vol. 39, No. 3; Nov. 1996.
Ahmad et al., “Ultrasonic Debridement of Root Canals: Acoustic Cavitation and Its Relevance,” Journal of Endontics, vol. 14, No. 10, pp. 486-493, Oct. 1988.
Al-Jadaa et al; Acoustic Hypochlorite Activation in Simulated Curved Canals; pp. 1408-1411; Journal of Endodontics, vol. 35, No. 10; Oct. 2009.
Alomairy, Evaluating two techniques on removal of fractured rotary nickel-titanium endodontic instruments from root canals: an in vitro study. J Endod 2009;35:559-62.
Anand et al; Prevention of Nozzle Wear in High-Speed Slurry Jets Using Porous Lubricated Nozzles; pp. 1-13; Department of Mechanical Engineering, The Johns Hopkins University, Oct. 2000.
Anantharamaiah et al; A simple expression for predicting the inlet roundness of micro-nozzles; pp. N31-N39; Journal of Micromechanics and Microengineering, vol. 17; Mar. 21, 2007.
Anantharamaiah et al; A study on flowthrough hydroentangling nozzles and their degradation; pp. 4582-4594; Chemical Engineering Science, vol. 61; May 2006.
Anantharamaiah et al; Numerical Simulation of the Formation of Constricted Waterjets in Hydroentangling Nozzles Effects of Nozzle Geometry; pp. 31-238; Chemical Engineering Research and Design, vol. 84; Mar. 2006.
Attin et al; Clinical evaluation of the cleansing properties of the nonistrumental technique for cleaning root canals; pp. 929-933; International Endodontic Journal, vol. 35, Issue 11; Nov. 2002.
Bahia, et al.: Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments. Int Endod. J. 2005;38:795-801.
Batchelor et al; Analysis of the stability of axisymmetric jets; pp. 529-551; Journal of Fluid Mechanics, vol. 14; Dec. 1962.
Begenir et al; Effect of Nozzle Geometry on Hydroentangling Water Jets: Experimental Observations; pp. 178-184; Textile Research Journal, vol. 74; Feb. 2004.
Begenir, Asli; The Role of Orifice Design in Hydroentanglement; Thesis submitted to North Carolina State University; dated Dec. 2002, in 107 pages.
Borkent et al; Is there gas entrapped on submerged silicon wafers? Visualizing nano-scale bubbles with cavitation; pp. 225-228; Solid State Phenomena, vol. 134 (2008); available online Nov. 2007.
Bremond et al; Cavitation on surfaces; pp. S3603-S3608; Journal of Physics: Condensed Matter, vol. 17; Oct. 28, 2005.
Brennen, Christopher E.; Fission of collapsing cavitation bubbles; pp. 153-166; Journal of Fluid Mechanics, vol. 472; Dec. 2002.
Chang et al; Effects of Inlet Surface Roughness, Texture, and Nozzle Material on Cavitation; pp. 299-317; Atomization and Sprays, vol. 16 (2006).
Charara, et al.: “Assessment of apical extrusion during root canal procedure with the novel GentleWave system in a simulated apical environment,” J Endod 2015. In Press.
Crump et al., “Relationship of broken root canal instruments to endodontic case prognosis: a clinical investigation,” J Am Dent Assoc 1970;80:1341-7.
Culjat et al., “B-Scan Imaging of Human Teeth Using Ultrasound,” Apr. 2003, in 4 pages.
D'Arcangelo, et al.: “Broken instrument removal—two cases,” J Endod 2000;26:368-70.
Didenkulov et al; Nonlinear Acoustic Diagnostics of Scatterer Spatial Distribution in a Cavitation Jet; Nov. 19-23, 2001, pp. 276-278, XI Session of the Russion Acoustical Society.
DiVito et al.: “Cleaning and debriding efficacy of new radial and stripped tips using an Erbium laser on human root canal dentin walls—an in vitro study: SEM observations,” undated.
Dumouchel, Christophe; On the experimental investigation on primary atomization of liquid streams; pp. 371-422; Experimental Fluids, vol. 45; Jun. 22, 2008.
Ebihara et al.: “Er:YAG laser modification of root canal dentine: Influence of pulse duration, repetitive irradiation and water spray,” Lasers in Medical Science, 17(3), 198-207, Aug. 2002.
Eddingfield et al; Mathematical Modeling of High Velocity Water Jets; pp. 25-39; Proceedings of 1st U.S. Water Jet Conference; 1981.
EMS Electro Medical Systems, “Cleaning”, in 2 pages, dated 2005, downloaded from http://www.ems-dent.com/en/endodontics cleaning. htm.
Esen, et al.: “Apical microleakage of root-end cavities prepared by CO2 laser,” J Endod 2004;30:662-4.
ESI Endo Soft Instruments, EMS Electro Medical Systems, Brochure in 2 pages, downloaded from www.emsdent.com, dated Jan. 2004.
European Extended Search Report, dated Mar. 8, 2018, for EP Application No. 17201637.0.
European Extended Search Report re EP Application No. 09743801.4, dated Jun. 4, 2012.
European Extended Search Report re EP Application No. 14187012.1, dated Mar. 3, 2015, in 10 pages.
European Extended Search Report, dated Sep. 22, 2011, for EP Application No. 07755777.5, in 7 pages.
European Extended Search Report, re EP Application No. 08728345.3, dated Mar. 3, 2014.
