The present invention pertains to apparatus and methods for providing radiated emission suppression and, in particular, to apparatus and methods for providing radiated emission suppression in unshielded twisted wire pairs.
Unshielded twisted pair (UTP) wires and cables are inexpensive and have been known to be very reliable. Conventional telephone wiring systems have, for many years, utilized UTP wires and wiring. As local area networks (LANs) and other communication networks continue to become more widely adopted and utilized, the need for inexpensive and reliable wiring and cabling for use in connection with the same has continued to grow.
UTP wires and cables have been suggested for use in LAN networks and other similar communication networks. These networks, however, operate at transmission frequencies which are typically much higher than those frequencies associated with conventional telephone networks and systems.
Higher transmission frequencies typically result in common mode currents which flow on or along the wiring, cabling, or network components. These common mode currents can result in radiated emissions which are undesirable. Radiated emissions have been found in UTP LANs, such as, for example, LANs utilized in connection with 10/100 or 1 GB Ethernet networks.
As the need for inexpensive and reliable wiring and cabling solutions for LANs and other similar communication networks continues to grow, so does the need for adequate suppression of radiated emissions, including those radiated emissions resulting from common mode currents.
In a first aspect, a first apparatus for providing radiated emission suppression in cabling is provided. The first apparatus includes (1) at least one cable; (2) one or more ferrite elements each substantially surrounding a length of the at least one cable; and (3) a capacitive sleeve element substantially surrounding a length of the at least one cable and the one or more ferrite elements. The capacitive sleeve element includes a conducting material adapted to be connected to a ground.
In a second aspect, a second apparatus for providing radiated emission suppression in cabling is provided. The second apparatus includes (1) at least one cable; (2) a plurality of ferrite elements each substantially surrounding a length of the at least one cable; and (3) a capacitive sleeve element substantially surrounding a length of the at least one cable and the plurality of ferrite elements. The capacitive sleeve element includes a conducting material adapted to be connected to a ground. Each ferrite element of the plurality of ferrite elements creates an effective inductance and AC resistance, and each portion of the length of the at least one cable substantially surrounded by or encapsulated by the capacitive sleeve element creates an effective capacitance connected to ground. A common mode current is reduced by the effective inductance and AC resistance, and by the effective capacitance connected to ground. Therefore, radiated emissions are suppressed. Numerous other aspects are provided.
Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.
The present invention pertains to apparatus and methods for suppressing radiated emissions from unshielded twisted pair (UTP) wires or other cabling. The present invention provides for the suppression of radiated emissions from UTP wires or other cabling by employing ferrite elements and a capacitive sleeve element in the manner described herein. In one exemplary embodiment, the present invention combines the use of ferrite elements, ferrite materials, and/or ferrite cores (collectively referred to as “ferrite elements”), along with a capacitive sleeve element, which can be placed over the UTP wires or other cabling as well as over the ferrite elements. The capacitive sleeve element can be connected to, or referenced to, ground such as a chassis ground or a ground associated with a LAN or other connector.
The present invention can combine the respective ferrite elements along with a capacitive sleeve or capacitive sleeve element in order to form a series inductance/alternating current resistance along with a capacitance connected to, or referenced to, ground. The capacitive sleeve element can exhibit two responses which serve to aid in suppressing any emissions which can radiate from the UTP wires or other cabling. A first response can form a ¼ wavelength antenna which can exhibit a narrowband response based upon the length and capacitance of the capacitive sleeve and its connection to ground.
A second response can form a wideband capacitive coupling which can serve to lower any common mode impedance of the UTP wiring or other cabling on the load side of the respective ferrite element.
A respective ferrite element can also be used to mismatch its input and output impedances as it is a magnetic device or element which operates to provide a high impedance and minimum current associated with any offending signal or signals. The offending signal or signals can be, for example, a high frequency signal, high frequency signals, and/or harmonics of the same.
A low impedance is formed at a down current, capacitance side of the respective ferrite element thereby providing for an enhanced wideband response.
In an exemplary embodiment, a plurality of respective ferrite elements or other absorptive elements and a capacitive sleeve element can be provided along LAN UTP wiring or other cabling so as to form a mechanical L filter with a series inductance and a shunt capacitance. The embodiment can also be fashioned to produce a pi filter, or a T or ladder network filtering arrangement, which serves to widen and further attenuate any common mode signals which can occur or become present in a LAN UTP or other environment.
Note that any number of wires and/or cables, including a single wire or cable, can be employed. The present invention can also be used in connection with power supply and/or power supply system cabling. For example, a power supply cable may include a plurality untwisted wire pairs, and the present invention may be employed to provide radiation suppression in such a cable.
With reference once again to
The apparatus 100 also includes one or more of ferrite elements 130 which are provided along the length of, and substantially surround or encapsulate, the wire pairs 110 at spaced intervals, as shown. In an exemplary embodiment, the ferrite elements 130 can be selected depending upon the operating frequency or frequencies of the common mode electrical signals which are expected to be conducted by the wire pairs 110. For example, in an Ethernet LAN network embodiment having an operating frequency harmonic of 525 MHz, a No. 25 ferrite material available from Steward, Inc. of Chattanooga, Tenn. can provide a desired permeability at 525 MHz. Any suitable ferrite material or ferrite materials can be selected and utilized depending upon each particular application. Non-Ethernet related frequencies also can be suppressed.
