1. Field of the Invention
The present invention relates to an apparatus and methods for facilitating the connection of tubulars. More particularly, the invention relates to an interlock system for a top drive and a spider for use in assembling or disassembling tubulars.
2. Background of the Related Art
In the construction and completion of oil or gas wells, a drilling rig is constructed on the earth's surface to facilitate the insertion and removal of tubular strings into a wellbore. The drilling rig includes a platform and power tools such as an elevator and a spider to engage, assemble, and lower the tubulars into the wellbore. The elevator is suspended above the platform by a draw works that can raise or lower the elevator in relation to the floor of the rig. The spider is mounted in the platform floor. The elevator and spider both have slips that are capable of engaging and releasing a tubular, and are designed to work in tandem. Generally, the spider holds a tubular or tubular string that extends into the wellbore from the platform. The elevator engages a new tubular and aligns it over the tubular being held by the spider. A power tong and a spinner are then used to thread the upper and lower tubulars together. Once the tubulars are joined, the spider disengages the tubular string and the elevator lowers the tubular string through the spider until the elevator and spider are at a predetermined distance from each other. The spider then re-engages the tubular string and the elevator disengages the string and repeats the process. This sequence applies to assembling tubulars for the purpose of drilling a wellbore, running casing to line the wellbore, or running wellbore components into the well. The sequence can be reversed to disassemble the tubular string.
During the drilling of a wellbore, a drill string is made up and is then necessarily rotated in order to drill. Historically, a drilling platform includes a rotary table and a gear to turn the table. In operation, the drill string is lowered by an elevator into the rotary table and held in place by a spider. A Kelly is then threaded to the string and the rotary table is rotated, causing the Kelly and the drill string to rotate. After thirty feet or so of drilling, the Kelly and a section of the string are lifted out of the wellbore and additional drill string is added.
The process of drilling with a Kelly is expensive due to the amount of time required to remove the Kelly, add drill string, reengage the Kelly, and rotate the drill string. In order to address these problems, top drives were developed.
For example, International Application Number PCT/GB99/02203, published on Feb. 3, 2000 discloses apparatus and methods for connecting tubulars using a top drive. In another example,
In
In operation, the slips 340, and the wedge lock assembly 350 of top drive 200 are lowered inside the casing 15. Once the slips 340 are in the desired position within the casing 15, pressurized fluid is injected into the piston 370 through fluid port 320. The fluid actuates the piston 370, which forces the slips 340 towards the wedge lock assembly 350. The wedge lock assembly 350 functions to bias the slips 340 outwardly as the slips 340 are slidably forced along the outer surface of the assembly 350, thereby forcing the slips 340 to engage the inner wall of the casing 15.
In another embodiment (not shown), a top drive includes a gripping means for engaging a casing on the outer surface. For example, the slips of the gripping means can be arranged to grip on the outer surface of the casing, preferably gripping under the collar of the casing. In operation, the top drive is positioned over the desired casing. The slips are then lowered by the top drive to engage the collar of the casing. Once the slips are positioned beneath the collar, the piston is actuated to cause the slips to grip the outer surface of the casing.
Although the top drive is a good alternative to the Kelly and rotary table, the possibility of inadvertently dropping a casing string into the wellbore exists. As noted above, a top drive and spider must work in tandem, that is, at least one of them must engage the casing string at any given time during casing assembly. Typically, an operator located on the platform controls the top drive and the spider with manually operated levers that control fluid power to the slips that cause the top drive and spider to retain a casing string. At any given time, an operator can inadvertently drop the casing string by moving the wrong lever. Conventional interlocking systems have been developed and used with elevator/spider systems to address this problem, but there remains a need for a workable interlock system usable with a top drive/spider system such as the one described herein.
There is a need therefore, for an interlock system for use with a top drive and spider to prevent inadvertent release of a tubular string. There is a further need for an interlock system to prevent the inadvertent dropping of a tubular or tubular string into a wellbore. There is also a need for an interlock system that prevents a spider or a top drive from disengaging a tubular string until the other component has engaged the tubular.
The present invention generally provides an apparatus and methods to prevent inadvertent release of a tubular or tubular string. In one aspect, the apparatus and methods disclosed herein ensure that either the top drive or the spider is engaged to the tubular before the other component is disengaged from the tubular. The interlock system is utilized with a spider and a top drive during assembly of a tubular string.
