1. Field of the Disclosure
This disclosure relates generally to members and devices containing non-explosive energetic material that may be disintegrated downhole.
2. Background of the Art
Oil wells (also referred to as wellbores or boreholes) are drilled in subsurface formations for the production of hydrocarbons. A wellbore may be an open-hole wellbore or a cased-hole wellbore. The cased-hole well includes a casing (also referred to as “liner”), typically a steel tubular, inside the wellbore. Open holes are not lined with the casing. In either case, a production string is installed inside the casing or the open-hole to produce the formation fluids to the surface. Often, elements or devices are placed in the wellbore to perform a function and then are removed from the wellbore. Such devices include, for example, ball/ball seat assemblies, plugs and packers. To remove a device from a wellbore, a drilling or milling tool is often conveyed into the wellbore drill or mill the device. Such a process requires a secondary operation that is often complex and time-consuming. In other cases, such devices may be formed of a corrodible material that disintegrates over time. In such cases the device to be integrated may remain in the wellbore for a relatively long time period after it has performed its intended function.
The disclosure herein provides devices or articles that include non-explosive energetic materials that may be disintegrated by applying a suitable energy to such devices downhole.
In one aspect a method of performing a wellbore operation is disclosed that in one embodiment may include: providing a device that includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy; placing the device at a selected location in the wellbore to perform a selected function; and subjecting the device to the selected energy to disintegrate the device in the wellbore after the device has performed the selected function.
In another aspect an apparatus for use in a wellbore is disclosed that in one embodiment may include a device placed in the wellbore at a selected location, wherein the device includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy, and a source of the selected energy configured to subject the device to the selected energy in the wellbore to disintegrate the device.
Examples of various features of the apparatus and methods disclosed herein are summarized rather broadly in order that the detailed description thereof that follows may be better understood. There are, of course, additional features of the apparatus and methods disclosed hereinafter that will form the subject of the claims appended hereto.
The disclosure herein is best understood with reference to the accompanying figures in which like numerals have generally been assigned to like elements and in which:
Alternatively, a heating tool 150 may be placed in the wellbore proximate to the device 110. In one aspect the heating tool 150 may include a heating element 152, such as a coil, a battery 154 and a circuit 156. The circuit 156 may further include a timer 158a or a receiver 158b, each configured to activate the battery to supply electrical energy to the coil 152. In the configuration that includes a timer, it is preset and upon the expiration of such time, the circuit 156 activates the battery 154 to supply current to the coil 152, which generates heat sufficient to deflagrate the device 110. In the configuration of the heating tool 150 that includes a receiver, the circuit 156 activates the battery 154 in response to a remote signal received by the receiver 158b. The remote signal may be sent from the surface or another suitable location. In aspects, the remote signal may be a radio frequency signal, an acoustic signal, an electromagnetic signal or any other suitable signal. In aspects, the remote signal may be transmitted from a suitable surface location. In another aspect, the device tool or source may be an impact tool wherein the device 110 deflagrates when it is subjected to an impact load, which is described in reference to
When the source 230 includes a preset timer, the battery activates when the preset time expires and supplies current to heat the heating element 232. The generated heat heats the non-explosive energetic material in the ball 112 and/or the ball seat 214 to initiate deflagration of such devices. When the source 230 includes a receiver 238b, a command signal is sent to the receiver 238b and the circuit 236 activates the timer or the battery 234 to supply current to the heating element 232.
In the embodiments of
The exemplary embodiments show only examples of certain devices for use in wellbores that include non-explosive energetic materials that may be disintegrated downhole. Any device that may utilize non-explosive energetic material may be used for the purposes of this disclosure. Such other device may include, but are not limited to, a plug, sections of a casing, a locking device, a release ring, an o-ring, a support of a retrievable tool, and an anchor member of a retrievable tool.
In the devices for use according to this disclosure, any suitable non-energetic material may be utilized. In one aspect, the device may include an energetic material mixed with a suitable rubber or composite material in a manner that the device is not classified as an explosive so that it may be transported by normal transportation means, such as trucks, and can be handled by operators and deployed into the wellbore. The device will not disintegrate until it is exposed to a selected energy as described hereinabove.
In aspect a device desired to be disintegrated may be any material combination that includes a non-explosive energetic material so that the device possess initial strength required to perform the intended downhole function and that can then be removed when exposed to a selected energy, such as heat or an impact load. In one aspect, the energetic material may include an energetic resin and a reinforcement filler. The filler may be any suitable material, including, but not limited to, rubber and a composite material.
The composite energetic materials also have sufficient structural integrity to allow manufacture of structural components. The material can be deflagrated or detonated upon proper exposure to a selected energy. The material can act as both a structural component as well as being the explosive device. In some embodiments the energetic resin may be a two-part thermosetting system in which a component A is reacted with a component B to form an energetic resin, and, in some embodiments, the energetic resin may be a one part system. One suitable class of energetic resins are those in which component A includes at least one polymer having two or more azide moieties and a component B that includes at least one polyfunctional compound that has two or more carbon-carbon double or triple bonds adjacent to an activating moiety. Another suitable class of resins include those formed by the reaction of component A which includes an energetically substituted alkyl diisocyanate such as those substituted with nitro- or nitraza groups and component B includes a polyol. Suitable examples of substituted diisocyanates include, but are not limited to, 3,3,5,7,7-pentanitro-5-aza-1,9-nonane diisocyanate; 2-nitraza-1,4,butane-diisocyanate; 2,5-dinitraza-1,6-hexane diisocyanate; and so forth. Another suitable class of energetic resins include those which are a one-part system which employs a free radical cured energetically substituted vinyl compound. Examples of such compounds include, but are not limited to, nitroethyl methacrylate, dinitroporpyl acrylate, trinitroethyl acrylate, and so forth. Any suitable initiators known in the art such as peroxides, for example, may be employed. Such material are described in more detail published application 2005/0281968, which is incorporated herein by reference.
While the foregoing disclosure is directed to certain embodiments, various changes and modifications to such embodiments will be apparent to those skilled in the art. It is intended that all changes and modifications that are within the scope and spirit of the appended claims be embraced by the disclosure herein.
Number | Name | Date | Kind |
---|---|---|---|
2771140 | Barclay et al. | Nov 1956 | A |
5540293 | Mohaupt | Jul 1996 | A |
20050281968 | Shanholtz et al. | Dec 2005 | A1 |
20070284114 | Swor et al. | Dec 2007 | A1 |
20080202764 | Clayton et al. | Aug 2008 | A1 |
20100175867 | Wright et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130081825 A1 | Apr 2013 | US |