The present invention relates to apparatus and methods for the operation of passive light emitting diode (LED) lighting equipment, and in particular to such apparatus and methods as may avoid the need to use electrolytic capacitors.
LED technology has been promoted as a promising lighting technology to replace energy-inefficient incandescent lamps and mercury-based linear and compact fluorescent lamps. It is often claimed by LED manufacturers that the LED devices have a long lifetime that could be higher than 5 years. However, the electrolytic capacitors used in the power circuit and the electronic controls for LED systems have a limited lifetime, typically 15000 hours (or 1.7 years) at an operating temperature of 105° C. The lifetime of an electrolytic capacitor is highly sensitive to the operating temperature. The lifetime is doubled if the operating temperature is decreased by 10° C. and halved if increased by 10° C. Therefore, the short lifetime of electronic control circuits (sometimes known as ballasts) for LEDs remains one major bottleneck in the utilization of LED technology.
In general, electrolytic capacitors are used in power inverter circuits and electronic control circuits for lighting systems because they provide the necessary large capacitance of the order of hundreds and even thousands of micro-Farads, while other more long-lasting capacitors such as ceramic, polypropylene and metallized plastic film capacitors have relatively less capacitance of several tens of micro-Farads or less. The large capacitance of electrolytic capacitors is usually needed to provide a stable DC link voltage for the ballast circuit to provide stable power (with reduced power variation) for the load; a stable DC power supply in the electronic control for the power inverter circuit.
Regardless of whether a single-stage or a two-stage approach is used, a large capacitance (requiring the use of electrolytic capacitors) is needed as energy-storage to cater for the difference between the input power from the ac mains and the almost constant power of the LED load. The input power of an off-line lighting system is typically a periodically pulsating function as shown in
An electronic ballast circuit without the use of electrolytic capacitors has been proposed. But the requirement for active power switches in such proposal means that an electronic control board that provides the switching signals for the active power switches is needed and this electronic control board needs a power supply that requires the use of electrolytic capacitors. In general, electrolytic capacitors are needed in a DC power supply for providing the hold-up time (i.e. to keep the DC voltage for a short period of time when the input power source fails.) Power electronic circuits that use active switches usually need a DC power supply for the gate drive circuits that provide switching signals for the active electronic switches. Therefore, it would be useful if a passive electronic ballast circuit can be developed for providing a stable current source for the LED load. A passive ballast circuit without active switches, electronic control board and electrolytic capacitors would be a highly robust and reliable solution that enhances the lifetime of the entire LED system. The remaining challenge is to determine how to provide a stable current source for the LED load based on a totally passive circuit.
According to the present invention there is provided an LED lighting system comprising: (a) a rectification circuit for rectifying an AC input power and generating a rectified DC power, (b) a first circuit electrically coupled to the rectification circuit for reducing the voltage ripple of said rectified DC power, (c) a second circuit electrically coupled to the first circuit for generating a current source from the voltage ripple reduced rectified DC power, and (d) at least one LED electrically coupled to the second circuit and receiving said current source as an input.
Preferably the first circuit is a valley-fill circuit located between the rectification circuit and the second circuit. The valley-fill circuit may include a voltage-doubler.
Preferably the second circuit comprises an inductor. The second circuit may further function as a current ripple reduction circuit. Such a current ripple reduction circuit may comprise a coupled inductor with a capacitor.
In preferred embodiments of the invention the power supplied to the at least one LED is permitted to vary, and at least one operating and/or design parameter of the at least one LED is chosen such that a variation in luminous flux resulting from the varying power is not observable to the human eye.
Viewed from another broad aspect the present invention provides a method of operating a LED lighting system comprising: (a) rectifying an AC input voltage to generate a rectified DC power, (b) reducing a voltage ripple of the rectified DC power, (c) generating a current source from the voltage ripple reduced rectified DC power, and (d) providing the current source as an input to at least one LED, wherein the power supplied to the at least one LED is permitted to vary, and wherein at least one operating and/or design parameter of the at least one LED is chosen such that a variation in luminous flux resulting from the varying power is not observable to the human eye.
Preferably a thermal characteristic of the at least one LED may be chosen such that the variation in luminous flux resulting from the varying power is not observable to the human eye. Such a thermal characteristic may comprise a design of a heatsink for the at least one LED and/or the provision of forced cooling or natural cooling.
Preferably a valley-fill circuit is used to reduce the voltage ripple of the rectified DC power. The valley-fill circuit may comprise a voltage-doubler.
In preferred embodiments of the invention the method further comprises reducing the current ripple of the current source. A coupled inductor with a capacitor may be used to reduce the current ripple.
Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:
a)-(c) show the variation of LED power and luminous flux in an embodiment of the present invention;
a), (b) and (c) show (a) a schematic diagram of a passive off-line circuit design for an LED system using an inductor for current ripple reduction, and (b) and (c) using a coupled inductor for current ripple reduction;
a) and (b) show (a) simulated input voltage and current of the system of
a)-(d) show (a) simulated voltage and current of the LED module for the circuit of
a)-(d) show (a) simulated input voltage and current of the system of
a)-(d) show (a) simulated input voltage and current of the system of
a) and (b) illustrate the use of the valley-fill circuit in reducing the voltage ripple.
One important aspect of this invention at least in its preferred forms is to provide a way to reduce the size of the capacitors that is needed so that capacitors other than the electrolytic type can be used. With electrolytic capacitors eliminated in the lighting system, the whole system can be more reliable and last longer.