In another aspect, the present invention provides an apparatus for use with tubulars. The apparatus includes a first device for gripping and joining the tubulars, a second device for gripping the tubulars, and an interlock system to ensure that the tubulars are gripped by at least one of the first or second device.
In another aspect still, the present invention provides a method for assembling and dissembling tubulars. The method includes joining a first tubular engaged by a first apparatus to a second tubular engaged by a second apparatus thereby forming a tubular string. An interlock system is provided to ensure that at least one of the first apparatus or the second apparatus is engaging the tubular string. After the tubulars are joined, the second apparatus is opened to disengage the string, thereby allowing the tubular string to be lowered through the second apparatus. After the string is repositioned, the second apparatus is actuated to re-engage the tubular string. After the second apparatus secures the tubular string, the first apparatus is disengaged from the string.
In another aspect still, the first apparatus includes a gripping member for engaging the tubular. In one aspect, the gripping member is movably coupled to the first apparatus. Particularly, the gripping member may pivot relative to the first apparatus to facilitate engagement with the tubular. In one embodiment, a swivel is used to couple the gripping member to the first apparatus.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore, not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention is an interlock system for use with a top drive and a spider during assembly of a string of tubulars. The invention may be utilized to assemble tubulars for different purposes including drill strings, strings of liner and casing and run-in strings for wellbore components.
A controller 900 includes a programmable central processing unit that is operable with a memory, a mass storage device, an input control unit, and a display unit. Additionally, the controller 900 includes well-known support circuits such as power supplies, clocks, cache, input/output circuits and the like. The controller 900 is capable of receiving data from sensors and other devices and capable of controlling devices connected to it.
One of the functions of the controller 900 is to prevent opening of the spider 400. Preferably, the spider 400 is locked in the closed position by a solenoid valve 980 that is placed in the control line between the manually operated spider control lever 630 and the source of fluid power operating the spider 400. Specifically, the spider solenoid valve 980 controls the flow of fluid to the spider piston 420. The solenoid valve 980 is operated by the controller 900, and the controller 900 is programmed to keep the valve 980 closed until certain conditions are met. While valve 980 is electrically powered in the embodiment described herein, the valve 980 could be fluidly or pneumatically powered so long as it is controllable by the controller 900. Typically, the valve 980 is closed and the spider 400 is locked until a tubular 130 is successfully joined to the string 210 and held by the top drive 200.
At step 510, the top drive 200 is moved to engage a casing 130. Referring back to
To engage the casing 130, the piston and cylinder assembly 122 is actuated to position the elevator 120 proximate the casing 130. The elevator 120 is then disposed around the casing 130. The movable bails 124 allow the casing 130 to tilt toward the well center. Thereafter, the gripping means 301 may be pivoted into alignment with the casing 130 for insertion thereof. Particularly, the swivel 125 is actuated to pivot the gripping means 301 as illustrated in
In one aspect, a top drive sensor 995 (
At step 520, the top drive 200 moves the casing 130 into position above the casing string 210. Particularly, the swivel 125 is actuated to pivot the gripping means 301 toward the well center. In turn, the casing 130 is also positioned proximate the well center, and preferably, into alignment with the casing string 210 in the spider 400. Additionally, the traveling block 110 is actuated to lift the top drive 200 and the attached casing 130. In this manner, the casing 130 is aligned with the casing string 210 in the spider 400, as illustrated in
At step 530, the top drive 200 rotationally engages the casing 130 to the casing string 210, thereby creating a threaded joint therebetween. In one embodiment, the top drive 200 may include a counter 250. The counter 250 is constructed and arranged to measure the rotation of the casing 130 during the make up process. The top drive 200 may also be equipped with a torque sub 260 to measure the amount of torque placed on the threaded connection. Torque data 532 from the torque sub 260 and rotation data 534 from the counter 250 are sent to the controller 900 for processing. The controller 900 is preprogrammed with acceptable values for rotation and torque for a particular connection. The controller 900 compares the rotation data 534 and the torque data 532 from the actual connections and determines if they are within the accepted values. If not, then the spider 400 remains locked and closed, and the casing 130 can be re-threaded or some other remedial action can take place by sending a signal to an operator. If the values are acceptable, the controller 900 locks the top drive 200 in the engaged position via a top drive solenoid valve 970 (
At step 540, the controller 900 unlocks the spider 400 via the spider solenoid valve 980, and allows fluid to power the piston 420 to open the spider 400 and disengage it from the casing string 210. At step 550, the top drive 200 lowers the casing string 210, including casing 130, through the opened spider 400.
