The present technology generally relates cooking implements and methods of cooking.
An apparatus and process for rapidly cooking food is disclosed. Various embodiments are intended to provide for an alternative, independent, and self-contained means of preparing food.
In one embodiment, the present technology is intended to provide a means of rapidly cooking MARUCHAN®, NISSIN®, and other branded ramen dried noodle brick type soups.
In one embodiment the apparatus includes a water reservoir, heating element, a binary distributor, and a removable container. Water stored in the reservoir is heated by the heating element, causing the water to steam upward into a thermal distribution channel of the binary distributor. The steam is pressurized inside the thermal distribution channel and exits the binary distributor via outlet ports. This pressurized steam exiting the outlet port is directed uniformly downward over the food in the container. As the steam passes over the food in the container, the steam cooks the top of the food and then condenses. This condensed steam accumulates around the bottom of the removable container and begins to fill the container. The hot plate maintains this condensed heat accumulating at the bottom of the container at a temperature capable of cooking the food. With pressurized steam cooking the upper surface of the food and water condensate cooking the food from the bottom, the food is rapidly cooked by the apparatus for rapidly cooking food.
In some embodiments, the apparatus may also include a gasket disposed between the container and the binary distributor. The gasket is configured to create a vapor seal that prevents the pressurized steam exiting the outlet ports from escaping into the environment. The apparatus may also include a controller programmed to control the use of the apparatus, as well as a safety probe that automatically disables the apparatus. Furthermore, the shape and size of the hot plate, binary distributor and container may be varied. In one embodiment, where the apparatus is used to cook ramen noodles, the shape and size may be generally rectangular to match the shape of the ramen noodle brick. Optionally, the container of the apparatus may double as bowl such that, once the preparation process is complete, the container may be removed and used to consume the meal.
The proposed design, details, and overall apparatus architecture of the present technology are outlined in the following drawings in which:
The following terminology will be used in accordance with the definitions set forth below.
The singular forms “a,” “an,” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a heating element” includes reference to one or more of such heating elements.
As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
As seen in
The bottom outlet portion 15 of binary distributor 50 is illustrated in
As seen in
Top seal portion 5 and bottom outlet portion 15 are constructed such that when the two portions are connected together, the two portions form a tight seal connection that is configured to prevent steam and/or fluid from escaping from the thermal distribution channel 14 of the binary distributor 50 except for through outlet ports 27. Alternatively binary distributor 50 can be constructed as a unitary component comprising an inlet 51, a thermal distribution channel 14, and outlet ports 27. Although
As seen in
Additionally, the apparatus 200 for rapidly cooking food items may optionally include a controller. Controller may be programmed to control any number of features of the apparatus 200 for rapidly cooking food items. For example, the controller may be programmed to control the amount of water in reservoir 11 to use when cooking food. Based on a user selected input of the type of food and the amount of food to be cooked, or the desired amount of water to be used, the controller may control the apparatus 200 for rapidly cooking food items to only use a predetermined amount of water regardless of the amount of water in reservoir 11. Among other things, controller may also be programmed to: separately and independently control heating of the hot plate 9 and the water in the reservoir 11 using the heating element 6; control the temperature of hot plate 9 based on a user input of the type of food and/or the amount of food to be cooked; automatically switch off the device after a predetermined time; allow the heating element 6 to act in a ‘warm only’ mode wherein heating element 6 only heats hot plate 9 and not water once a predetermined amount of time has passed; sound an alarm when the food has finished cooking; etc.
In use, food desired to be cooked using the apparatus 200 for rapidly cooking food items is placed into container 3, and container 3 is inserted into housing 100 such that container 3 rests atop hot plate 9. Lid 12 is lifted and a desired amount of water is poured into reservoir 11. Lid 12 is closed and the apparatus 200 is turned on using on/off switch 10.
When the apparatus 200 in turned on using the on/off switch 10, heating element 6 is turned on, and liquid from the reservoir 11 flows through the reservoir-to-heater tube 1 and into heating element 6. Once the water in the heating element 6 begins to boil, steam generated from the boiling water rises up through the heater-to-distributor tube 7 and enters into thermal distribution channel 14 of the binary distributor 50 via inlet 51.
