Apparatus and related methods for trimming dried cannabis flowers

Information

  • Patent Application
  • 20170232627
  • Publication Number
    20170232627
  • Date Filed
    May 03, 2017
    7 years ago
  • Date Published
    August 17, 2017
    7 years ago
Abstract
In a preferred embodiment, the apparatus comprises: (1) a box with specifically designed blades for cutting; (2) a motor for rotating the blades over each other; (3) a sweeper mechanism to gently move the flowers around the enclosure blade; and, (4) a brush mechanism to gently tumble flowers over the blade surface.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


BACKGROUND OF INVENTION

Field of invention. This specification describes subject matter in the field of apparatus and related methods of trimming dried plants, including but not limited to cannabis.


Background of invention. Cannabis flowers or buds are harvested, dried and cured to be used by people for various purposes including medicinal uses. The cannabis flower contains the highest volume of psychoactive compounds in the cannabis plant. Also, the plant buds may contain non-intoxicating CBD compounds that are of pharmaceutical and medical interest. Cannabidiol (CBD) is one of at least 60 active cannabinoids identified in cannabis. It is a major constituent of the plant, accounting for up to 40% of the plant's extract, as a non-psychotropic phytocannabinoid. CBD is considered by some to have a wider scope of medical applications than tetrahydrocannabinol (THC). In contrast, cannabis leaves contain only trace amounts of psychoactive and other compounds, and usually will go to compost. Cannabis flowers have traditionally been hand trimmed to remove the unwanted leafy matter, leaving only the flowers. Typically, hand trimming is done by cutting the leaves off with scissors. The hand trimming of cannabis flowers is time consuming and tedious. Additionally, hand trimming requires skilled labor. Typically, it takes a skilled trimmer about eight to ten hours to trim one pound of cannabis. Trimming at this speed may be feasible for small scale growers, but for larger growers, hand trimming is impractical and can become expensive if the grower must hire outside help.


One solution to hand trimming has been use of machines that automatically trim the plants. These machines can typically trim the same amount of cannabis in one hour that an individual worker can trim in one day. Existing automated methods are designed to trim the flowers while they are freshly harvested or “wet.” Wet trimming involves violent action that damages the buds and removes resin glands. The wet trimming action reduces the quality of the end by reducing potency and not allowing proper drying and curing. Furthermore, when buds are trimmed wet, the residue from the buds can leave a sticky mess on a trimmer, necessitating constant cleaning of a trimmer machine. Trimming the cannabis flower when wet reduces potency, appearance and quality.


The alternative to trimming freshly harvested buds is to trim buds that have been dried. Trimming dry buds produces a better smell and flavor. Drying and curing of the cannabis flower is essential to the value and quality of the end product. Trimming of dry cannabis requires a gentle action that does not damage the product. Most trimmers utilize blades that rotate at a high speed. This high speed rotation is not suitable for trimming dried cannabis plants. Currently no reliable apparatus of automated trimming of dry cannabis is known.


In light of the foregoing, a need exists for a device that automated the trimming of dried cannabis is such a way that is not damaged in appearance, potency or overall quality.


SUMMARY OF THE INVENTION

With the aforementioned in mind, it is an object of this description to disclose a device that trims dried cannabis flowers in a gentle yet effective manner. It is further an objective to disclose apparatus and related methods of trimming cannabis flowers without the drawbacks of heretofore known apparatus. Yet still, it is an objective to disclose apparatus and related methods of trimming dried cannabis flowers so that a higher quality cannabis flower can be used for recreational or medicinal purposes. In a preferred embodiment, the apparatus comprises: (1) a box with specifically designed blades for cutting; (2) a motor for rotating the blades over each other; (3) a sweeper mechanism to gently move the flowers around the enclosure blade; and, (4) a brush mechanism to gently tumble flowers over the blade surface.


In one mode of operation, dried cannabis buds may be put into a box. The motor is then turned on to provide rotation to the blades and a sweeper bar. The rotating of blades creates a scissor action that cuts off the extruding leaves from the buds, while the sweeper bar stirs the flowers so that all sides of the buds are exposed to the scissoring action. The scraper bar then further agitates the bud by removing them from the blade and causing them to tumble. Once trimmed, the buds may be extracted through the extraction port in the side of the box and more buds may then be added to repeat the cycle.





BRIEF DESCRIPTION OF THE FIGURES:

The manner in which these objectives and other desirable characteristics can be obtained is explained in the following description and attached figures in which:



FIG. 1 is perspective view of the trimmer.



FIG. 2 is a front view of the trimmer.



FIG. 3 is a perspective view of the trimmer with top exposed.



FIG. 4 is an exploded view that shows the components of the trimmer.



FIG. 5 is an exploded view that shows the components of the trimmer along with the instrument panel.