At step 560, the spider 400 is closed around the casing string 210. At step 562, the spider sensor 990 (
Alternatively, or in addition to the foregoing, a compensator 270 may be utilized to gather additional information about the joint formed between the tubular and the tubular string. In one aspect, the compensator 270 couples the top drive 200 to the traveling block 110. The compensator 270 may function similar to a spring to compensate for vertical movement of the top drive 200 during threading of the casing 130 to the casing string 210. The compensator 270, in addition to allowing incremental movement of the top drive 200 during threading together of the tubulars, may be used to ensure that a threaded joint has been made and that the tubulars are mechanically connected together. For example, after a joint has been made between the tubular and the tubular string, the top drive may be raised or pulled up. If a joint has been formed between the tubular and the string, the compensator will “stoke out” completely, due the weight of the tubular string therebelow. If however, a joint has not been formed between the tubular and the string due to some malfunction of the top drive or misalignment between a tubular and a tubular string therebelow, the compensator will stroke out only a partial amount due to the relatively little weight applied thereto by the single tubular or tubular stack. A stretch sensor located adjacent the compensator, can sense the stretching of the compensator 270 and can relay the data to a controller 900. Once the controller 900 processes the data and confirms that the top drive is engaged to a complete tubular string, the top drive 200 is locked in the engaged position, and the next step 540 can proceed. If no signal is received, then the spider 400 remains locked and a signal maybe transmitted by the controller to an operator. During this “stretching” step, the spider 400 is not required to be unlocked and opened. The spider 400 and the slips 410 are constructed and arranged to prevent downward movement of the string but allow the casing string 210 to be lifted up and moved axially in a vertical direction even though the spider is closed. When closed, the spider 400 will not allow the casing string 210 to fall through its slips 410 due to friction and the shaped of the teeth on the spider slips.
The interlock system 700 is illustrated in
Also shown in
Further shown in
In
As illustrated in
In another aspect, the interlock system 700 may include a control plate 650 to control the physical movement of levers 630, 640 between the open and closed positions, thereby preventing the operator from inadvertently actuating the wrong lever.
The interlock system 700 may be any interlock system that allows a set of slips to disengage only when another set of slips is engaged to the tubular. The interlock system 700 may be mechanically, electrically, hydraulically, pneumatically actuated systems. The spider 400 may be any spider that functions to hold a tubular or a tubular string at the surface of the wellbore. A top drive 200 may be any system that includes a gripping means for retaining a tubular by the inner or outer surface and can rotate the retained tubular. The gripping means may include an internal gripping apparatus such as a spear, an external gripping apparatus such as a torque head, or any other gripping apparatus for gripping a tubular as known to a person of ordinary skill in the art. For example, the external gripping apparatus may include a sensor for detecting information from its slips to ensure proper engagement of the casing. The top drive 200 can also be hydraulically or pneumatically activated.