European Extended Search Report, re EP Application No. 10830829.7, dated Oct. 21, 2015.
European Extended Search Report, re EP Application No. 11835265.7, dated Mar. 30, 2016, in 9 pages.
European Extended Search Report, re EP Application No. 13763534.8, dated Jan. 15, 2016.
European Extended Search Report, re EP Application No. 13775073.3, dated Nov. 3, 2015.
Feldman, et al.: “Retrieving broken endodontic instruments,” J Am Dent Assoc. 1974:88:588-91.
Feng et al; Enhancement of ultrasonic cavitation yield by multi-frequency sonication; pp. 231-236; Ultrasonics Sonochemistry, vol. 9; Oct. 2002.
Flint, E. B., et al., “The Temperature of Cavitation”, Science, vol. 253, Sep. 20, 1991, pp. 1397-1399.
Foldyna et al; Acoustic wave propagation in high-pressure system; pp. e1457-e1460; Ultrasonics vol. 44 (Supplement 1); Jun. 8, 2006.
Fors, et al.: “A method for the removal of broken endodontic instruments from root canals,” J Endod 1983;9:156-9.
Fuchs, “Ultrasonic Cleaning: Fundamental Theory and Application,” Blackstone-Ney Ultrasonics, Jamestown, NY, May 2002.
G.E. Reisman and C.E. Brennen, “Pressure Pulses Generated by Cloud Cavitation”, FED—vol. 236, 1996 Fluids Engineering Division Conference, vol. 1, pp. 319-328, ASME 1996.
G.E. Reisman, Y.-C. Wang and C.E. Brennen, “Observations of shock waves in cloud cavitation”, J. Fluid Meeh. (1998), vol. 355, pp. 255-283.
Gencoglu, et al.: Comparison of the different techniques to remove fractured endodontic instruments from root canal systems. Eur J Dent 2009;3:90-5.
Ghassemieh et al; Effect of Nozzle Geometry on the Flow Characteristics of Hydroentangling Jets; pp. 444-450; Textile Research Journal, vol. 73; May 2003.
Ghassemieh et al; The effect of nozzle geometry on the flow characteristics of small water jets; pp. 1739-1753; Proceedings of the Institute of Mechanical Engineers, Part C: Mechanical Engineering Science, vol. 12, Sep. 2006.
Haapasalo, et al.: “Tissue dissolution by a novel multisonic ultra-cleaning system and sodium hypochlorite,” J Endod 2014;40:1178-81.
Hahn et al; Acoustic resonances in the bubble plume formed by a plunging water jet; pp. 1751-1782; Proceedings of the Royal Society of London A, vol. 459; May 16, 2003.
Haikel, et al.: Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 1999;25:434-40.
Haikel, et al.: Dynamic fracture of hybrid endodontic hand instruments compared with traditional files. J Endod 1991;17:217-20.
Hashish, Mohamed; Experimental Studies of Cutting with Abrasive Waterjets; pp. 402-416; Proceedings of 2nd American Water Jet Conference; 1983.
Herbert et al; Cavitation pressure in water; pp. 041603-1 to 041603-22; Physical Review E, vol. 74; Oct. 2006.
Hiroyasu, Hiro; Spray Breakup Mechanism from the Hole-Type Nozzle and its Applications; pp. 511-527; Atomization and Sprays, vol. 10 (2000).
Hmud R. et al. “Cavitational Effects in Aqueous Endodontic Irrigants Generated by Near-Infrared Lasers”, Journal of Endodontics, vol. 36, Issue 2, Feb. 2010, available online Dec. 4, 2009, in 4 pages.
Hoque et al; Air entrainment and associated energy dissipation in steady and unsteady plunging jets at free surface; pp. 37-45; Applied Ocean Research, vol. 30; May 2008.
Hulsmann, et al.: Influence of several factors on the success or failure of removal of fractured instruments from the root canal. Endod Dent Traumatol 199;15:252-8.
Hulsmann: “Methods for removing metal obstructions from the root canal,” Endod Dent Traumatol 1993;9:223-37.
Hydrocision Products: SpineJet Hydrosurgery; system webpage in 2 pages, copyright 2010, downloaded from http://www.hydrocision.com on Apr. 22, 2010.
Hydrocision SpineJet XL HydroSurgery System; Brochure in 2 pages, copyright 2004-2006, downloaded from http://www.hydrocision.com on Apr. 22, 2010.
International Search Report and Written Opinion dated Apr. 11, 2008, for International Appl. No. PCT/US07/09633, in 8 pages.
International Preliminary Report on Patentability dated Oct. 30, 2008, for International Appl. No. PCT/US07/09633, in 5 pages.
International Search Report and Written Opinion dated Aug. 8, 2008, for International Appl. No. PCT/US08/52122, in 18 pages.
International Preliminary Report on Patentability dated Aug. 6, 2009, for International Appl. No. PCT/US08/52122, in 13 pages.
International Search Report and Written Opinion dated Jul. 29, 2009, for International Appl. No. PCT/US09/43386, in 8 pages.
International Preliminary Report and Written Opinion dated Nov. 9, 2010 for International Appl. No. PCT/US09/43386, in 6 pages.
International Search Report and Written Opinion re App. No. PCT/US2010/056620, dated Jan. 12, 2011, in 17 pages.
International Preliminary Report on Patentability re App. No. PCT/US2010/056620, dated May 15, 2012, in 10 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US11/57401, dated Jan. 25, 2013 in 13 pages.
