1. Field of the Invention
The present invention relates to a window trimming system, and, more particularly, to a window trimming system that is self-interlocking, and is capable of cooperating with siding and insulation of building exteriors.
2. Related Art
The use of siding on houses and other buildings is becoming more common. Such siding is typically made of aluminum or other metal, or vinyl material and is attached along the outside face of the building, to form create the decorative and protective building exterior covering during original construction, or, alternatively, to “re-side” an older building by covering the original exterior. In order to complete the exterior covering of the house or other building, various types of finishing accessories are needed. Typically, when finishing-off a window or a door with preexisting wood trim, an aluminum or vinyl cap C is placed over the original wood trim T and a J-channel J is nailed next to the original wood trim (see
J-channels have presented some problems regarding maintenance of the siding and protection for the house. Since a portion of the J-channel J is behind the siding S, as the rain runs along the outer face of the siding adjacent to a window or door, there is a tendency for the rain to flow along the J-channel and thereby reach behind the siding S and/or cap C to contact the inner materials, that is, the wooden or composite materials or insulation. Such continued rain and moisture may deteriorate the wood of the original trim, the original exterior of the building, and/or even other materials of the building, such as studs, walls, or flooring.
Other conventional trimming, called conventional “lineal” or conventional “window wrap,” has been used in exterior siding systems (see
Both J-channel trimming and conventional lineal trimming are fairly unaesthetic. They result in a flat-looking exterior wall and window area. The J-channel and siding (
Further, in both the conventional J-channel-and-cap system and conventional lineal system, the fasteners F required to secure the window trimming are visible in the finished installation, and therefore, clearly are not reminiscent of quality finish carpentry and wood trim. Also, in some applications, the structure against which the J-channel is placed is not smooth and straight, and so the J-channel may not provide a smooth connection to the cap or other window frame/trim, and, accordingly, bumps, dislocations and open spaces may occur around windows and door. Additionally, using J-channels and caps C means handling and installation of multiple pieces to create the trim and to hold the siding ends/edges.
The present invention relates generally to trimming for building siding systems, and more particularly to a trimming system that is self interlocking and aesthetically-pleasing and can be used in combination with siding and insulation for windows, doors, or other regions on a building. The trimming system comprises a plurality of trim units that interlock at or near their ends. The preferred interlocking cooperation between trim units, when used in conjunction with fasteners extending from hidden portions of one or more of the trim units into a building surface, connects the trim units to each other and securely attaches the assembly to the building, without a need for fasteners to connect the trim units to each other. The trim units preferably have cooperating flanges that hook around each other or otherwise interlock at a location on the finished, installed trim that is not visible to a viewer of the building.
Further, a trim unit may include tab(s) that bend/curve across a joint between two trim units to help keep water out of the trim and away from inner materials of the building, and/or that frictionally grip(s) the cooperating trim unit to enhance stability of the joint without negatively impacting the aesthetics of the trim and the joint.
The trim units may each include an offset region for receiving and concealing or shielding insulation, wherein the offset region may be formed by two rear flanges or panels being generally parallel to each other but not coplanar, wherein the distance between said two rear flanges or panels forms a gap for the insulation that is generally parallel to the siding and to the front, visible panel of the trim.
The trim units may include a relief feature, wherein the front, visible panel of each trim unit is distanced from the siding a significant distance. The front panel is preferably the front wall of a overlapping or overhanging trim portion with closed sides that extends over the siding and give the trim system a three-dimensional appearance similar to traditional wood trim.
Preferably, there are no threaded fasteners or other fasteners, either for attaching the trim to the building or for attaching trim units to each other, that are visible in the finished, installed trim system. More preferably, there are no fasteners between two trim units, and they are instead connected by their interlocking cooperation and further hindered from separating by virtue of their attachment to the building. This way, in the preferred system, the viewer of the trim system on the outside of the building does not see nails, screws, or other fasteners on the outside of the trim system, as any threaded fasteners or other fasteners are hidden inside the trim units or underneath the siding.
Referring to the Figures, there are shown embodiments of prior art trim systems (
The preferred window trim system 10 comprises a plurality of cooperating trim units 20, which are preferably made of metal, such as steel or aluminum, or other materials that exhibit the desired resilience and resistance to shattering or cracking when flexed and resistance to denting. This resilience and resistance is an important feature of many embodiments of the invention that allows the trim units to be installed in the preferred interlocking fashion without shattering or cracking, as some flexing is needed or desirable during installation.