While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 13/029,519, filed Feb. 17, 2011 now U.S. Pat. No. 8,251,151, which is a continuation of U.S. patent application Ser. No. 12/724,161, filed Mar. 15, 2010 now abandoned, which is a continuation of U.S. patent application Ser. No. 11/872,307, filed Oct. 15, 2007, now U.S. Pat. No. 7,896,084, which is a continuation of U.S. patent application Ser. No. 11/393,311, filed Mar. 30, 2006, now U.S. Pat. No. 7,281,587, which is a continuation of U.S. patent application Ser. No. 10/625,840, filed Jul. 23, 2003, now U.S. Pat. No. 7,073,598, which is a continuation of U.S. patent application Ser. No. 09/860,127, filed May 17, 2001, now U.S. Pat. No. 6,742,596, which applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
179973 | Thornton | Jul 1876 | A |
1414207 | Reed | Apr 1922 | A |
1418766 | Wilson | Jun 1922 | A |
1585069 | Youle | May 1926 | A |
1728136 | Power | Sep 1929 | A |
1777592 | Thomas | Oct 1930 | A |
1805007 | Pedley | May 1931 | A |
1825026 | Thomas | Sep 1931 | A |
1842638 | Wigle | Jan 1932 | A |
1917135 | Littell | Jul 1933 | A |
2105885 | Hinderliter | Jan 1938 | A |
2128430 | Pryor | Aug 1938 | A |
2167338 | Murcell | Jul 1939 | A |
2184681 | Osmun et al. | Dec 1939 | A |
2214429 | Miller | Sep 1940 | A |
2414719 | Cloud | Jan 1947 | A |
2522444 | Grable | Sep 1950 | A |
2536458 | Munsinger | Jan 1951 | A |
2570080 | Stone | Oct 1951 | A |
2582987 | Hagenbook | Jan 1952 | A |
2595902 | Stone | May 1952 | A |
2610690 | Beatty | Sep 1952 | A |
2641444 | Moon | Jun 1953 | A |
2668689 | Cormany | Feb 1954 | A |
2692059 | Bolling, Jr. | Oct 1954 | A |
2953406 | Young | Sep 1960 | A |
2965177 | Bus et al. | Dec 1960 | A |
3041901 | Knights | Jul 1962 | A |
3087546 | Wooley | Apr 1963 | A |
3122811 | Gilreath | Mar 1964 | A |
3191683 | Alexander | Jun 1965 | A |
3193116 | Kenneday et al. | Jul 1965 | A |
3266582 | Homanick | Aug 1966 | A |
3305021 | Lebourg | Feb 1967 | A |
3321018 | McGill | May 1967 | A |
3368396 | VanBurkleo et al. | Feb 1968 | A |
3380528 | Timmons | Apr 1968 | A |
3392609 | Bartos | Jul 1968 | A |
3477527 | Koot | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3518903 | Ham et al. | Jul 1970 | A |
3548936 | Kilgore et al. | Dec 1970 | A |
3552507 | Brown | Jan 1971 | A |
3552508 | Brown | Jan 1971 | A |
3552509 | Brown | Jan 1971 | A |
3552510 | Brown | Jan 1971 | A |
3566505 | Martin | Mar 1971 | A |
3570598 | Johnson | Mar 1971 | A |
3602302 | Kluth | Aug 1971 | A |
3606664 | Weiner | Sep 1971 | A |
3635105 | Dickmann et al. | Jan 1972 | A |
3638989 | Sandquist | Feb 1972 | A |
3662842 | Bromell | May 1972 | A |
3680412 | Mayer et al. | Aug 1972 | A |
3691825 | Dyer | Sep 1972 | A |
3697113 | Palauro et al. | Oct 1972 | A |
3700048 | Desmoulins | Oct 1972 | A |
3706347 | Brown | Dec 1972 | A |
3746330 | Taciuk | Jul 1973 | A |
3747675 | Brown | Jul 1973 | A |
3766991 | Brown | Oct 1973 | A |
3776320 | Brown | Dec 1973 | A |
3780883 | Brown | Dec 1973 | A |
3808916 | Porter et al. | May 1974 | A |
3838613 | Wilms | Oct 1974 | A |
3840128 | Swoboda, Jr. et al. | Oct 1974 | A |
3848684 | West | Nov 1974 | A |
3857450 | Guier | Dec 1974 | A |
3871618 | Funk | Mar 1975 | A |
3881375 | Kelly | May 1975 | A |
3885679 | Swoboda, Jr. et al. | May 1975 | A |
3901331 | Djurovic | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3961399 | Boyadjieff | Jun 1976 | A |
3964552 | Slator | Jun 1976 | A |
3980143 | Swartz et al. | Sep 1976 | A |