International Search Report and Written Opinion from International Application No. PCT/US2011/057401, dated Jan. 30, 2012, in 20 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US 13/32635, dated Jun. 17, 2013 in 14 pages.
International Search Report and Written Opinion dated Jun. 28, 2013, re PCT Application No. PCT/US2013/036493, in 21 pages.
International Preliminary Report on Patentability and Written Opinion, dated Oct. 14, 2014, re PCT Application No. PCT/US2013/036493, in 14 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2013/077286, dated May 27, 2014.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2013/077286, dated Jun. 23, 2015, in 8 pages.
International Search Report and Written Opinion re App. No. PCT/US2014/014732, dated Jul. 18, 2014.
International Preliminary Report on Patentability re PCT Application No. PCT/US2014/014732, dated Aug. 4, 2015.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/044186, dated Jan. 21, 2015, in 19 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/044186, dated Dec. 29, 2015, in 19 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/036451, dated Nov. 3, 2015, 2015, in 11 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2015/028360, dated Sep. 28, 2015, in 25 pages.
Iqbal, et al.: “A comparison of three methods for preparing centered platforms around separated instruments in curved canals,” J Endod 2006; 32:48-51.
Jackson et al; Nozzle Design for Coherent Water Jet Production; pp. 53-89; Proceeding of the 2nd US Water Jet Conference; May 1983.
Junge et al; Cell Detachment Method Using Shock-Wave-Induced Cavitation; pp. 1769-1776; Ultrasound in Medicine & Biology, vol. 29, No. 12; Dec. 2003.
Kalumuck et al; Development of High Erosivity Well Scale Cleaning Tools; pp. 1-36; Dynaflow, Inc.; Report 98012 conducted under Contract No. DE-FG07-981013684 for the US Dept. of Energy; Jul. 1999, in 36 pages.
Karasawa et al; Effect of Nozzle Configuration on the Atomization of a Steady Spray; pp. 411-426; Atomization and Sprays, vol. 2 (1992).
Kato, Hiroharu; Utilization of Cavitation for Environmental Protection—Killing Planktons and Dispersing Spilled Oil; pp. 1-8; In CAV2001: Fourth International Symposium on Caviation; California Institute of Technology, Pasadena, CA; dated Jun. 2001.
Lee et al; The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from different-sized simulated plastic root canals; pp. 607-612; International Endodontic Journal, vol. 37; May 2004.
Li et al; Cavitation Resonance; pp. 031302-1 to 031302-7; Journal of Fluids Engineering, vol. 130; Mar. 2008.
Lienhard V et al; Velocity Coefficients for Free Jets From Sharp-Edged Orifices; pp. 13-17; Reprinted from Mar. 1984, vol. 106, Journal of Fluids Engineering.
Lin et al; Drop and Spray Formation from a Liquid Jet; pp. 85-105; Jan. 1998: vol. 30; Annual Review of Fluid Mechanics.
Linfield, Kevin William; A Study of the Discharge Coefficient of Jets From Angled Slots and Conical Orifices; Thesis submitted to Dept. of Aerospace Science and Engineering; University of Toronto; dated 2000; in 148 pages.
Lukac et al.: “Photoacoustic Endodontics Using the Novel SWEEPS Er:YAG Laser Modality,” Journal of the Laser and Health Academy, vol. 2017, No. 1; www.laserlaserandhealth.com.
Lussi et al.; A new non-instrumental technique for cleaning and filling root canals; pp. 1-6; International Endodontic Journal, vol. 28; Jan. 1995.
Lumkes, Jr., Control Strategies for Dynamic Systems: Design and Implementation, 2002, pp. 117-118.
Lussi et al.; A Novel Noninstrumented Technique for Cleansing the Root Canal System; pp. 549-553; Journal of Endodontics, vol. 19, No. 11; Nov. 1993.
Lussi et al.; In vivo performance of the new non-instrumentation technology (NIT) for root canal obturation; pp. 352-358; International Endodontic Journal, vol. 35; Apr. 2002.
Ma, et al.: “In vitro study of calcium hydroxide removal from mandibular molar root canals,” J Endod 2015;41:553-8.
Madarati, et al.: “Efficiency of a newly designed ultrasonic unit and tips in reducing temperature rise on root surface during the removal of fractured files,” J Endod 2009;35:896-9.
Madarati, et al.: “Management of intracanal separated instruments,” J Endod 2013;39:569-81.
Madarati, et al.: “Qualtrough AJ. Factors contributing to the separation of endodontic files,” Br Dent J 2008;204:241-5.
Maximum Dental Inc ., “Canal Clean Max”, “Intra Canal Irrigation and Aspiration Device”, and “SonicMax, Endo-Perio Sonic Handpiece”, in 3 pages, downloaded fromwww.dentalmaximum.com on May 8, 2008.
Molina, et al.: “Histological evaluation of root canal debridement of human molars using the GentleWaveTM system,” J Endod 2015;41:1702-5.
Nammour et al.: “External temperature during KTP-nd:YAG laser irradiation in root canals: An in vitro study,” Lasers in Medical Science, 19(1), 27-32, Jul. 2004.
Nevares, et al.: “Success rates for removing or bypassing fractured instruments: a prospective clinical study,” J Endod 2012;38:442-4.
Ohrn et al; Geometric Effects on Spray Cone Angle for Plain-Orifice Atomizers; pp. 253-268; Atomization and Sprays, vol. 1 (1991).