The window trim units 20 may be manufactured, or cut after manufacture, to comprise either an “A-end” (20A) and an “B-end” (20B) or both B-ends, or both A-ends. As shown in
Alternatively, but less preferably (due to the possibility of more moisture finding its way through the joints of the trim), the trim units comprising both A and B ends may be disposed horizontally around the window and the trim units comprising only A ends and only B ends may be disposed vertically around the window. Alternatively, but less preferably (due to the possibility of more moisture finding its way through at least some of joints of the trim), all the trim units may have an A-end and a B-end, with the ends alternating around the perimeter of the trimmed window.
As shown in
Offset D is particularly beneficial in retrofit siding applications, wherein insulation is typically installed over the original exterior O of the building, and the trim units 20 and cooperating siding are installed over the insulation I. See
In new construction applications, the trim units and siding are typically placed over insulation and/or oriented strand board (OSB) that is in a desirable relationship to the window frame, that is, not protruding substantially out from the plane of the window frame. Therefore, after installation of the trim and siding, the insulation is less likely to be visible and exposed to the elements, and embodiments of the invented trim units may not require or substantially benefit from having an offset D.
For ease of description, we will describe the left corner of the window system shown in
As shown in
As shown in
The offset D is defined by the distance between the flange 36 and the rear panel 22, which is preferably greater than ½ inch, and more preferably, about ⅝-1½ inches to cooperate with commonly-used insulation sheets. A particularly desirable trim unit embodiment is adapted for use with ¾ inch thick insulation and has an offset D of ⅝ inch. Therefore, one may see that the offset D need not be the same as, or greater than, the thickness of the insulation. In fact, an offset D that is slightly smaller than the thickness of the insulation is often desirable, because such an offset allows the trim unit to cover the insulation from view and from the elements, while giving a small amount of leeway in the fit of the trim unit against the insulation (rear panel 22) and against the exterior O (flange 36). See
Offset D provides space for the trim unit to receive, cover, and preferably conceal insulation I. The insulation I is installed so that its edge nearest the window is near but preferably not overlapping flange 36 (see
The channel 44 for receiving the siding S is defined by the rear panel 22, end wall 24, and side wall 26. The thickness of the channel 44 is generally the width dimension of end wall 24, or the distance between generally parallel side wall 26 and rear panel 22, which is approximately ⅝-¾ inch for house trim.
Side wall 26, end wall 28, and front panel 30 form a thick trim portion protruding over and in front of the siding S. This creates the three-dimensional appearance or relief of the trim, wherein the relief dimension R is defined by the width dimension of end wall 28, which distances side wall 26 from front panel 30. The width dimension of end wall 28, or generally the distance between parallel side wall 26 and front panel 30, is the measure of relief R, and is preferably greater than ½ inch, and more preferably greater than ¾ inches. An embodiment expected to be popular will have relief R equal to ⅞-1 inch for house trim, which will produce an aesthetically-pleasing “wood frame look.” Relief R creates a trim system profile that is three-dimensional, looking much more like three-dimensional lumber in traditional carpentry than the thin, flat, bent metal of conventional lineal trim.
Therefore, one may say that the preferred trim units have a siding-receiving channel and a protruding trim portion that overhangs the siding when it is installed in the channel. In many but not all embodiments, the preferred dimension of relief R and therefore the thickness of the overhanging trim portion is greater than the thickness of the channel or siding-receiving portion. This may certainly vary, for example, depending on the style of siding and the desired aesthetics of the project.
End wall 28 comprises a rectangular tab 38 as its bottom-most extremity, and end wall 24 comprises a generally triangular tab 42 as its bottom-most extremity, both of which bend generally perpendicularly inward (toward cooperating trim unit 20B). Rectangular tab 38 curves around the edge of wall 58 to extend a short length along the bottom surface of wall 58, serving to cover and/or close the gap between end wall 28 and wall 58 and providing, with its straight edge, a neat- and clean-appearing, visible joint between the trim units 20A and B. Triangular tab 42 curves around edge 72 and extends a length along the bottom surface of wall 54, serving to cover and/or close the gap between end wall 24 and wall 54. Tab 42 and its “joint” with wall 54 is typically not visible, because siding is installed in both channels 44 and 144. However, both tab 38 and 42 help to keep water from running through the respective gaps between trim units 20A and 20B, and, hence, help to keep water from entering the interior of the trim units, called-out as 120A, 120B. It should be noted that tab 42 need not necessarily be triangular in most embodiments, but that the generally triangular shape is a convenient shape to make, as discussed later in the Description.
