This invention relates to apparatus and methods for the operation of passive light emitting diode (LED) lighting equipment, and in particular to such apparatus and methods as may avoid the need to use electrolytic capacitors.
LED technology has been promoted as a promising lighting technology to replace energy-inefficient incandescent lamps and mercury-based linear and compact fluorescent lamps. It is often claimed by LED manufacturers that the LED devices have a long lifetime that could be higher than 5 years. However, the electrolytic capacitors used in the power circuit and the electronic controls for LED systems have a limited lifetime, typically 15000 hours (or 1.7 years) at an operating temperature of 105° C. The lifetime of an electrolytic capacitor is highly sensitive to the operating temperature. The lifetime is doubled if the operating temperature is decreased by 10° C. and halved if increased by 10° C. Therefore, the short lifetime of electronic control circuits (sometimes known as ballasts) for LEDs remains one major bottleneck in the utilization of LED technology [Chung, H. S.-H.; Ho, N.-M.; Yan, W.; Tam, P. W.; Hui, S. Y.; “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessment on Energy Efficiency and Lifetime”, IEEE Transactions on Industrial Electronics, Volume 54, Issue 6, December 2007 Page(s): 3145-3154; Hui S. Y. R. and Yan W., “Re-examination on Energy Saving & Environmental Issues in Lighting Applications”, Proceedings of the 11th International Symposium on Science 7 Technology of Light Sources, May 2007, Shanghai, China (Invited Landmark Presentation), pp. 373-374].
In general, electrolytic capacitors are used in power inverter circuits and electronic control circuits for lighting systems because they provide the necessary large capacitance of the order of hundreds and even thousands of micro-Farads, while other more long-lasting capacitors such as ceramic, polypropylene and metalized plastic film capacitors have relatively less capacitance of several tens of micro-Farads or less. The large capacitance of electrolytic capacitors is usually needed to provide a stable dc link voltage for the ballast circuit to provide stable power (with reduced power variation) for the load; a stable dc power supply in the electronic control for the power inverter circuit.
Regardless of whether a single-stage or a two-stage approach is used, a large capacitance (requiring the use of electrolytic capacitors) is needed as energy-storage to cater for the difference between the input power from the ac mains and the almost constant power of the LED load. The input power of an off-line lighting system is typically a periodically pulsating function as shown in
An electronic ballast circuit without the use of electrolytic capacitors has been proposed. But the requirement for active power switches in such proposal means that an electronic control board that provides the switching signals for the active power switches is needed and this electronic control board needs a power supply that requires the use of electrolytic capacitors. In general, electrolytic capacitors are needed in a dc power supply for providing the hold-up time (i.e. to keep the dc voltage for a short period of time when the input power source fails.) Power electronic circuits that use active switches usually need a dc power supply for the gate drive circuits that provide switching signals for the active electronic switches. Therefore, it would be useful if a passive electronic ballast circuit can be developed for providing a stable current source for the LED load. A passive ballast circuit without active switches, electronic control board and electrolytic capacitors would be a highly robust and reliable solution that enhances the lifetime of the entire LED system. The remaining challenge is to determine how to provide a stable current source for the LED load based on a totally passive circuit.
According to the present invention there is provided an LED lighting system comprising in sequence: (a) a rectification circuit for rectifying an AC input power and generating a rectified DC power, (b) a first circuit for reducing the voltage ripple of said rectified DC power, (c) a second circuit having a coupled inductor with a capacitor, the second circuit being arranged to generate a current source, and (d) at least one LED receiving said current source as an input, the power supplied to the at least one LED being permitted to vary, and the operating and/or design parameters of the at least one LED being chosen such that the variation in luminous flux resulting from the variation in power is not observable to the human eye.
Preferably the voltage ripple reducing circuit is a valley-fill circuit located between the rectification circuit and the inductor. The valley-fill circuit may include a voltage-doubler.
Preferably, the valley-fill circuit includes a first capacitor and a second capacitor. The capacitances of the first and second capacitors may be the same, or the first and second capacitors may have different capacitances such that the voltage ripple of said rectified DC power is further reduced.