4008773 | Wallace et al. | Feb 1977 | A |
4054332 | Bryan, Jr. | Oct 1977 | A |
4077525 | Callegari et al. | Mar 1978 | A |
4091451 | Weiner et al. | May 1978 | A |
4100968 | Delano | Jul 1978 | A |
4106176 | Rice et al. | Aug 1978 | A |
4127927 | Hauk et al. | Dec 1978 | A |
4142739 | Billingsley | Mar 1979 | A |
4176436 | McCombs et al. | Dec 1979 | A |
4199032 | Weiner et al. | Apr 1980 | A |
4202225 | Sheldon et al. | May 1980 | A |
4221269 | Hudson | Sep 1980 | A |
4257442 | Claycomb | Mar 1981 | A |
4262693 | Giebeler | Apr 1981 | A |
4274777 | Scaggs | Jun 1981 | A |
4274778 | Putnam et al. | Jun 1981 | A |
4280380 | Eshghy | Jul 1981 | A |
4315553 | Stallings | Feb 1982 | A |
4320915 | Abbott et al. | Mar 1982 | A |
4365402 | McCombs et al. | Dec 1982 | A |
4401000 | Kinzbach | Aug 1983 | A |
4437363 | Haynes | Mar 1984 | A |
4440220 | McArthur | Apr 1984 | A |
4446745 | Stone et al. | May 1984 | A |
4449596 | Boyadjieff | May 1984 | A |
4472002 | Beney et al. | Sep 1984 | A |
4489794 | Boyadjieff | Dec 1984 | A |
4492134 | Reinholdt et al. | Jan 1985 | A |
4494424 | Bates | Jan 1985 | A |
4515045 | Gnatchenko et al. | May 1985 | A |
4529045 | Boyadjieff et al. | Jul 1985 | A |
4570706 | Pugnet | Feb 1986 | A |
4592125 | Skene | Jun 1986 | A |
4593584 | Neves | Jun 1986 | A |
4593773 | Skeie | Jun 1986 | A |
4604724 | Shaginian et al. | Aug 1986 | A |
4604818 | Inoue | Aug 1986 | A |
4605077 | Boyadjieff | Aug 1986 | A |
4613161 | Brisco | Sep 1986 | A |
4625796 | Boyadjieff | Dec 1986 | A |
4646827 | Cobb | Mar 1987 | A |
4649777 | Buck | Mar 1987 | A |
4652195 | McArthur | Mar 1987 | A |
4667752 | Berry et al. | May 1987 | A |
4676312 | Mosing et al. | Jun 1987 | A |
4681158 | Pennison | Jul 1987 | A |
4681162 | Boyd | Jul 1987 | A |
4683962 | True | Aug 1987 | A |
4686873 | Lang et al. | Aug 1987 | A |
4709599 | Buck | Dec 1987 | A |
4709766 | Boyadjieff | Dec 1987 | A |
4715451 | Bseisu et al. | Dec 1987 | A |
4725179 | Woolslayer et al. | Feb 1988 | A |
4735270 | Fenyvesi | Apr 1988 | A |
4738145 | Vincent et al. | Apr 1988 | A |
4742876 | Barthelemy et al. | May 1988 | A |
4759239 | Hamilton et al. | Jul 1988 | A |
4762187 | Haney | Aug 1988 | A |
4765401 | Boyadjieff | Aug 1988 | A |
4765416 | Bjerking et al. | Aug 1988 | A |
4773689 | Wolters | Sep 1988 | A |
4781359 | Matus | Nov 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4793422 | Krasnov | Dec 1988 | A |
4800968 | Shaw et al. | Jan 1989 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4813495 | Leach | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4832552 | Skelly | May 1989 | A |
4836064 | Slator | Jun 1989 | A |
4843945 | Dinsdale | Jul 1989 | A |
4854383 | Arnold et al. | Aug 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4875530 | Frink et al. | Oct 1989 | A |
4878546 | Shaw et al. | Nov 1989 | A |
4899816 | Mine | Feb 1990 | A |
4909741 | Schasteen et al. | Mar 1990 | A |
4921386 | McArthur | May 1990 | A |
4936382 | Thomas | Jun 1990 | A |
4962579 | Moyer et al. | Oct 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4971146 | Terrell | Nov 1990 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5036927 | Willis | Aug 1991 | A |
5049020 | McArthur | Sep 1991 | A |
5060542 | Hauk | Oct 1991 | A |
5062756 | McArthur et al. | Nov 1991 | A |
5081888 | Schulze-Beckinghausen | Jan 1992 | A |
5083356 | Gonzalez et al. | Jan 1992 | A |
5107940 | Berry | Apr 1992 | A |
5111893 | Kvello-Aune | May 1992 | A |