Ohrn et al; Geometrical Effects on Discharge Coefficients for Plain-Orifice Atomizers; pp. 137-153; Atomization and Sprays, vol. 1, No. 2 (1991).
Phinney, Ralph E.; The breakup of a turbulent liquid jet in a gaseous atmosphere; pp. 689-701; J. Fluid Mechanics, vol. 60, Part 4; Oct. 1973.
Piezon Master 600 Ultrasound a la carte, EMS Electro Medical Systems, EMS SA FA-319.EN ed. Mar. 2009; Brochure dated Mar. 2009, in 2 pages.
Quinn, W. R.; Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate; pp. 583-614; European Journal of Mechanics—B/Fluids, vol. 26; Jul.-Aug. 2007; available online Dec. 2006.
Ramamurthi et al; Disintegration of Liquid Jets from Sharp-Edged Nozzles; pp. 551-564; Atomization and Sprays, vol. 4 (1994).
Reitz et al; Mechanism of atomization of a liquid jet; pp. 1730-1742; Physics Fluids, vol. 25, No. 10; Oct. 1982.
Roth, et al.: “A study of the strength of endodonitc files: potential for torsional breakage and relative flexibility,” J Endod 1983; 9:228-32.
Ruddle, “Nonsurgical retreatment,” J Endod 2004;30:827-45.
Sabeti, “Healing of apical periodontitis after endodontic treatment with and without obturation in dogs,” Journal of Endodontics, Jul. 2006, pp. 628-633.
Sallam et al; Liquid breakup at the surface of turbulent round liquid jets in still gases; pp. 427-449; International Journal of Multiphase Flow, vol. 28; Mar. 2002.
Sawant et al; Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection; pp. 320-328; Biochemical Engineering Journal, vol. 42, Issue 3; Dec. 2008.
Schneider, et al.: “A comparison of canal preparations in straight and curved root canals,” Oral Surg Oral Med Oral Pathol 1971;32:271-5.
Schneider, et al.: “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods 2012;9:671-5.
Schoop et al., “The Impact of an Erbium, Chromium: yttrium-scandium-gallium-garnet laser with radial-firing tips on endonic treatment,” Lasers in Medical Science, Springer-Verlag, LO. Vol. 24, No. 1,, Nov. 20, 2007.
Shen, et al.: “Factors associated with the removal of fractured NiTi instruments from root canal systems,” Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:605-10.
Shi et al; Comparison-speed liquid jets; Experiments in Fluids, vol. 35; pp. 486-492; Oct. 7, 2003.
Skyttner, “Endodontic instrument separations: evaluation of a patient cases series with separated endodontic instruments and factors related to the treatment regarding separated instruments [thesis],” Stockholm: Karolinska Institutet; 2007.
Sou et al; Effects of cavitation in a nozzle on liquid jet atomization; pp. 3575-3582; International Journal of Heat and Mass Transfer, vol. 50; Mar. 2007.
Souter, et al.: “Complications associated with fractured file removal using an ultrasonic technique,” J Endod 2005;31:450-2.
Soyama et al; High-Speed Observation of Ultrahigh-Speed Submerged Waterjets; pp. 411-416; Experimental Thermal and Fluid Science, vol. 12 1996).
Soyama, Hitoshi; High-Speed Observation of a Cavitating Jet in Air; Journal of Fluids Engineering, vol. 127; pp. 1095-1101; Nov. 2005.
Stamos et al., “Retreatodontics and ultrasonics”, Journal of Endodontics, vol. 14., No. 1, pp. 39-42, Jan. 1, 1988.
Stamos et al., “Use of ultrasonics in single-visit endodontic therapy,” Journal of Endodontics, vol. 13, No. 5, pp. 246-249, May 1, 1987.
Summers, David A; Considerations in the Comparison of Cavitating and Plain Water Jets; pp. 178-184; Rock Mechanics and Explosive Research Center, Rolla, Missouri, 1983.
Summers, David A; The Volume Factor in Cavitation Erosion; Proceedings of 6th International Conference on Erosion by Liquid and Solid Impact; University of Missouri-Rolla; Rolla, Missouri, 1983, in 12 pages.
Suslick, K. S., et al., “The Sonochemical Hot Spot”, Journal of the American Chemical Society, vol. 108, No. 18, Sep. 3, 1986, pp. 5641-5642.
Suslick, K. S., et al., “Heterogeneous Sonocatalysis with Nickel Powder”, Journal of the American Chemical Society, vol. 109, No. 11, May 27, 1987, pp. 3459-3461.
Suter, et al.: “Probability of removing fractured instruments from root canals,” Int Endod J 2005;38:112-23.
Tafreshi et al; Simulating Cavitation and Hydraulic Flip Inside Hydroentangling Nozzles; pp. 359-364; Textile Research Journal, vol. 74, Apr. 2004.
Tafreshi et al; Simulating the Flow Dynamics in Hydroentangling Nozzles: Effect of Cone Angle and Nozzle Aspect Ratio; pp. 700-704; Textile Research Journal, vol. 73; Aug. 2003.
Tafreshi et al; The effects of nozzle geometry on waterjet breakup at high Reynolds numbers; pp. 364-371; Experiments in Fluids, vol. 35; Sep. 2, 2003.
Terauchi, et al.: “Evaluation of the efficiency of a new file removal system in comparison with two conventional systems,” J. Endod 2007;33:585-8.