In addition to the elimination of electrolytic capacitors, the design is also concerned with the input power factor because there is an international standard IEC-61000 governing the input power factor. Passive power correction circuits such as valley-fill circuits and their variants (K. Kit Sum, “Improved Valley-Fill Passive Current Shaper,” Power System World 1997, p. 1-8; Lam, J.; Praveen, K.; “A New Passive Valley Fill Dimming Electronic Ballast with Extended Line Current Conduction Angle,” INTELEC '06. 28th Annual International Telecommunications Energy Conference, 2006. 10-14 Sep. 2006 Page(s): 1-7), incorporated herein by reference, can be used in the passive ballast circuit in embodiments of this invention.
Valley-fill circuits allow the input current to be smoothed so that the current distortion factor and thus the input power factor can be improved. The choice of the capacitors used in the valley-fill circuit can be made so that non-electrolytic capacitors can be used. Unlike previous applications, the valley-fill circuit is used in embodiments of this invention to reduce the output voltage ripple which in turn will reduce the current ripple in the later power stage. This aspect of the valley-fill circuit application has not been reported previously because in the prior art valley-fill circuits were primarily used for voltage source applications and were used as a means for input power factor correction with their outputs are nominally connected directly to another power converter or a load. For example, in the National Semiconductor Note: LM3445 Triac Dimmable Offline LED Driver March 2009, incorporated herein by reference, the two capacitors C7 and C9 in the valley-fill circuit are electrolytic capacitors and the valley-fill circuit provides a “voltage source” to a buck converter which in turn controls the power of the LED load. Such example of valley-fill circuit application highlights the traditional use of “electrolytic capacitor” in absorbing large power variation and the voltage source nature of prior art.
In contrast in embodiments of the present invention valley-fill circuits are used to reduce the input voltage ripple. As shown in
In embodiments of the invention an inductor (
a) and
Considering firstly
where Δt is the time period during the current change.
From the above equation, it can be seen that the size of the inductor L can be used to reduce the current ripple, which in turn can limit the change of total LED power because
ΔPLED=VLEDΔILED.
An alternative shown in
In embodiments of the present invention there will be fluctuation of the LED load power, but it is possible to obtain luminous output from the LED system with minimum luminous flux fluctuation even though the LED load power will fluctuate. This can be seen by considering the relationship between the luminous flux φv and LED power Pd as shown in
In this way, the control circuit can use non-electrolytic capacitors without causing a large variation in the light output of the LED system. This concept can be implemented in existing electronic ballasts by replacing the electrolytic capacitors with other capacitors of lower values and re-designing the LED system so that the LED power variation falls within the peak luminous flux region in the luminous flux—LED power curve.
Another aspect of the present invention involves the use of novel passive power circuits that can achieve the advantages proposed above without using active electronic switches. Without using active electronics switches, the proposed circuits do not need an electronic control circuit for the switches and can be much more reliable, long-lasting and have lower costs than their active electronic counterparts.
In order to illustrate this aspect of the present invention, the passive circuit of
This per-unit result of LED power in
However, it is important to note that the choice of inductance of the inductor can control the current ripple and therefore the LED power variation. If the inductance L is increased from 1H to 2H (
It can be seen that, with L increased to 2H, the power variation (from 1.6 W to 2.5 W) is 36%. If the same power variation is applied to the two examples in reference Hui et al (Hui S. Y. R. and Qin Y. X., “General photo-electro-thermal theory for light-emitting diodes (LED) systems,” IEEE Applied Power Electronics Conference, February 2009, Washington D.C., USA, paper 16.2), incorporated herein by reference,
It can be seen that a large inductance can reduce the current ripple and LED power variation. The choice of L depends also on the core loss and copper loss in the inductor. The overall design therefore relies on the thermal design as explained in Hui et al and the choice of L so that the operating range can be restricted to the region of the luminous flux—LED power curve where the slope of the curve is small.
An effective method to further reduce the current ripple and thus LED power variation and light variation is to replace the inductor in
It should also be noted that it may be desirable to provide a diode-capacitor clamp that can be added to each LED string to provide a current path for the inductor current in case some of the LED devices fail. An example of such a possibility is shown in
From the above it will be seen that in preferred embodiments of the present invention there is proposed the use of a passive power correction circuit such as the valley-fill circuit to reduce the voltage ripple feeding the inductor (or coupled inductor with a capacitor in the form of current ripple cancellation circuit) and the LED modules in order to (i) reduce the current ripple and thus the power variation in the LEDs and (ii) to improve the input power factor. The allowance of some current and power variation in the LEDs within the region of the luminous flux—LED power curve where the slope of the curve is small will lead to only a small variation of the luminous flux from the LED system. The use of the inductance of the inductor or coupled inductor in the form of a current ripple cancellation circuit to further limit the power variation of the LED system.
By using a suitable thermal design the power variation range of the LED load can be designed to fall within the region of the luminous flux—LED power curve where the slope is small and the luminous flux is maximum or near maximum.
As a consequence of the requirement of only small capacitance in the proposed system, electrolytic capacitors can be eliminated from this design. Since the entire circuit consists of passive and robust components (such as power diodes, non-electrolytic capacitors and inductors) only and does not need extra control electronics, it features low-cost, high robustness and reliability.
While several aspects of the present invention have been described and depicted herein, alternative aspects may be effected by those skilled in the art to accomplish the same objectives. Accordingly, it is intended by the appended claims to cover all such alternative aspects as fall within the true spirit and scope of the invention.