In another exemplary embodiment, multiple ferrite materials can be used to address different electrical properties which may be present along any given wire pairs 110. For example, a first type of ferrite material (e.g., a Steward, Inc., No. 25 sintered ferrite material) may be used in a vicinity close to the LAN connector 120, in order to suppress radiated emissions at higher frequencies, while a second type of ferrite material (e.g., a Steward, Inc., No. 28 sintered ferrite material) may be used along the wire pairs 110 at a location which is further away from the LAN connector 120 so as to suppress any radiated emissions at any lower frequencies present at that location along the wire pairs or cables. In another embodiment, a Fair-rite Products Corporation, No. 61 ferrite material may be positioned closest to the connector 120 for high frequency suppression and a Fair-rite Products Corporation, No. 43 ferrite material may be positioned farther from the connector 120 for lower frequency suppression.
Each ferrite element 130 preferably is spaced from the connector 120 by a distance of about one quarter of a wavelength of the frequency to be suppressed by the ferrite element 130. Accordingly, a ferrite element 130 that is to suppress a low frequency (e.g., a long wavelength) will be spaced a greater distance from the connector 120 than a ferrite element 130 that is to suppress a high frequency (e.g., a short wavelength). More that two ferrite elements may be used.
In general, any suitable type of ferrite material or materials, having any suitable permeability, can be selected and used for any given application and/or for any operating frequency or frequencies and/or for any harmonics of the same. It is important to note that while the present invention may be described as being utilize in connection with specified operating frequencies, the present invention is not limited to any particular frequencies or ranges of frequencies. Ferrite elements or other absorptive elements selected for use in the present invention can be selected based upon known permeability versus frequency curves and the frequencies or ranges associated with the particular application. The respective lengths, widths, thicknesses, etc., of the respective ferrite elements or other absorptive elements can be selected for the particular application and/or any physical constraints of the associated application.
In one exemplary embodiment, when the apparatus 100 includes four wire pairs, the ferrite elements 130 can be in the form of cylindrically shaped ferrite beads having a length of about 1½ inches, a diameter of about ½ inch, and a bore or hole therethrough, for receiving the wire pairs 110, which has a diameter of about 3/16 inch. A ferrite element spacing (from the connector 120) of about a quarter of a wavelength of the frequency to be suppressed may be employed. Other ferrite element sizes and/or spacings may be used.
With reference once again to
The capacitive sleeve element 140 contains electrical conducting material or a conduction element(s) placed in contact with, or connected to, the ground or ground contact of the LAN connector 120 so as to effectuate the grounding of the capacitive sleeve element 140. The capacitive sleeve element 140 can be, for example, any suitable heat shrinkable tubing material having an electrical conducting element(s) therein. (Alternatively, the capacitive sleeve 140 may comprise another conducting material such as a braided shield as described below with reference to
Once installed over and along the desired length of the wire pairs 110 and the ferrite elements 130, the capacitive sleeve 140 can be heat shrunk around, and/or otherwise attached to, or formed onto, the same. Non-heat shrinkable capacitive sleeve elements also may be used.
Each ferrite element 130 and the capacitive sleeve element 140 can be selected or designed so as to substantially surround and encapsulate any number of wire pairs 110.
In at least one embodiment of the invention, the capacitance sleeve 140 can be attached to a chassis 160 (shown in phantom) and/or to a ground reference using a conductive material 170 (shown in phantom). The conductive material 170 may be, for example, one or more conductive clamps. Such clamps can be formed from metal, a conductive polymer, or the like and can be attached to the chassis using a conductive adhesive material or by any other suitable mechanism.
In another exemplary embodiment, the conductive material 170 may include conductive ribbon having an adhesive tape or a conductive tape. In still another exemplary embodiment, the conductive material 170 may include a conductive foam and the wire pairs 110 can be inserted, at specific locations and/or along the length of the same, into a piece or pieces of the conductive foam which can be adhered to the chassis wall 160. In this embodiment, wherein conductive foam is utilized, the foam's profile can be easily modified to conform with existing or allowable space(s). Further, a simple slit made or formed along the length of the foam can be utilized for retaining the wire pairs 110.
In another exemplary embodiment, the ferrite element 330 can be of any appropriate cross sectional shape (e.g., square, rectangular, oval, circular, etc.) and can have any number of bores or holes, for receiving any number of wire pairs or groups of same therein. Any of the ferrite elements 130, 230 and 330, described herein, can have any appropriate permeability, size, length, or thickness.
With reference to
With reference once again to
With reference once again to
Additional inductor/capacitor stages can also be provided, as deemed appropriate or necessary, by adding additional ferrite elements 130 and corresponding regions 150 where the capacitive sleeve element 140 substantially surrounds or encapsulates sections or regions of the wire pairs 110. Multiple capacitive sleeve elements may be used. As stated, in at least one embodiment, each ferrite element is spaced from the connector 120 by a distance of approximately one quarter of a wavelength of the frequency to be suppressed by the ferrite element.