Ulrich Schoop et al.: “The use of the erbium, chromium:yttrium-scandium-gallium-garnet laser in endodontic treatment: The results of an in vitro study,” The Journal of the American Dental Association: vol. 138, Issue 7, Jul. 2007, pp. 949-955.
Ward Jr.: “The use of an ultrasonic technique to remove a fractured rotary nickel-titanium instrument from the apical third of a curved root canal,” Aust Endod J 2003;29:25-30.
Wohlemuth et al.: “Effectiveness of GentleWave System in Removing Separated Instruments,” JOE, vol. 41, No. 11, Nov. 2015.
Yoldas, et al.: “Perforation risks associated with the use of Masserann endodontic kit drills in mandibular molars,” Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:513-7.
Yu et al.: “Study on removal effects of filling materials and broken files from root canals using pulsed Nd:YAG laser,” J Clin Laser Med Surg 2000;18:23-8.
Zehnder, “Root Canal Irrigants”, Journal of Endodontics, vol. 32, No. 5, pp. 389-398, May 2006.
Zuo et al; An Attribution of Cavitation Resonance: Volumetric Oscillations of Cloud; pp. 152-158; Journal of Hydrodynamics, vol. 21; Apr. 2009.
European Extended Search Report, re EP Application No. 18159618.0, dated Jul. 2, 2018.
European Extended Search Report, re EP Application No. 18195055.1, dated Mar. 13, 2019.
European Extended Search Report, re EP Application No. 14765398.4, dated May 31, 2017.
European Supplemental Search Report, re EP Application No. 07837261.2, dated May 29, 2012.
European Supplemental Search Report, re EP Application No. 10746978.5, dated Dec. 10, 2015.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/036451, dated Jan. 21, 2015, in 20 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2017/057206, dated Jan. 25, 2018, in 18 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2018/050753, dated Dec. 5, 2018, in 35 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US07/18664, dated Sep. 23, 2008.
International Search Report and Written Opinion, re PCT Application No. PCT/US2014/030435, dated Aug. 28, 2014.
International Search Report and Written Opinion, re PCT Application No. PCT/US2010/025775, dated Apr. 23, 2010.
U.S. Appl. No. 17/317,744, filed May 11, 2021, DiVito et al.
U.S. Appl. No. 17/412,774, filed Aug. 26, 2021, Khakpour et al.
Aydin, et al., “Fracture resistance of root-filled teeth after cavity preparation with conventional burs, Er:YAG and Er,Cr:YSGG Lasers,” Eur Oral Res 2018; 52: 59-63.
Bader et al., “Indications and limitations of Er:YAG laser applications in dentistry,” archive ouverte UNIGE, http://archive-ouverte.unige.ch. American Journal of Denistry, 2006, vol. 19, No. 3, p. 178-186.
Biolase Study, Efficacy of the Er,Cr:YSGG laser in the Laser Assisted Endodontic Treatment, Blind Randomized Clinical Trial, in 332 pages, Apr. 11, 2014. URL: https://repositorio-aberto.up.pt/handle/10216/82757.
Bornstein, Eric. “Proper use of Er: YAG lasers and contact sapphire tips when cutting teeth and bone: scientific principles and clinical application.” Dentistry today 23.8 (2004): 84-89.
Buchanan, “Closed-System Negative Pressure Irrigation: A Serious Inflection Point inRoot Canal Cleaning,” Apr. 1, 2020. https://www.dentistrytoday.com/articles/10666.
Christo, Jonathan Dr., “Efficacy of Sodium Hypochlorite and Er,Cr:YSGG Laser Energised Irrigation Against an Enterococcus faecalis Biofilm”, Sep. 2012.
De Groot, et al., “Laser-activated irrigation within root canals: cleaning efficacy and flow visualization,” Int Endod J. 2009;42:1077-83.
Divito et al., “The Photoacoustic Efficacy of an Er:YAG Laser with Radial and Stripped Tips on Root Canal Dentin Walls: An SEM Evaluation,” J Laser Dent 2011;19(1):156-161.
El-Din, et al., “Antibacterial Effect of Er,Cr:YSGG Laser Under Various Irradiation Conditions in Root Canals Contaminated With Enterococcus Faecalis,” Alexandria Dental Journal. (2017) vol. 42 pp. 108-112.
George, M.D.Sc., Ph.D, et al., “Thermal Effects from Modified Endodontic Laser Tips Used in the Apical Third of Root Canals with Erbium-Doped Yttrium Aluminium Garnet and Erbium, Chromium-Doped Yttrium Scandium Gallium Garnet Lasers,” Photomedicine and Laser Surgery vol. 28, No. 2, 2010, aMary Ann Liebert, Inc., pp. 161-165.
Gordon, DMD, et al., “The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with radial emitting tips on root canal dentin walls infected with Enterococcus faecalis,” Research—Advances in Dental Products, JADA, vol. 138, Jul. 2007. RFT endolase, Root Calan Therapy System for the Waterlase MD YSGG Laser, Peer-Reviewed Clincal Articles.
Gregorcic, Peter, Matija Jezersek, and Janez Mozina. “Optodynamic energy-conversion efficiency during an Er: YAG-laser-pulse delivery into a liquid through different fiber-tip geometries.” Journal of biomedical optics 17.7 (2012): 075006.
Guidotti R, et al., “Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer,” Lasers Med Sci. 2014;29:69-75.
International Preliminary Reporton Patentability, re PCT Application No. PCT/US2019/052990, dated Mar. 23, 2021.