As steam accumulates in the thermal distribution channel 14, the resulting pressure buildup will force steam out from thermal distribution channel 14 through the outlet ports 27 and into the container 3 in an evenly distributed manner. This high pressure steam will evenly cook the top portion of the food in container 3 while condensing into near boiling water about the bottom of the container 3. Because the hot plate 9 is thermally connected to and thus heated by heating element 6, the near boiling water that accumulates at the bottom of container 3 remains at a temperature capable of cooking the food in container 3.
In one embodiment, the speed at which food is cooked is increased by incorporating a gasket 4 that is configured to create a vapor tight seal between container 3 and binary distributor 50. Because the vapor tight seal produced by gasket 4 is configured to prevent or minimize steam evaporating and escaping container 3, pressure within container 3 is increased. This increased pressure within the container 3 further encourages condensation of the steam at the bottom of container 3. This accumulated condensed water, which is reheated by the hot plate 9, increases the rate at which food in container 3 is cooked.
In one embodiment, the food to be cooked includes ramen noodles such as MARUCHAN®, NISSIN®, and other branded ramen dried noodle brick type soups. Preferably, in this embodiment container 3 comprises a generally rectangular shape matching the shape of the ramen dried noodle brick. Container 3 is sized so as to be large enough to accommodate the ramen noodles and broth once the ramen dried noodle brick has been cooked by the apparatus 200 for rapidly cooking food items. In this embodiment, the reservoir 11 may specifically be designed to hold a volume of water needed to cook the ramen brick style noodles. The inside of the reservoir 11 may include a marking indicating to a user how much water to pour into the reservoir 11. In this embodiment, the apparatus 200 for rapidly cooking food items may be programmed to automatically disable the after a predetermined time that is needed to specifically cook ramen brick style noodles. Additionally or alternatively, the apparatus 200 for rapidly cooking food items may include a probe (such as described with reference to
When cooking certain foods—such as, e.g. ramen noodles—it is desirable for the food to be cooked simultaneously by high-pressure steam and by the reheated condensed water that collects in container 3, (e.g. as in the embodiments described above). However, when cooking other types of food it may be desirable for the food to only be cooked by steam. Thus, in an alternative embodiment, container 3 may include a top strainer portion and a bottom tray portion (not shown). The bottom of top strainer portion may include a plurality of openings. When the high-pressure steam that emerges from the outlet ports 27 of binary distributor 50 condenses, the water will pass through the plurality of openings at the bottom of the top strainer portion and will instead collect in the bottom tray portion. Because bottom tray portion is in contact with hot plate 9, the near boiling water that collects in bottom tray portion will be reheated. Hot plate 9 can be programmed and controlled to achieve a temperature high enough to bring the water collecting in bottom tray portion to a boil. Thus, as the collected water in the tray portion is reheated by the hot plate 9 to boiling temperature, the water in the tray portion will begin to form steam. The steam rising from the water in bottom tray portion will then pass through the plurality of openings in the bottom of strainer portion to cook the bottom of food in container 3. In this embodiment, in addition to including a gasket 4 to create a vapor tight seal between container 3 and binary distributor 50, another gasket (not shown) may also be provided between top strainer portion and bottom tray portion of container 3 so as to also create a vapor tight seal.
Of course, it is to be understood that the above-described embodiments and arrangements are only illustrative of the application of the principles of the present apparatus for rapidly cooking food. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present technology and the appended claims are intended to cover such modifications and arrangements. Thus, while the present technology has been described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.
This application claims priority from U.S. Provisional Application No. 61/925,986, filed Jan. 10, 2014, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4495932 | Bratton | Jan 1985 | A |
5215000 | Desage | Jun 1993 | A |
5279213 | Miyahara | Jan 1994 | A |
5402709 | Carron | Apr 1995 | A |
5869812 | Creamer et al. | Feb 1999 | A |
6171630 | Stanger | Jan 2001 | B1 |
6516709 | Lin | Feb 2003 | B1 |
20040011222 | Fisher | Jan 2004 | A1 |
20070227364 | Andoh et al. | Oct 2007 | A1 |
20110256287 | Sus | Oct 2011 | A1 |
20130019856 | Buehler | Jan 2013 | A1 |
20130280394 | Ewald | Oct 2013 | A1 |
20150047514 | Abe | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
202955750 | May 2013 | CN |
Entry |
---|
International Search Report and Written Opinion on International Application No. PCT/US2015/010807 (107223-0104), mail date May 11, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150196154 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61925986 | Jan 2014 | US |