When the trim units 20 and 20B are joined, side wall corner 40, and rear panel corner 40′, which extend from side wall 26 and rear panel 22, respectively, contact and lie generally parallel to side wall 56 and edge portion 52′ of rear panel 52 (preferably inside channel 144). This overlapping serves as part of the mating/interlocking of the trim units, which helps to stabilize the trim system, shed water, and prevent unsightly gaps between the trim units.
As shown in
End panel 64 extends generally perpendicularly from the front panel 60, extending all the way to the plane of rear panel 52. Panel 64 features relatively small flange 66 that is preferably perpendicular to the end panel 64 and extends inward toward the rear panel 52 on the plane of the rear panel 52. Offset D of trim unit 20B is defined by the distance between the flange 66 and the rear panel 52. As described above in relation to trim unit 20A, offset D provides space for the trim unit to receive, cover, and preferably conceal insulation I, which is not shown in
The channel 144 of trim unit 20B for receiving the siding S is defined by the rear panel 52, end wall 54, and side wall 56. The thickness of the channel 144 is generally the width dimension of end wall 54, or the distance between generally parallel side wall 56 and rear panel 52, which is approximately ⅝-1 inch for house trim.
Panel 64 further comprises an fastener flange 68, which extends 180 degrees relative to flange 66, that is, upwards in
Referring to trim unit 20B, side wall 56, end wall 58, and front 60 form a thick trim portion protruding over and in front of the siding. Relief R is defined by the width dimension of end wall 58, which distances side wall 56 from front panel 60. The width dimension of end wall 58, or generally the distance between parallel side wall 56 and front panel 60, is preferably greater than ½ inch, and more preferably approximately ⅞-1 inch for house trim. As discussed above, relief R creates a trim system profile that is three-dimensional, looking much more like three-dimensional lumber in traditional carpentry than the thin, flat, bent metal of conventional lineal trim.
As discussed above, triangular tab 42 of trim unit 20A curves around edge 72, which is preferably but not necessarily, formed by tab 70 bending 180 degrees over the inner surface of wall 54. Tab 70 typically serves its purpose during the preferred hand-cutting of the ends of the trim units, wherein forming tab 70 may be done by cutting the trim unit material on both sides of tab 70 of the trim unit and then bending tab 70 over to form edge 72. This technique is a much easier way to create edge 72 that trying to cut the trim unit material of wall 54 with “tin snips” in a direction transverse to the length of the trim unit. It would be difficult to maneuver the tin snips for such a transverse cut without warping or otherwise harming the shape of the trim unit; it is easier to fold tab 72 that to cut it away. Alternatively, edge 72 may simply be the cut/formed edge of wall 54, or an edge created by other structure.
From the above description and drawings, it will be understood that the panels, walls, and channels discussed above, extend preferably continuously all the way along the lengths of the trim units. Thus, while called-out with different numbers for A-ends and B-ends for convenience, the separately-called-out panels, walls, and channels are actually the same structure at opposite ends of trim units and part of said continuously-extending structure. For example, if the vertical trim unit shown in
As shown to best advantage in
In use, the insulation I is typically installed first, over the original or newly-constructed exterior O. The trim units 20 are installed around the window, door, or other item to be trimmed, by the following preferred steps described below:
1. Position a double-B-end trim unit horizontally underneath the window frame or other item being trimmed, making this the “lower trim unit.”
2. Nail, screw, or otherwise fasten the B-ends of the lower trim unit to the building, by means of one or more nails/screws through the rear panels (52) near the ends of the trim unit, through the insulation I, and into the exterior O. As discussed above, the trim unit preferably installs over the insulation (straight into the paper in
3. Nail, screw, or otherwise fasten flanges 68 of the lower unit to the exterior O, while pulling the flange slightly away from the rear panel (upwards in
If the trim units are manufactured so that the panel 64 is slanted (A1 greater than 90 degrees), the installer need not pull the flange 68 away from the rear panel, but, rather, the flange 68 and panel 64 will naturally be in the desired position relative to the front panel 60. This original manufacture (OEM) slant feature is particularly useful for the lower trim unit for run-off of water, as discussed above. This OEM slant feature may also be useful for the side and top trim units (and, hence, present in both panel 64 and panel 34), as this feature may be used to “spring load” the trim unit against the window frame. The installer pushes the side and top trim units against the window frame to an extent that forces panel 34, 64 inward (bringing A1 closer to 90 degrees) and secures the trim units in that position with fasteners through rear panels 22, 52. By means of the preferred natural resilience of the trim unit, this tends to keep a tight seal between the trim unit panels 34, 64 and the window frame.
4. Slide the A-end of each vertical trim unit into and around its respective horizontal unit B-end, so that the tab 42 slides underneath wall 54 and the flange 36 hooks/snaps around the end 68′ of flange 68.