Preferably the second circuit comprises an inductor. The second circuit may further function as a current ripple reduction circuit. Such a current ripple reduction circuit may comprise a coupled inductor with a capacitor.
Preferably means are also provided for reducing the sensitivity of the LED power to fluctuations in the AC input supply. This may be achieved, for example, by placing an inductor in series between the AC input supply and the diode rectification circuit. A capacitor may also be provided in parallel between this input inductor and the diode rectification circuit.
This input inductor may be a variable inductor that is controllable such that the at least one LED is dimmable. The use of a variable inductor may solely be for providing a dimming function, or may be for reducing the sensitivity of the LED power to fluctuations in the AC input supply in combination with providing a dimming function.
Such use of an input inductor may also be useful independently of providing reduction of voltage/current ripple and therefore according to another aspect of the invention there is also provided an LED lighting system comprising: an AC input power source, a rectification circuit for rectifying an AC input power and generating a rectified DC power, and an inductor provided in series between the AC input power source and the rectification circuit. Again, a capacitor may be provided in parallel between the inductor and the diode rectification circuit, the inductor being a variable inductor controllable such that the LED lighting system is dimmable. Also, the input inductor may be a variable conductor that is controllable so that the LED lighting system is dimmable.
In preferred embodiments of the invention the power supplied to the at least one LED is permitted to vary, and the operating and/or design parameters of the at least one LED are chosen such that the variation in luminous flux resulting from the variation in power is not observable to the human eye.
Viewed from another broad aspect the present invention provides a method of operating a LED lighting system comprising the steps of: (a) rectifying an AC input voltage to generate a rectified DC power, (b) reducing the voltage ripple of the rectified DC power, (c) generating a current source from the voltage ripple reduced rectified DC power, and (d) providing the current source as an input to at least one LED, wherein the power supplied to the at least one LED is permitted to vary by use of a variable inductor, and wherein the operating and/or design parameters of the at least one LED are chosen such that the variation in luminous flux resulting from the variation in power is not observable to the human eye.
Preferably a thermal characteristic of the at least one LED may be chosen such that the variation in luminous flux resulting from the variation in power is not observable to the human eye. Such a thermal characteristic may comprises the design of the heatsink and/or the provision of forced cooling or natural cooling.
Preferably a valley-fill circuit is used to reduce the voltage ripple of the rectified DC power. The valley-fill circuit may include a voltage-doubler.
Preferably, the valley-fill circuit is provided with a first capacitor and a second capacitor. The capacitances of the first and second capacitors may be the same, or the first capacitor may be selected with a different capacitance to the second capacitor such that the valley-fill circuit is used to further reduce the voltage ripple of the rectified DC power.
In preferred embodiments of the invention the method further comprises the step of reducing the current ripple of said current source. Such a circuit may comprise a coupled inductor with a capacitor used to reduce the current ripple.
Preferably the sensitivity of the LED power to fluctuations in the AC input supply voltage is also controlled.
Preferably, the AC input voltage can be varied so that the LED lighting system is dimmable.
The valley-fill circuit described above can be used more generally to generate a DC output voltage for broader variety of applications. Therefore, in another broad aspect of the present invention, there is provided a valley-fill circuit for generating a DC output voltage, the circuit including a first capacitor and a second capacitor, wherein the first and second capacitors have different capacitances such that the voltage ripple of the DC output voltage is reduced, and a current source circuit having an inductor.
A further broad aspect of the present invention provides a method of generating a DC output by using a valley-fill circuit including a first capacitor and a second capacitor, wherein the first and second capacitors have different capacitances such that a DC output voltage with reduced voltage ripple is generated.
Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:
a)-(c) show the variation of LED power and luminous flux in an embodiment of the present invention;
a), (b) and (c) show (a) a schematic diagram of a passive off-line circuit design for an LED system using an inductor for current ripple reduction, and (b) and (c) using a coupled inductor for current ripple reduction;
a) and (b) show (a) simulated input voltage and current of the system of
a)-(d) show (a) simulated voltage and current of the LED module for the circuit of
a)-(d) show (a) simulated input voltage and current of the system of
a)-(d) show (a) simulated input voltage and current of the system of
a) and (b) illustrate the use of the valley-fill circuit in reducing the voltage ripple;
a)-(d) show idealized waveforms in the circuit of
a) is a graph showing the output voltage of the circuit of
b) is a graph showing the output voltage of the circuit of
One important aspect of this invention at least in its preferred forms is to provide a way to reduce the size of the capacitors that is needed so that capacitors other than the electrolytic type can be used. With electrolytic capacitors eliminated in the lighting system, the whole system can be more reliable and last longer.
In addition to the elimination of electrolytic capacitors, the design is also concerned with the input power factor because there is an international standard IEC-61000 governing the input power factor. Passive power correction circuits such as valley-fill circuits and their variants [K. Kit Sum, “Improved Valley-Fill Passive Current Shaper”, Power System World 1997, p. 1-8; Lam, J.; Praveen, K.; “A New Passive Valley Fill Dimming Electronic Ballast with Extended Line Current Conduction Angle”, INTELEC '06. 28th Annual International Telecommunications Energy Conference, 2006. 10-14 Sep. 2006 Page(s): 1-7] can be used in the passive ballast circuit in embodiments of this invention.
Valley-fill circuits allow the input current to be smoothed so that the current distortion factor and thus the input power factor can be improved. The choice of the capacitors used in the valley-fill circuit can be made so that non-electrolytic capacitors can be used. Unlike previous applications, the valley-fill circuit is used in embodiments of this invention to reduce the output voltage ripple which in turn will reduce the current ripple in the later power stage. This aspect of the valley-fill circuit application has not been reported previously because in the prior art valley-fill circuits were primarily used for voltage source applications and were used as a means for input power factor correction with their outputs are nominally connected directly to another power converter or a load. For example, in the National Semiconductor Note: LM3445 Triac Dimmable Offline LED Driver March 2009, the two capacitors C7 and C9 in the valley-fill circuit are electrolytic capacitors and the valley-fill circuit provides a “voltage source” to a buck converter which in turn controls the power of the LED load. Such example of valley-fill circuit application highlights the traditional use of “electrolytic capacitor” in absorbing large power variation and the voltage source nature of prior art.
In contrast in embodiments of the present invention valley-fill circuits are used to reduce the output voltage ripple. As shown in
In embodiments of the invention an inductor (
a) and
Considering firstly
where Δt is the time period during the current change.
From the above equation, it can be seen that the size of the inductor L can be used to reduce the current ripple, which in turn can limit the change of total LED power because
ΔPLED=VLEDΔILED
An alternative shown in
In embodiments of the present invention there will be fluctuation of the LED load power, but it is possible to obtain luminous output from the LED system with minimum luminous flux fluctuation even though the LED load power will fluctuate. This can be seen by considering the relationship between the luminous flux φv and LED power Pd as shown in
In this way, the control circuit can use non-electrolytic capacitors without causing a large variation in the light output of the LED system. This concept can be implemented in existing electronic ballasts by replacing the electrolytic capacitors with other capacitors of lower values and re-designing the LED system so that the LED power variation falls within the peak luminous flux region in the luminous flux—LED power curve.
Another important aspect of the present invention involves the use of novel passive power circuits that can achieve the advantages proposed above without using active electronic switches. Without using active electronics switches, the proposed circuits do not need an electronic control circuit for the switches and can be much more reliable, long-lasting and have lower costs than their active electronic counterparts.
In order to illustrate this aspect of the present invention, the passive circuit of
This per-unit result of LED power in
However, it is important to note that the choice of inductance of the inductor can control the current ripple and therefore the LED power variation. If the inductance L is increased from 1H to 2H (
It can be seen that, with L increased to 2H, the power variation (from 1.6 W to 2.5 W) is 36%. If the same power variation is applied to the two examples in reference Hui et al [Hui S. Y. R. and Qin Y. X., “General photo-electro-thermal theory for light-emitting diodes (LED) systems”, IEEE Applied Power Electronics Conference, February 2009, Washington D.C., USA, paper 16.2],
It can be seen that a large inductance can reduce the current ripple and LED power variation. The choice of L depends also on the core loss and copper loss in the inductor. The overall design therefore relies on the thermal design as explained in Hui et al and the choice of L so that the operating range can be restricted to the region of the luminous flux—LED power curve where the slope of the curve is small.
