The present invention relates generally to a centrifugal pump for a liquid rocket engine, and more specifically to a centrifugal pump manufactured with a single piece housing using a metal additive manufacturing process.
Prior art manufacturing methods used to produce liquid rocket engine components have historically led to high manufacturing costs. A current challenge in the rocket propulsion industry base is lack of modernization in manufacturing processes and inefficiencies in production. With the low qualities inherent in space propulsion hardware, and an ever increasing drive toward reduced cost, there is an increased interest in design for manufacturability. An optimal balance between commercial best practices and advanced manufacturing techniques could be implemented to meet the future requirements of the rocket propulsion industry. There is potential for significant advancement in cost reduction, design and manufacturing for turbopumps through the application of additive manufacturing (AM).
The LOX pump in
The LOX pump in
A turbopump such as a LOX turbopump for a liquid rocket engine is formed using a metal additive manufacturing process in which a single piece impeller is formed within a single piece housing in which the impeller is trapped within the single piece housing. The housing is formed with a fluid inlet and a fluid outlet. The impeller is formed with an axial bore in which a shaft is inserted after the impeller and housing have been formed. Forward and aft bearing support surfaces are machined on to the outer surfaces of the impeller and then two bearings are inserted into the housing and secured by a tie bolt fastened on one end of the shaft. A forward cover plate encloses a forward opening of the housing and a buffer seal encloses an aft opening of the housing.
The cover plate and the buffer seal form support surfaces for outer races of the two bearings. The single piece impeller is formed with forward and aft labyrinth seal teeth all as a single piece, and the housing is formed with seal surfaces for the labyrinth teeth that form forward and aft labyrinth seals between the impeller and housing.
The present invention is LOX pump used in a liquid rocket engine in which the rotor is formed by a metal additive manufacturing process and formed within a single piece housing that is also formed by a metal additive manufacturing process.
In the
A forward and an aft labyrinth seal 28 are formed on the impeller 25 all as a single piece and form seals with the surfaces of the single piece housing 29. The single piece housing 29 is formed with the impeller 25 and forward and aft labyrinth seals 28 inside the housing 29. Outer surfaces of the impeller 25 where the bearing inner races are placed are machined while the impeller 25 is inside the housing 29. The bearings 12 are then installed in place on the impeller 25, and then the shaft 26 is inserted within the impeller 25 and secured in place with the shaft tie bolt 30. A flange 34 is formed on the aft side of the shaft 26 and along with the shaft tie bolt 30 compresses the bearing inner races to flanges formed on the outer surface of the impeller 25. A forward cover plate 32 is installed with a number of bolts 31. A buffer seal 33 is installed on the aft end of the housing 29 and the aft bearing 12. A number of bolts 31 are used to secure the buffer seal 33 to the housing 29.
Rotor balancing is another critical area. Typically, an assembly balance of the rotor is performed for turbopump rotors. That is, the full rotor is assembled and balanced on a balance machine. Since the rotor 25 is printed inside the housing 29, this method cannot be used without special tooling. In the present invention, a method of trim balancing is used where the rotor 25 is spun up to various high speeds and accelerometers on the housing 29 along with a proximity probe looking at the rotor is used to determine the rotor imbalance. The imbalance is corrected by grinding locations on each end of the shaft 26.
By printing the pump impeller 25 within a one-piece housing 29, a dramatic reduction in part count, procurement activities, and assembly time is achieved over the prior art, which directly translates into a reduction in recurring cost and lead time. These reductions are estimated to reduce the cost of the LOX pump by approximately 40%. Similarly, if not more (due to the higher part count), reductions will likely result for a hydrogen pump. The turbomachinery for a typical rocket engine accounts for about one-third of the cost of the total engine. Thus, significant reductions in turbomachinery cost have large impacts on the overall cost of the engine.
This application claims the benefit to U.S. Provisional Application 62/192,433 filed on Jul. 14, 2015 and entitled APPARATUS AND PROCESS FOR MANUFACTURING A CENTRIFUGAL PUMP WITH A ROTOR WITHIN A SINGLE PIECE HOUSING.
This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) and the Army Contracting Command—Aberdeen Proving Grounds (ACC-APG) under Contract/Purchase Order number W911NF-15-P-0063. The United States Government has certain rights in the invention. Distribution Statement A: Approved for public release, distrubution unlimited.
Number | Name | Date | Kind |
---|---|---|---|
2398790 | Holman | Apr 1946 | A |
3817653 | Onal | Jun 1974 | A |
3935833 | Onal | Feb 1976 | A |
3953150 | Onal | Apr 1976 | A |
4057371 | Pilarczyk | Nov 1977 | A |
4131386 | Mabe, Jr. | Dec 1978 | A |
4209282 | Eberhardt | Jun 1980 | A |
4697987 | Katayama | Oct 1987 | A |
4714405 | Schaefer | Dec 1987 | A |
7281901 | Garman | Oct 2007 | B2 |
7775763 | Johnson | Aug 2010 | B1 |
9174426 | Dowd | Nov 2015 | B1 |
9903207 | Tozzi | Feb 2018 | B2 |
20170120535 | MacCurdy | May 2017 | A1 |
Entry |
---|
Rachuk, et. al, “Single Shaft Turbopump Expands Capabilities of Upper Stage Liquid Propulsion”, AIAA-2008-4946, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, Connecticut, Jul. 21-23, 2008, pp. 1-15. (Year: 2008). |
Barry Berman, “3-D printing: The new industrial revolution”, Business Horizons, vol. 55, 2012, pp. 155-162. (Year: 2012). |
Alwi et al., “Contrucktion MegaScale 3D Printing—Group 1”, Faculty of Engineering and Physical Sciences, University of Surrey, United Kingdom, Jan. 11, 2013, pp. 1-201. (Year: 2013). |
Scott Gruenwald, “3D Print a Parametric Peristaltic Pump in One Piece”, Sep. 22, 2014 [https://3dprintingindustry.com/news/3d-print-parametric-peristaltic-pump-one-piece-33328/ accessed on May 3, 2019] (Year: 2014). |
A. M. Abdul-Rani et al., “Overcoming Limitations in DFM Using Layer Manufacturing”, Applied Mechanics and Materials, vol. 660, 2014, pp. 94-98. (Year: 2014). |
MacCurdy et al., “Printable Hydraulics: A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids”, 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16-21, 2016, pp. 3878-3885. (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
62192433 | Jul 2015 | US |