5. Nail or screw the A-ends of the vertical units to the building, by means of one or more nails/screws through the rear panels (22) near the end of the trim unit, through the insulation I, and into the exterior O. Again, the trim unit preferably installs over the insulation (straight into the paper in
6. At this point, the lower horizontal unit is in place and secured to the exterior O by fasteners through flange 68 and panel 52, and the A-ends of the vertical units are held in place by preferably one fastener through panel 22 (near the lower ends of the vertical units) and by the hooking of flange 36 around flange 68. Thus held, the vertical units may still pivot slightly on the one fastener through panel 22 (with the flange 36 sliding relative to flange 68).
7. The preferred method of installation then includes fastening the top, B-end of one of the vertical units, for example, the left vertical trim unit in
8. The top, horizontal, double-A-ended unit (“top unit”) then may be installed onto the vertical units, by first “snapping” the left A-end of the top unit onto the B-end of the left vertical unit (which is secured and does not pivot), while pivoting the top unit slightly upward at its opposite end (right end in this example) and pivoting the right vertical unit slightly out. This way, while the installer is snapping the left end of the top unit, the right end of the top unit and the top end (B-end) of the right vertical unit do not interfere with each other.
9. In this example, the right end of the top unit and the top end of the right vertical unit then may be swung toward each other and slid together, thus forming the last of the four joints between ends of the trim units. Due to the preferred configuration of the A-ends and B-ends, they mate together conveniently (and without bending or damaging the units) when they are brought together at slightly other than 90 degrees and then swung or otherwise pivoted into a 90 degree relationship. After this fourth joint is joined, the rear panels of top and right trim units (22, 52) are secured to the exterior O through the insulation and/through any other underlying materials.
10. Preferably, prior to joining the four joints, the tabs 38 and 42 (of each of the trim units that have them) are not bent, but are parallel and co-planar to the walls from which they extend. Preferably after the four joints have been joined/formed, tabs 38 and 42 are bent to cross over and cover their respective regions of the joint. The tabs at the bottom corners may be said to extend down and inward, and the tabs at the top corners may be said to extend outward and down at the top corners. The tabs may be said to extend from end perimeter edges of the trim units or from portions of the trim units. Note that, in this example, A-ends at the bottom of the two vertical trim units, and two A-ends of the horizontal top unit have tabs 38 and 42, but other arrangement may be used, and alternatively, even tabs extending from B-ends may be used.
11. Siding is then installed into the channels 44, 144 in a conventional manner.
One will note from the above discussion, that no fasteners are visible after the trim is installed and the siding is in place. Specifically, nails, screws, or fasteners are in the rear panels, covered by the siding, and nails, screws, or fasteners are in the flanges 68, hidden by the front panel of the cooperating trim unit. There are preferably no nails/screws/fasteners extending through the front panels 30, 60 or in any other visible place. While screws are preferred, other fasteners may be used, typically but not necessarily with them being threaded; any fastener that attaches the rear panels and flanges 68 to the material behind them may be useful. Having all fasteners being hidden makes the window trim system 10 more aesthetically pleasing, and, again, closer in appearance to quality carpentry wherein nails or screws would be countersunk and covered or not visible at all.
The components of the trim system may be pre-manufactured to have the desired profile, for example, by a roll former or other conventional trim manufacturing or metal bending machine. The A-ends and B-ends may also be pre-manufactured, but it is more desirable to cut/bend these at the job site, in order to have an excellent fit for each window, door, or other application. The installer may take the desired number of trim units (typically four) that preferably look like the trim unit in
A. Cut an A-end by cutting away material to leave edge 32 at the desired angle and cutting across panel 34 to form edge 34′. Proceed by snipping and cutting away material from the ends of walls 24, 26, and 28 to form tabs 38 and 42, and corners 40, 40′.
B. Cut a B-end by cutting away material to leave edge 62 at the desired angle and cutting across panel 64 to form the end edge of panel 64. Flange 66 is cut about 2-3 inches from its end, resulting in a flange portion that may be bent 180 from the rest of flange 66 to form flange 68. The ends of walls/panels 52, 54, 56, and 58 are snipped to form the desired edges and tab 70, which may then be bent, as discussed above, to form transverse edge 72.
Other methods of forming the A-ends and B-ends may be used, but these techniques are ones than may be done on the job site with a conventional snipping tool.
By following the above, or similar, installation steps with embodiments of the invention, the inventor has found that installing trim around a window or other region of a building exterior can be done much more efficiently than with prior art trim systems such as shown in
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the scope of the following claims.