FIG. 6 is s perspective view of an alternate embodiment of the trimmer.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a perspective view of preferred embodiment of the trimmer 1000. The trimmer 1000 preferably comprises a box 1002, two blades 1014, 1015 and a sweeper 1007. Both of the blades 1014, 1015 have a pattern of arced openings 1012 (see FIG. 3, 1013). The blades 1014, 1015 are preferably constructed from stainless steel, but can be made from other kinds of metal or alloys. The sweeper 1007 is located above the top blade 1014. The sweeper 1007 gently pushes the plants around and can tumble the plants to ensure that all sides of the plant are cut. In the preferred embodiment, the height of the sweeper 1007 is adjustable so that a user can move the sweeper 1007 up, down or out of the way depending on the size of the plants to be trimmed. It should also be noted that the trimmer is situated so that the blades are on a downward sloping angle. It has been found that this facilitates a cutting and separating action.


Still referring to FIG. 1, the blades are housed inside of a box 1002. At the top of the box is a lid 1001. The lid 1001 opens and closes via a hinge 1010 and the lid 1001 can be secured in place via a latch 1016. Suitably, the lid 1001 features a sensor 1011. The sensor 1011 is a safety mechanism that will shut off the machine when the lid 1001 is open. In the preferred embodiment, the lid 1001 is transparent. The lid 1001 is preferably made from a clear Plexiglas®, but may be made of glass or another transparent material. A transparent lid 1001 is preferable because it allows the user to see the trimmer 1000 cut the plant and visually assess the process. The box 1002 is preferably made of metal, but may also be made of a sturdy polymer capable of withstanding high temperatures.


As shown in FIG. 1, the front of the trimmer 1000 consists of two panels 1008, a door 1003 in the center and a hatch 1004 for permitting access to the cut plants. On the left panel 1008, there are several controls for the trimmer 1000. On the top of the left panel 1008, there is a dial 1009 that controls the speed of the top blade 1014. On the bottom of the left side panel 1008 there are two switches: a light switch 1005 which controls a light (not shown) and the motor switch 1006 which turns the trimmer 1000 on and off.



FIG. 2 depicts a front view of the trimmer 1000 and shows a more detailed view of the instrument panel that controls the trimmer 1000. As shown, there are two switches 1005, 1006 and a control dial 1009 that control the speed of the motor (see FIG. 4, 1017). In the embodiment shown, the control dial 1009 has three speed settings, but alternate embodiments may have more or fewer settings. In the preferred embodiment of the trimmer 1000, the motor runs at a speed slower than other typical trimmers. One reason for operating at a slower speed is that the trimmer 1000 can trim dry plants without damaging the buds.



FIG. 3 shows a perspective view of the trimmer 1000 without the lid 1001. On the inside of the trimmer 1000 are two blades—a circular top blade 1014 and a bottom blade 1015. Preferably, the arced openings 1012, 1013 on the blades 1014, 1015 are narrow so only the smaller extrusions (i.e. leaves) from the cannabis plant are trimmed, while the larger parts or the plant (i.e. the flowers) remain intact. Both blades 1014, 1015 have arced openings 1012, 1013 to cut the cannabis plant. The arced openings 1012 on the top blade 1014 are in the opposite direction of the arced openings 1013 on the bottom blade 1015. The arced openings in 1012, 1013 are preferably in opposite directions to one another as shown in FIG.3. The openings 1012, 1013 may be sharpened to facilitate trimming of the leaves of the plant, but the openings 1012, 1013 are less sharp than wet trimmers in order to trim the extrusions without damaging the larger plant. The top blade 1014 is circular and rotatably connected to a motor 1017 and the bottom blade 1015 is square and fixedly fastened to the trimmer 1000. It would be possible to configure the apparatus to that the either the top or the bottom could turn, but this embodiment has the turning action on the top blade 1014.



FIG. 4 shows an exploded view of the trimmer 1000. This view depicts the blades 1014, 1015 more clearly. FIG. 4 also shows how the blades 1014, 1015 are configured to interact with one another in the preferred embodiment. In the preferred embodiment, the blades 1014, 1015 are at a 30 degree angle with respect to the box 1002. The 30 degree angle is preferable for cutting the plants because this angle allows for the plants to rotate in a gentle motion, although other downward angles may be suitable so that gravity will assist the cutting process. The 30 degree angle is also preferable because when the trimmer is finished, the product falls down toward the door 1003.


The motor is controlled by the motor switch 1006 and is connected directly to the top blade 1014. When the motor switch 1006 is turned on, the motor 1017 rotates the top blade 1014, while the bottom blade remains stationary. The rotation produces a scissor-like effect between the top blade 1014 and bottom blade 1015. The arced openings 1012, 1013 are narrow, so that the dried leaves that protrude from the buds will fit through the arced openings 1012, 1013. The scissor-like effect will cut the leaves buds. The bottom blade 1015 does not have openings at the top center so that clippings do not fall through onto the motor. Dried clippings falling onto the motor can be troublesome to clean up and presents a fire hazard.