An effective method to further reduce the current ripple and thus LED power variation and light variation is to replace the inductor in
It should also be noted that it may be desirable to provide a diode-capacitor clamp that can be added to each LED string to provide a current path for the inductor current in case some of the LED devices fail. An example of such a possibility is shown in
From the above it will be seen that in preferred embodiments of the present invention there is proposed the use of a passive power correction circuit such as the valley-fill circuit to reduce the voltage ripple feeding the inductor (or coupled inductor with a capacitor in the form of current ripple cancellation circuit) and the LED modules in order to (i) reduce the current ripple and thus the power variation in the LEDs and (ii) to improve the input power factor. The allowance of some current and power variation in the LEDs within the region of the luminous flux—LED power curve where the slope of the curve is small will lead to only a small variation of the luminous flux from the LED system. The use of the inductance of the inductor or coupled inductor in the form of a current ripple cancellation circuit to further limit the power variation of the LED system.
By using a suitable thermal design the power variation range of the LED load can be designed to fall within the region of the luminous flux—LED power curve where the slope is small and the luminous flux is maximum or near maximum.
As a consequence of the requirement of only small capacitance in the proposed system, electrolytic capacitors can be eliminated from this design. Since the entire circuit consists of passive and robust components (such as power diodes, non-electrolytic capacitors and inductors) only and does not need extra control electronics, it features low-cost, high robustness and reliability.
One possible issue, however, is that the abovedescribed circuits assume a reasonably constant input voltage which may not necessarily be true. In countries where the AC mains supply is unreliable or in any other situation where there may be AC mains voltage fluctuation for whatever reason, there could be a significant variation in the LED power for a given nominal AC input voltage. In preferred embodiments of the invention therefore it may be preferable to provide a means for controlling the power sensitivity of the load against AC voltage fluctuation.
a)-(d) show the idealized waveforms of the proposed AC-DC current source circuit for LED loads. In particular:
An analysis of this circuit can start from the load side by considering the equivalent circuit as shown in
From
where
From the waveform of V3 in
It should be noted that the total voltage drop of the LED load is approximated as a constant Vo. Therefore, Vdc does not change significantly if Īo does not change significantly. In general, Vo is much bigger than ĪoR. Thus Vdc is close to 1.33 Vo. The next issue is to find out a way to reduce the change of Io due to fluctuation in the input mains voltage.
By the law of conservation of energy, input power is equal to the power entering the diode bridge, assuming that the input inductor Ls has negligible resistance. Also and note that V21 and IS are in phase as shown in
VSIS cos φ=V21IS (4)
where V21 is the fundamental component of V2.
Similarly, the input power is also equal to the output power of the valley-fill circuit, assuming that the power loss in the diode rectifier and valley-fill circuit is negligible.
If the inductor winding resistance is negligible, R=0, leading to
Using Fourier analysis on the waveform of V2, the fundamental component V21 of V2 can be determined as:
The root-mean-square value of V21 is therefore
Dividing (4) by (5) to relate V21 and Vdc, and using (7b), one can relate Is and Īo.
0.77VdcIS=0.75VdcĪoIS=0.974Īo (8)
Now consider the equivalent circuit and the vectorial relationship between Vs and V21 as shown in
From
VS2=V212+(ωLSIs)2 (9)
and
From (6), it can be seen that V21 depends on Vdc, which is approximately close to 1.33Vo (approximated as a constant value). With the help of (8),
Differentiating (11) will lead to
Equation (12) is the important equation which shows that the input inductance Ls can be used to reduce the change of average output load current ΔĪo for a given change in the input AC mains voltage ΔVS. Take an example. For an AC mains of 50 Hz, the angular frequency ω is equal to 100π, that is 314.16. For an Ls of 1H, the effect of input voltage fluctuation on the output average current will be reduced by 314.16 times as shown in (12). For an Ls of 2H, the reduction will be 618 times. For this sensitivity control to be effective, the size of the input inductor Ls has to be reasonably large (typically near to or in the order of Henry).