RE34063 | Vincent et al. | Sep 1992 | E |
5144298 | Henneuse | Sep 1992 | A |
5161438 | Pietras | Nov 1992 | A |
5191939 | Stokley | Mar 1993 | A |
5207128 | Albright | May 1993 | A |
5233742 | Gray et al. | Aug 1993 | A |
5245265 | Clay | Sep 1993 | A |
5251709 | Richardson | Oct 1993 | A |
5255751 | Stogner | Oct 1993 | A |
5272925 | Henneuse et al. | Dec 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5284210 | Helms et al. | Feb 1994 | A |
5294228 | Willis et al. | Mar 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5332043 | Ferguson | Jul 1994 | A |
5340182 | Busink et al. | Aug 1994 | A |
5351767 | Stogner et al. | Oct 1994 | A |
5354150 | Canales | Oct 1994 | A |
5368113 | Schulze-Beckinghausen | Nov 1994 | A |
5386746 | Hauk | Feb 1995 | A |
5388651 | Berry | Feb 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5461905 | Penisson | Oct 1995 | A |
5497840 | Hudson | Mar 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5501286 | Berry | Mar 1996 | A |
5503234 | Clanton | Apr 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5575344 | Wireman | Nov 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5584343 | Coone | Dec 1996 | A |
5588916 | Moore | Dec 1996 | A |
5645131 | Trevisani | Jul 1997 | A |
5661888 | Hanslik | Sep 1997 | A |
5667026 | Lorenz et al. | Sep 1997 | A |
5706894 | Hawkins, III | Jan 1998 | A |
5711382 | Hansen et al. | Jan 1998 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5735351 | Helms | Apr 1998 | A |
5746276 | Stuart | May 1998 | A |
5765638 | Taylor | Jun 1998 | A |
5772514 | Moore | Jun 1998 | A |
5785132 | Richardson et al. | Jul 1998 | A |
5791410 | Castille et al. | Aug 1998 | A |
5803191 | Mackintosh | Sep 1998 | A |
5806589 | Lang | Sep 1998 | A |
5833002 | Holcombe | Nov 1998 | A |
5836395 | Budde | Nov 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5842530 | Smith et al. | Dec 1998 | A |
5850877 | Albright et al. | Dec 1998 | A |
5890549 | Sprehe | Apr 1999 | A |
5909768 | Castille et al. | Jun 1999 | A |
5931231 | Mock | Aug 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5971086 | Bee et al. | Oct 1999 | A |
6000472 | Albright et al. | Dec 1999 | A |
6012529 | Mikolajczyk et al. | Jan 2000 | A |
6018136 | Ohmi et al. | Jan 2000 | A |
6056060 | Abrahamsen et al. | May 2000 | A |
6065550 | Gardes | May 2000 | A |
6070500 | Dlask et al. | Jun 2000 | A |
6079509 | Bee et al. | Jun 2000 | A |
6119772 | Pruet | Sep 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6170573 | Brunet et al. | Jan 2001 | B1 |
6173777 | Mullins | Jan 2001 | B1 |
6189621 | Vail, III | Feb 2001 | B1 |
6199641 | Downie et al. | Mar 2001 | B1 |
6202764 | Ables et al. | Mar 2001 | B1 |
6217258 | Yamamoto et al. | Apr 2001 | B1 |
6227587 | Terral | May 2001 | B1 |
6237684 | Bouligny, Jr. et al. | May 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6315051 | Ayling | Nov 2001 | B1 |
6334376 | Torres | Jan 2002 | B1 |
6349764 | Adams et al. | Feb 2002 | B1 |
6360633 | Pietras | Mar 2002 | B2 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6385837 | Murakami et al. | May 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6412554 | Allen et al. | Jul 2002 | B1 |
6415862 | Mullins | Jul 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6527493 | Kamphorst et al. | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6553825 | Boyd | Apr 2003 | B1 |
6571868 | Victor | Jun 2003 | B2 |
6591471 | Hollingsworth et al. | Jul 2003 | B1 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6651737 | Bouligny et al. | Nov 2003 | B2 |