International Preliminary Reporton Patentability, re PCT Application No. PCT/IL2013/050330, dated Oct. 30, 2014.
International Preliminary Reporton Patentability, re PCT Application No. PCT/IL2014/050924, dated May 6, 2016.
International Search Report and Written Opinion, re PCT Application No. PCT/IL2013/050330, dated Jul. 30, 2013.
International Search Report and Written Opinion, re PCT Application No. PCT/IL2014/050924, dated Mar. 19, 2015.
Jiang, et al., “Evaluation of a Sonic Device Designed to Activate Irrigant in the Root Canal,” Journal of endodontics, 36(1): 143-146, Jan. 2010.
Jlad, Fall 2015, Issue 3.
Jonathan, et al., “Comparative Evaluation of the Antibacterial Efficacy of Four Different Disinfection Techniques in Minimally Instrumented Experimentally Infected Root Canals: An in vitro Study,” International Journal of Laser Densitry, May-Aug. 2013; 3(2): 49-54.
Kimura et al., “Lasers in endodontics: a review,” International Endodontic Journal, 33, 173-185, 2000.
Kolnick, Justin. “Managing Refractory Endodontic Disease With Radial Apical Cleansing (Report of Two Clinical Cases).” (Sep. 2018).
Lukac, et al., “Modeling Photoacoustic Efficiency during Erbium Laser Endodontics,” Journal of the Laser and Health Academy, vol. 2013, No. 2.
Lukac, et al., “Wavelength dependence of photoninduced photoacoustic streaming technique for root canal irrigation,” Journal of Biomedical Optics 21(7), 075007 (Jul. 2016).
Matsumoto, et al. “Visualization of irrigant flow and cavitation induced by Er: YAG laser within a root canal model.” Journal of endodontics 37.6 (2011): 839-843.
Merigo, et al., “Bactericidal effect of Er,Cr:YSGG laser irradiation on endodontic biofilm: An ex vivo study,” Journal of Photochemistry & Photobiology, B: Biology 218 (2021) 112185.
Montero-Miralles, et al., “Comparative study of debris and smear layer removal with EDTA and Er,Cr:YSGG laser,” J Clin Exp Dent. 2018;10(6):e598-602.
Mrochen, et al. “Erbium: yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry Erbium: yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry.” Journal of biomedical optics 6.3 (2001): 344-350.
Olivi, et al., “Lasers in Endodontics,” Scientific Background and Clinical Applications, 2016.
Oral Health, Special Issue, Laser Dentistry, Photo-Acoustic, Root Canal, Decontamination, in 52 pages.
Peeters, et al., “Measurement of temperature changes during cavitation generated by an erbium, chromium: Yttrium, scandium, gallium garnet laser,” OJST. 2012;2:286-91.
Prasad, et al., Introduction to biophotonics. John Wiley & Sons, 2003.
Roots—international magazine of endodontics, Issn 2193-4673, vol. 15, Issue Apr. 2019.
Schoop, et al., “The impact of an erbium, chromium:yttrium-scandium-gallium-garnet laser with radial-firing tips on endodontic treatment,” Lasers in Medical Science, Dec. 2007.
Seet, et al., “An in-vitro Evaluation of the Effectiveness of Endodontic Irrigants, with and without Sonic and Laser Activation, in the Eradication of Enterococcus faecalis Biofilm,” University of Adelaide, 2011.
Shaheed, et al., “Healing of Apical Periodontitis after Minimally Invasive Endodontics therapy using Er, Dr:YSGG laser: A Prospective Clinical Study,” Sys Rev Pharm 2020; 11 (2): 135-140.
Silva, et al., “Analysis of Permeability and Morphology of Root Canal Dentin After ER,Cr:YSGG Laser Irradiation,” Photomedicine and Laser Surgery vol. 28, No. 1, pp. 103-108, 2010.
Kourti, E. et al., “Smear Layer Removal by Means of Erbium, Chromium: Yttrium Scandium Gallium Garnet (er,Cr:YSGG) Laser Irradiatin From Apical Third of Mesial Root Canals,” International Journal of Recent Scientific Research, vol. 12, Issue, 05, pp. 41804-41808, May 2021.
Takeda et al., “A comparative study of the removal smear layer by three endodontic irrigants and two types of laser,” International Endodontic Journal, 32, 32 39, 1999.
Takeda et al., “Comparative Study about the Removal of Smear Layer by Three Types of Laser Devices,” Journal of Clinical Laser Medicine & Surgery, vol. 16, No. 2, 1998 Mary Ann Liebert, Inc. pp. 117-122.
Abad-Gallegos et al., “In vitro evaluation of the temperature increment at the external root surface after Er, Cr:YSGG laser irradiation of the root canal”, Med Oral Patol Oral Cir Bucal, vol. 14(12):658-662 (2009).
Abdelkarim-Elafifi et al., “Aerosols generation using Er, Cr:YSGG laser compared to rotary instruments in conservative dentistry: A preliminary study”, J Clin Exp Dent, vol. 13(1):e30-6 (2021).
Altundasar et al., “Ultramorphological and histochemical changes after Er, Cr:Ysgg laser irradiation and two different irrigation regimes”, Basic Research-Technology, vol. 32(5):465-468 (2006).
Arnabat et al., “Bactericidal activity of erbium, chromium: yttrium-scandium-gallium-garnet laser in root canals”, Lasers Med Sci vol. 25:805-810 (2010).