In an exemplary embodiment, the apparatus 100 of the present invention can be utilized to perform LAN UTP or other cabling radiated emission suppression in the following manner. Upon the introduction of current or power to the apparatus 100, the first “effective” inductor or inductance 161 of the first ferrite element 130 serves to increase the impedance of the circuit and thereby reduces the amount of current which flows in the circuit. This impedance can be referred to as the “high common mode impedance” which typically has a high value as a result of the ferrite 130 and the resulting “effective” inductor or inductance 161. This above-described reduction in current results in reduced radiated emissions from the wire pair or cables 110.
The apparatus 100 then provides for the mismatching of the high common mode impedance which is present after the first ferrite element 130 (“effective” inductor or inductance 161), with the “effective” capacitor or capacitance 162 which is created by the first region 150 where the capacitive sleeve 140 encapsulates the wire pairs 110. The “effective” capacitor or capacitance 162 serves to present a lower circuit impedance and a capacitance to ground which serves to reduce common mode current in the circuit and decreases the radiating loop area.
In this manner, the “effective” inductor or inductance 161 of the first ferrite element 130 increases circuit impedance thereby reducing circuit common mode current and the “effective” capacitor or capacitance 162 created by the first region 150 decreases the circuit impedance and drives or brings the common mode current to ground. The described reduction of current and subsequent grounding of the current which flows in the wire pairs 110, by the “first stage” of the circuit, serves to lower the common mode current and to suppress radiated emissions which could result from the propagation of the common mode current on or along the length of the wire pairs 110 or any network components.
The second “effective” inductor and inductance 163, which is created by the second ferrite element 130, and the second “effective” capacitor or capacitance 164, which is created by the second region 150 where the capacitive sleeve element 140 substantially surrounds or encapsulates the wire pairs 110, serves to further reduce the common mode current flowing in the circuit 600, first by increasing the circuit impedance and, in turn, reducing the current and, thereafter, by decreasing the circuit impedance with the “effective” capacitor or capacitance 164 and by driving or bringing the common mode current to ground. This additional step of reducing the common mode current and driving or bringing the reduced current to ground, by this “second stage” of the circuit, serves to further lower the common mode current and to suppress radiated emissions which could result from the propagation of the same on or along the length of the wire pairs 110 or any network components. Suppression of radiation emissions in other cables, such as power supply cables, may be similarly achieved via the present invention.
The present invention thus provides apparatus and methods for reducing common mode currents and for driving or bringing these reduced currents to ground. The reduction in common mode currents in a LAN or other circuit reduces the propagation of these common mode currents on or along the length of the wire pairs 110 and/or on or along any network components. The reduction in common mode currents serves to suppress radiated emissions which are known to result from the existence and propagation of common mode currents on or along a length of a wire pair(s) or cable(s) or on or along any network components.
In the above-described manner, the ferrite elements 130 and the capacitive sleeve element 140 serve to reduce common mode current(s) in unshielded wire pairs or cables, and in LAN networks and/or systems and/or in other networks and/or systems which utilize unshielded twisted wire pairs or cables, and thereby serve to suppress radiated emissions known to result from such common mode current(s). The apparatus and methods of the present invention can also find application in any other networks or systems where common mode currents may be known to occur (e.g., power supply cables, triax cables, etc.).
In another exemplary embodiment, the ferrite elements 130 can be selected to suppress radiated emissions in unshielded twisted wire pairs or other cables for any given frequency, frequencies, or harmonic frequencies of the same. For example, and as noted before, the ferrite elements 130, in an exemplary embodiment can be selected for suppressing radiated emissions resulting from a frequency of about 525 MHz, which frequency is a common harmonic frequency encountered in Ethernet LANS, and/or for suppressing radiated emissions resulting from any other high frequency network.
The ferrite elements can be selected to provide a certain “effective” inductor, inductance and/or AC resistance while the capacitive sleeve element can be selected to create a certain “effective” capacitor and/or capacitance, for any given frequency or frequencies so that radiated emissions can be suppressed for any given frequency or frequencies. In this regard, any appropriate ferrite materials and any appropriate capacitive sleeve materials and/or capacitive sleeve conducting materials can be selected, depending upon the frequency or frequencies which are expected to be encountered and for which radiated emission suppression is desired. Any number of ferrite elements and/or capacitive sleeve elements may be used.
In another exemplary embodiment, the capacitive sleeve 240 shown in
In the exemplary embodiment of
In the embodiment of
The flanges 731 and 737, in an exemplary embodiment, can be manufactured from a metal conductor, a metal plated element, a painted metal element, a plastic material painted with a metallic paint or any other suitable material.
While the present invention has been described and illustrated in a number of exemplary embodiments, such are merely illustrative of the present invention and are not to be construed to be limitations thereof. Accordingly, the present invention includes all modifications, variations and/or alternate embodiments with the scope of the present invention being limited only by the claims which follow.