6668684 | Allen et al. | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688394 | Ayling | Feb 2004 | B1 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6695559 | Pietras | Feb 2004 | B1 |
6705405 | Pietras | Mar 2004 | B1 |
6725938 | Pietras | Apr 2004 | B1 |
6725949 | Seneviratne | Apr 2004 | B2 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6832656 | Fournier, Jr. et al. | Dec 2004 | B2 |
6832658 | Keast | Dec 2004 | B2 |
6840322 | Haynes et al. | Jan 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6907934 | Kauffman et al. | Jun 2005 | B2 |
6938697 | Haugen | Sep 2005 | B2 |
6976298 | Pietras | Dec 2005 | B1 |
6994176 | Shahin et al. | Feb 2006 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7028586 | Robichaux et al. | Apr 2006 | B2 |
7044241 | Angman | May 2006 | B2 |
7073598 | Haugen | Jul 2006 | B2 |
7090021 | Pietras | Aug 2006 | B2 |
7096977 | Juhasz et al. | Aug 2006 | B2 |
7100698 | Kracik et al. | Sep 2006 | B2 |
7107875 | Haugen et al. | Sep 2006 | B2 |
7117938 | Hamilton et al. | Oct 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7140445 | Shahin et al. | Nov 2006 | B2 |
7188686 | Folk et al. | Mar 2007 | B2 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7213656 | Pietras | May 2007 | B2 |
7264050 | Koithan et al. | Sep 2007 | B2 |
7281587 | Haugen | Oct 2007 | B2 |
7296623 | Koithan et al. | Nov 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7896084 | Haugen | Mar 2011 | B2 |
20010042625 | Appleton | Nov 2001 | A1 |
20020074132 | Juhasz et al. | Jun 2002 | A1 |
20020108748 | Keyes | Aug 2002 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20030173073 | Snider et al. | Sep 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050051343 | Pietras et al. | Mar 2005 | A1 |
20060000600 | Pietras | Jan 2006 | A1 |
20060118293 | Juhasz et al. | Jun 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20060180315 | Shahin et al. | Aug 2006 | A1 |
20070000668 | Christensen | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
2 307 386 | Nov 2000 | CA |
3523221 | Jan 1987 | DE |
0087373 | Aug 1983 | EP |
0 162 000 | Nov 1985 | EP |
0171144 | Dec 1986 | EP |
0 285 386 | Oct 1988 | EP |
0 474 481 | Mar 1992 | EP |
1148206 | Oct 2001 | EP |
1 256 691 | Nov 2002 | EP |
2 053 088 | Feb 1981 | GB |
2099620 | Dec 1982 | GB |
2115940 | Sep 1983 | GB |
2 224 481 | May 1990 | GB |
2 275 486 | Aug 1994 | GB |
2340858 | Mar 2000 | GB |
2 357 530 | Jun 2001 | GB |
2001173349 | Jun 2001 | JP |
9307358 | Apr 1993 | WO |
96-18799 | Jun 1996 | WO |
97-08418 | Mar 1997 | WO |
98-05844 | Feb 1998 | WO |
9832948 | Jul 1998 | WO |
99-11902 | Mar 1999 | WO |
99-58810 | Nov 1999 | WO |
0005483 | Feb 2000 | WO |
00-08293 | Feb 2000 | WO |
00-09853 | Feb 2000 | WO |
00-50730 | Aug 2000 | WO |
01-33033 | May 2001 | WO |
2004-022903 | Mar 2004 | WO |
2005090740 | Sep 2005 | WO |
Entry |
---|
“First Success with Casing-Drilling” World Oil, Feb. (1999), pp. 25. cited by other. |
Laurent, et al., “A New Generation Drilling Rig: Hydraulically Powered and Computer Controlled,” CADE/CAODC Paper 99-120, CADE/CAODC Spring Drilling Conference, Apr. 7 & 8, 1999, 14 pages. cited by other. |
Laurent, et al., “Hydraulic Rig Supports Casing Drilling, ” World Oil, Sep. 1999, pp. 61-68. cited by other. |
Shepard, et al., “Casing Drilling: An Emerging Technology,” IADC/SPE Paper 67731, SPE/IADC Drilling Conference, Feb. 27-Mar. 1, 2001, pp. 1-13. cited by other. |