Aydin et al., “Efficacy of erbium, chromium-doped yttrium, scandium, gallium and garnet laser- activated irrigation compared with passive ultrasonic irrigation, conventional irrigation, and photodynamic therapy against enterococcus faecalis”, ResearchGate, https://www.researchgate.net/publication/338906248, Article in The Journal of Contemporary Dental Practice, Jan. 2020.
Beader et al., “Efficacy of three different lasers on eradication of enterococcus faecalis and candida albicans biofilms in root canal system”, ResearchGate, https://www.researchgate.net/publication/316287465, Article in Photomedicine and Laser Surgery, Apr. 2017.
Betancourt et al., “Er, Cr:YSGG laser-activated irrigation and passive ultrasonic irrigation: comparison of two strategies for root canal disinfection”, Photobiomodulation, Photomedicine, and Laser Surgery, vol. 383(2):91-97 (2020).
Betancourt et al., “ER/Cr:YSGG laser-activation enhances antimicrobial and antibiofilm action of low concentrations of sodium hypochlorite in root canals”, Antibiotics, vol. 8(232):1-10 (2019).
Bolhari et al., “Efficacy of Er, Cr:YSGG laser in removing smear layer and debris with two different output powers”, Photomedicine and Laser Surgery, vol. 32(10):527-532 (2014).
Cheng et al., “Evaluation of the bactericidal effect of Nd:YAG, Er: YAG, Er, Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals”, Lasers in Surgery and Medicine, vol. 44:824-831 (2012).
Christo et al., “Efficacy of low concentrations of sodium hypochlorite and low-powered Er, Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm”, International Endodontic Journal, vol. 49:279-286 (2016).
De Moor et al., “Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: Evaluation of the efficacy”, Lasers in Surgery and Medicine, vol. 41:520-523 (2009).
De Moor et al., “Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs”, Basic Research Technology, JOE vol. 36(9):1580-1583 (2010).
Dewsnup et al., “Comparison of bacterial reduction in straight and curved canals using erbium, chromium: Yttrium-Scandium-Gallium-Garnet laser treatment versus a traditional irrigation technique with sodium hypochlorite”, Basich Research-Technology, JOE, vol. 36(4): 725-728 (2010).
Erken, “Evaluation of apically extruded debris using two niti systems associated with two irrigation techniques in primary teeth”, ResearchGate, https://www.researchgate.net/publication/310465261, The Journal of Clinical Pediatric Dentistry, Nov. 2016.
Fogarty, “What is an acoustic wave?”, https://www.allthescience.org/what-is-an-acoustic-wave.htm, 7 pages (2022).
George et al., “Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal”, Basic Research-Technology, JOE, vol. 34(12): 1524-1521 (2008).
George et al., Apical extrusion of root canal irrigants when using Er:YAG and ER, Cr:YSGG lasers with optical fibers: An in vitro dye study, Basic Research-Technology, JOE, vol. 34(6): 706-708 (2008).
Ishizaki et al., “Thermographical and morphological studies of Er, Cr:YSFF laser irradiation on root canal walls”, Photomedicine and Laser Surgery, vol. 22(4):291-297 (2004).
Koch et al., “Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV)”, Clin. Oral Invest. Vol. 20:381-386 (2016).
Kustarci et al., “Efficacy of laser activated irrigation on apically extruded debris with different preparation systems”, Photomedicine and Laser Surgery, vol. 33(7):384-389 (2015).
Licata et al., “Effectiveness of a new method of disinfecting the root canal, using Er, Cr:YSGG laser to kill Enterococcus faecaslis in an infected tooth model”, ResearchGate, https://www.researchgate.net/publication/255688995, Article in Lasers in Medical Science, Aug. 2013.
Lopes et al., “Evaluation of chemical and morphological changes in radicular dentin after different final surface treatments”, Micros. Res. Tech. Vol. 81:973-979 (2018).
Martins et al., “Outcome of Er, Cr:YSGG laser-assisted treatment of teeth with apical periodontitis: A blind randomized clinical trial”, Photomedicine and Laser Surgery, vol. 32(1):3-9, (2014).
Martins et al., “Efficacy of Er, Cr:YSGG laser with endodontical radial firing tips on the outcome of endodontic treatment: blind randomized controlled clinical trial with six-month evaluation”, Lasers Med Sci vol. 28:1049-1055 (2013).
Matsuoka et al., “Morphological study of the Er, Cr:YSGG laser for root canal preparation in mandibular incisors with curved root canals”, Photomedicine and Laser Surgery, vol. 23(5):480-484 (2005).
Minas et al., “In vitro investigation of intra-canal dentine-laser beam interaction aspects: II. Evaluation of ablation zone extent and morphology”, Lasers Med Sci vol. 25:867-872 (2010).
Nagahashi et al., “Er:YAG laser-induced cavitation can activate irrigation for the removal of intraradicular biofilm”, Scientific Reports, https://doi.org/10.1038/s41598-022-08963-x, pp. 1-11 (2022).
Nasher et al., “Debris and smear layer removal in curved root canals using the dual wavelength Er, Cr:YSGG/Diode 940 nm laser and the XP_Endoshaper and finisher technique”, ResearchGate, https://www.researchgate.net/publication/338755431, Article in Photobiomodulation Photomedicine and Laser Surgery, Jan. 2020.
Nowazesh et al., “Efficacy of root canal preparation by Er, Cr:YSGG laser irradiation with crown-down technique in Vitro”, Photomedicine and Laser Surgery, vol. 23(2):196-201 (2005).