In order to provide a conducting path for the inductor current in Ls in case there is any problem in other part of the circuit which may create a discontinuation of current, a capacitor Cs can be placed to the second end of the input inductor as shown in
In order to relate Īo with Vs, we start with modifying (9) with the help of (7b) and (8) gives:
VS2=(0.77Vdc)2+[ωLS(0.974Īo)]2 (13)
Using (6), (13) becomes:
Solving (14) gives:
Note that Vo can be determined from the number of LED devices in the LED strings. If Ls is chosen, then (15) provides the relationship between the average output current and the input ac mains voltage.
The LED load power is therefore:
From the above it can be seen that by providing an input inductor in series between the AC supply voltage and the diode rectifier the sensitivity of the LED power to fluctuation in the AC supply voltage can be reduced.
Indeed the provision of an input inductor in series between the AC supply voltage and the diode rectifier may have useful applications as a means for limiting variations in the power of the LED load in circuits that do not include voltage ripple reduction.
In another embodiment, the lighting system described above can become a dimmable system by using a variable input inductor Ls, as shown in
The output dc current can be expressed as:
This equation means that the size of the input inductor can affect the power of the LED load. If the inductance of the input inductor Ls can be changed, a dimming function becomes possible. By using a variable inductor Ls as shown in
The variable inductor can be implemented in various forms. For example,
A further aspect of the invention refers more generally to valley-fill circuits used in reducing the DC output voltage ripple and/or current ripple in AC-DC power conversion. Based on the ratio of the capacitors used in the valley-fill circuits, the output voltage ripple can be further controlled and reduced. Thus, it can be used to provide a DC voltage source with an even more reduced voltage variation than that, for example, described above. Further, if an inductor is connected to the output of the valley-fill circuit in order to turn the voltage source into a current source, a current source with a further reduced current ripple can also be generated.
This further aspect of the present invention is particularly suitable to a variety of applications in which a fairly constant output current source is required. Thus, although this aspect of the invention will be described with reference to drivers for LED loads for general lighting applications such as those described above, this aspect of the invention can be applied more generally.
Valley-fill circuits have been proposed as passive methods (without active power switches) for input power factor corrections in AC-DC power conversion circuits and have been adopted in low-cost applications such as electronic ballasts and AC-DC converters. Modified versions of valley-fill circuits have also been suggested for power factor correction. Two common features shared by these valley-fill applications are (i) the valley-fill circuits are used primarily for shaping the input current in the AC-DC power conversion circuit for improving the power factor and (ii) use capacitors of equal capacitance value in the individual circuits.
As described above, valley-fill circuits are used for reducing the output DC voltage ripple or variation so that a fairly constant current source can be generated with the help of a filter inductor. One preferred embodiment of such a circuit is shown in
If the valley-fill circuit in
It should be noted that smaller capacitors such as C1=C2=22 μF can also be used. For capacitance of this low magnitude, electrolytic capacitors which have short lifetimes are not needed.
In the cases of
However, the output DC voltage of the valley-fill circuit can be further reduced so as to further reduce the output ripple in the DC current and/or the size of the filter inductor. For capacitors connected in series, it is well known that the voltage of across each capacitor depends on the size of the capacitance.
In order to increase the lower DC voltage level (i.e. voltage across C2), one can select the capacitance of C2 to be smaller than that of C1 (i.e. C1>C2). This rule ensures that the voltage across C2 is higher than 50% of the maximum DC voltage. In order to confirm this concept, C1 and C2 are changed to 6600 μF and 330 μF, respectively.
Thus, specifying C1>C2 further reduces the output voltage ripple in the valley-fill circuit so as to reduce the ripple in the output inductor current and/or the size of the filter inductor.
It will be noted that any capacitors, including electrolytic capacitors, can be used. However, non-electrolytic capacitors are preferred since these lead to longer lifetimes and higher reliability.