Warren, et al., “Casing Drilling Technology Moves to More Challenging Application,” AADE Paper 01-NC-HO-32, AADE National Drilling Conference, Mar. 27-29, 2001, pp. 1-10. cited by other. |
Fontenot, et al., “New Rig Design Enhances Casing Drilling Operations in Lobo Trend,” paper WOCD-0306-04, World Oil Casing Drilling Technical Conference, Mar. 6-7, 2003, pp. 1-13. cited by other. |
Vincent, et al., “Liner and Casing Drilling—Case Histories and Technology,” Paper WOCD-0307-02, World Oil Casing Drilling Technical Conference, Mar. 6-7, 2003, pp. 1-20. cited by other. |
Tessari, et al., “Retrievable Tools Provide Flexibility for Casing Drilling,” Paper No. WOCD-0306-01, World Oil Casing Drilling Technical Conference, 2003, pp. 1-11. cited by other. |
Tommy Warren, SPE, Bruce Houtchens, SPE, Garret Madell, Spe, Directional Drilling With Casing, SPE/IADC 79914, Tesco Corporation, SPE/IADC Drilling Conference 2003. cited by other. |
LaFleur Petroleum Services, Inc., “Autoseal Circulating Head,” Engineering Manufacturing, 1992, 11 Pages. cited by other. |
Canrig Top Drive Drilling Systems, Harts Petroleum Engineer International, Feb. 1997, 2 Pages. cited by other. |
The Original Portable Top Drive Drilling System, TESCO Drilling Technology, 1997. cited by other. |
Mike Killalea, Portable Top Drives: What's Driving the Market?, IADC, Drilling Contractor, Sep. 1994, 4 Pages. cited by other. |
500 or 650 ECIS Top Drive, Advanced Permanent Magnet Motor Technology, TESCO Drilling Technology, Apr. 1998, 2 Pages. cited by other. |
500 or 650 HCIS Top Drive, Powerful Hydraulic Compact Top Drive Drilling System, TESCO Drilling Technology, Apr. 1998, 2 Pages. cited by other. |
Product Information (Sections 1-10) CANRIG Drilling Technology, Ltd., Sep. 18, 1996. cited by other. |
Coiled Tubing Handbook, World Oil, Gulf Publishing Company, 1993. cited by other. |
Bickford L. Dennis and Mark J. Mabile, Casing Drilling Rig Selection for Stratton Field, Texas, World Oil, vol. 226, No. 3, Mar. 2005. cited by other. |
G H. Kamphorst, G. L. Van Wechem, W. Boom, D. Bottger, and K. Koch, Casing Running Tool, SPE/IADC 52770. cited by other. |
John Doyle, et al., Basic Concepts, Feedback Control Theory, 1990, pp. 31-44 and 209-212, Macmillan Publishing Co. cited by other. |
Portable Top Drive Drilling System, Tesco Drilling Technology, TESWFT0000693-TESWFT0000736, 1994. cited by other. |
U.S. Reexamination Appl. No. 95/001,116, filed Nov. 18, 2008, Prosecution History, including at least, (1) Inter Partes Rexamination Office Action dated Feb. 13, 2009, (2) Order Granting/Denying Request for Inter Partes Reexamination dated Feb. 13, 2009, (3) Patent Owner's Response after Non-Final Action submitted Apr. 13, 2009, (4) Third Party Requester Comments after Non-Final Action submitted May 13, 2009, (5) Notification of Defective Paper in Reexam dated Nov. 7, 2009, (6) Response to Notification of Defective Paper submitted Dec. 2, 2009, (7) Third Party Reqeuster. |
Number | Date | Country | |
---|---|---|---|
20120292010 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13029519 | Feb 2011 | US |
Child | 13564315 | US | |
Parent | 12724161 | Mar 2010 | US |
Child | 13029519 | US | |
Parent | 11872307 | Oct 2007 | US |
Child | 12724161 | US | |
Parent | 11393311 | Mar 2006 | US |
Child | 11872307 | US | |
Parent | 10625840 | Jul 2003 | US |
Child | 11393311 | US | |
Parent | 09860127 | May 2001 | US |
Child | 10625840 | US |