Peeters et al., “Efficacy of smear layer removal at the root tip by using ethylenediaminetetraacetic acid and erbium, chromium: Yttrium, candium, and gallium garnet laser”, Basic Research-Technology, JOE, vol. 37(11):1585-1589 (2011).
Peeters et al., “Extrusion of irrigant in open apex teeth with periapical lesions following laser-|activated irrigation and passive ultrasonic irrigation”, Iranian Endodontic Journal, vol. 13(2): 169-175 (2018).
Peeters et al., “Measurement of pressure changes during laser-activated irrigant by an erbium, chronium: yttrium, scandium, gallium, garnet laser”, Lasers in Medical Science, DOI 10.1007/s10103- 014-1605-5, Received Jan. 23, 2014, Springer-Verlag London.
Peeters et al., “Radiographic examination of apical extrusion of root canal irrigants during cavitation induced by Er, Cr:YSGG laser irradiation: an in vivo study”, Clin Oral Invest vol. 17:2105-2112 (2013).
Race et al., “Efficacy of laser and ultrasonic-activated irrigation on eradicating a mixed-species biofilm in human mesial roots”, Australian Endodontic Journal, vol. 45:317-324 (2019).
Rahimi et al., “Comparison of the effect of Er, Cr-YSGG laser ultrasonic retrograde root-end cavity preparation on the integrity of root apices”, Journal of Oral Science, vol. 52(1):77-81 (2010).
Sen et al., “Comparative safety of needle, EndoActivator, and laser-activated irrigation in overinstrumented root canals”, Photomedicine and Laser Surgery, vol. 36(4): 198-202 (2018).
Sigma-Aldrich, Product Specification, 2-propanol SDS, Product No. 190764.
Soares et al., “Impact of Er, Cr:YSGG laser therapy on the cleanliness of the root canal walls of primary teeth”, Basic Research-Technology, JOE, vol. 34(4):474-477 (2008).
Tokuc et al., “The bactericidal effect of 2780 nm Er, Cr:YSGG laser combined with 940 nm diode laser in enterococcus faecalis elimination: A comparative study”, Photobiomodulation, hotomedicine, and Laser Surgery, vol. XX(XX):1-6 (2019).
Wang et al., “Evaluation of the bactericidal effect of Er, Cr:YSGG, and Nd:YAG lasers in experimentallyl infected root canals”, Basic Research-Biology, JOE, vol. 33(7):830-832 (2007).
Yamazaki et al., “Effects of erbium, chromium:YSGG laser irradiation on root canal walls: A scanning electron microscopic and thermographic study”, Journal of Endodontics, vol. 27(1):9-12 (2001).
European Search Report, re EP Application No. 13763534.8, dated Jun. 20, 2022.
European Exam Report, re EP Application No. 14733409.8, dated May 3, 2018.
European Exam Report, re EP Application No. 14742409.7, dated Aug. 21, 2018.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2015/028360, dated Nov. 10, 2016, in 14 pages.
International Search Report and Written Opinion for PCT/US2021/072194, dated Jan. 27, 2022, in 15 pages.
International Preliminary Report on Patentability and Written Opinion for PCT/US2021/072194, dated May 8, 2023, in 12 pages.
European Extended Search Report, EP Application No. 20176387.7, dated Oct. 29, 2020.
International Preliminary Report on Patentability, re PCT Application No. PCT/US07/18664, dated Feb. 24, 2009.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2014/030435, dated Sep. 15, 2015.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2010/025775, dated Sep. 6, 2011.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2019/052990, dated Dec. 5, 2019.
International Search Report and Written Opinion, re PCT Application No. PCT/US2019/052990, dated Feb. 6, 2020.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2017/057206, dated Apr. 23, 2019, in 8 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2018/050753, dated Mar. 17, 2020, in 10 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2019/035884, dated Sep. 12, 2019, in 18 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2019/035884, dated Dec. 8, 2020, in 1 pages.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2020/033837, dated Sep. 3, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/033837, dated Oct. 28, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/031189, dated Jul. 31, 2020, in 17 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/033157, dated Aug. 26, 2020, in 17 pages.
International Invitation to Pay Additional Fees, re PCT Application No. PCT/US2020/036491, dated Sep. 18, 2020.
International Search Report and Written Opinion, re PCT Application No. PCT/US2020/036491, dated Nov. 9, 2020.
International Search Report and Written Opinion for PCT/US2021/053844, dated Mar. 11, 2022, in 22 pages.
Extended European Search Report and Written Opinion for European Application No. 21175783.6, dated Dec. 13, 2021, in 8 pages.
Extended European Search Report for European Application No. 22167511.9, dated Aug. 11, 2022, in 8 pages.
European Search Report in application No. EP 21160099.4, dated Sep. 26, 2022.
European Search Report in application No. EP 201902210.0, dated Jan. 5, 2023.
European Search Report in application No. EP 22216260.4, dated Jul. 12, 2023, in 8 pages.
Related Publications (1)
Number Date Country
20190282347 A1 Sep 2019 US
Provisional Applications (1)
Number Date Country
60793452 Apr 2006 US
Continuations (3)
Number Date Country
Parent 14628500 Feb 2015 US
Child 16366954 US
Parent 14304737 Jun 2014 US
Child 14628500 US
Parent 11737710 Apr 2007 US
Child 14304737 US