Although the invention has been described with reference to specific examples, it will be appreciated by those skilled in the art that the invention can be embodied in many other forms. It will also be appreciated by those skilled in the art that the features of the various examples described can be combined in other combinations.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/474,001, filed May 28, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/429,792, filed Apr. 24, 2009, each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6201368 | Webster | Mar 2001 | B1 |
6316883 | Cho et al. | Nov 2001 | B1 |
6856103 | Hudson et al. | Feb 2005 | B1 |
7274154 | Atra et al. | Sep 2007 | B2 |
7719202 | Cheng et al. | May 2010 | B2 |
7911149 | Schaible et al. | Mar 2011 | B2 |
8030853 | Wong et al. | Oct 2011 | B1 |
20070152604 | Tatsumi | Jul 2007 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080224629 | Melanson | Sep 2008 | A1 |
Entry |
---|
Chung, et al., “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessment on Energy Efficiency and Lifetime,” IEEE Transactions on Industrial Electronics. vol. 54. No. 6. Dec. 2007, pp. 3145-3154. |
S.Y.R. Hui and W. Yan, “Re-examination on Energy Saving & Environmental Issues in Lighting Applications,” Department of Electronic Engineering, City University of Hong Kong, 2 pages, 2007. |
Dos Reis, et al., “Single Stage Ballast for High Pressure Sodium Lamps,” The 30th Annual Conference of the IEEE Industrial Electronics Society. Nov. 2-6, 2004, Busan, Korea, pp. 2888-2893. |
Jinrong Qian and Fred C. Lee, “A High Efficient Single Stage Single Switch High Power Factor AC/DC Converter with Universal Input*,” Virginia Powcr Electronics Center, The Bradley Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0111. pp. 281-287, 1997. |
Chongming Qiao and Keyue Ma Smedley, “A Topology Survey of Single-Stage Power Factor Corrector with a Boost Type Input-Current-Shaper,” IEEE Transactions on Power Electronics, vol. 16. No. 3. May 2001. pp. 360-368, 2001. |
C.K. Tse and M.H.L. Chow, “Single Stage High Power Factor Converter Using the Sheppard-Taylor Topology,” Department of Electronic Engineering, Hong Kong Polytechnic University, Hong Kong, pp. 1191-1197, 1996. |
K. Kit Sum, “Improved Valley-Fill Passive Current Shaper,” Consultant, P.O. Box 361110, Milpitas. California 95036-1110, pp. 1-8, 1997. |
John Lam and Praveen K. Jain, “A New Passive Valley Fill Dimming Electronic Ballast with Extended Line Current Conduction Angle,” Power Electronics Applied Research Laboratory (PEARL), Queen's University, Kingston, Canada, 7 pages, 2006. |
National Semiconductor Corporation, “LM3445 Triac Dimmable Offline LED Driver,” May 23, 2009, 26 pages. |
David C. Hamill and Philip T. Krein, “A ‘Zero’ Ripple Technique Applicable to Any DC Converter,” Surrey Space Centre, University of Surrey, Guildford, UK; Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA, pp. 1165-1171, 2009. |
Schutten et al., “Ripple Current Cancellation Circuit,” GE Global Research Center. 1 Research Center, Niskayuna, NY 12309, pp. 464-470, 2003. |
Cheng, et al., “A New Improved Boost Converter with Ripple Free Input Current Using Coupled Inductors.” Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong; Department of Electrical Engineering, Tsinghua University, P.R. China, pp. 592-599, 2009. |
S.Y.R. Hui and Y.X. Qin. “A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems,” Centre for Power Electronics, City University of Hong Kong, Hong Kong, China, 9 pages, 2009. |
K.I. Hwu and Sheng-Chien Chou, “A Simple Current-Balancing Converter for LED Lighting,” Center for Power Electronics Technology, National Taipei University of Technology, Taiwan, pp. 587-590, 2009. |
Number | Date | Country | |
---|---|---|---|
20100270941 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12474001 | May 2009 | US |
Child | 12544545 | US | |
Parent | 12429792 | Apr 2009 | US |
Child | 12474001 | US |