FIG. 4 also depicts two bottom panels 1018, 1019. In the preferred embodiment, the bottom panels 1018, 1019 do not fully cover the bottom of the box 1002, leaving an opening beneath the trimmer 1000. This allows a user to place the trimmer 1000 on top of a bin or bag in order to collect the cut leaves.



FIG. 5 depicts an exploded view of the trimmer 1000 and shows the front panels 1008, the motor 1017, the hatch 1004, the door 1003, and the blades 1014, 1015. FIG. 5 shows how the pattern of the arced openings 1012, 1013 of the blades 1014, 1015 are complimentary to each other, and how the arcs are preferably oriented in opposite directions to one another.



FIG. 6 shows an alternate embodiment of the trimmer 1000. This embodiment features a germicidal lamp 1020. The germicidal lamp is a UV producing light that will kill harmful bacteria that may be found on the buds.


To operate the trimmer 1000, a user lifts the lid 1001 and places the product on top of the top blade 1015. The user may adjust the sweeper 1007, if the user desires. The user then closes the lid 1001 and uses the switch 1006 to turn on the motor 1017. The motor 1017 rotates the top blade 1015, gently trimming the extrusions of the plant. The sweeper 1007 pushes the plant around, so that all sides of the plant are trimmed. When the plant is trimmed, the user turns off the motor 1017, and can retrieve the finished product by opening the door 1003 and allowing the product to fall through the hatch 1004.


While various embodiments of the method and apparatus have been described above, it should be understood that they have been presented by way of example only, and not of limitation. Likewise, the various diagrams might depict an example of an architectural or other configuration for the disclosed method and apparatus, which is done to aid in understanding the features and functionality that might be included in the method and apparatus. The disclosed method and apparatus is not restricted to the illustrated example architectures or configurations, but the desired features might be implemented using a variety of alternative architectures and configurations. Indeed, it will be apparent to one of skill in the art how alternative functional, logical or physical partitioning and configurations might be implemented to implement the desired features of the disclosed method and apparatus. Also, a multitude of different constituent module names other than those depicted herein might be applied to the various partitions. Additionally, with regard to flow diagrams, operational descriptions and method claims, the order in which the steps are presented herein shall not mandate that various embodiments be implemented to perform the recited functionality in the same order unless the context dictates otherwise.


Although the method and apparatus is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead might be applied, alone or in various combinations, to one or more of the other embodiments of the disclosed method and apparatus, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the claimed invention should not be limited by any of the above-described embodiments.


Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open-ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like, the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof, the terms “a” or “an” should be read as meaning “at least one,” “one or more,” or the like, and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that might be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future.


The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases might be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, might be combined in a single package or separately maintained and might further be distributed across multiple locations.


Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives might be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration. All of the claims as originally filed are hereby incorporated into this specification by reference.

Claims
  • 1. An apparatus for trimming plants comprising: a motor;a first blade operably connected to the motor wherein the first blade is a circular disk and features openings, where one of said openings features an arced leading edge, where said openings are in an annular pattern;a second blade wherein the second blade is underneath the first blade and features at least one openings with an arced leading edge that is counter-arced relative to said arced leading edge of said one of said openings of the first blade;where the motor rotates the first blade relative to the second blade so that whenever(a) the arced leading edge of said one of the openings of the first blade and(b) the arced leading edge of said opening of the second blade intersect during rotation of the first blade relative to the second blade a cutting action is accomplished at least between said leading edges; andwhere an axis of rotation of the first blade when rotated by the motor is at an angle that is oblique to a horizontal plane.
  • 2. An apparatus according to claim 1 wherein the motor, the first blade, and the second blade are set into a box-like structure.
  • 3. An apparatus according to claim 2 wherein the box-like structure defines the horizontal plane and wherein the first and second blades are set at said oblique angle within the box-like structure.
  • 4. An apparatus according to claim 2 wherein the box-like structure features a hinged lid.
  • 5. An apparatus according to claim 4 wherein the hinged lid is transparent.
  • 6. An apparatus according to claim 4 further comprising a sensor coupled to the lid wherein the sensor shuts off the motor when the lid is opened.
  • 7. An apparatus according to claim 1 wherein the motor is operable at multiple speeds.
  • 8. An apparatus according to claim 1 further comprising a sweeper positioned above the first blade.
  • 9. An apparatus according to claim 8 wherein the height of the sweeper is adjustable.
  • 10. An apparatus according to claim 1 wherein the blades are positioned within a box and the bottom of the box features an opening so that the apparatus can be placed on top of a bin to collect the cut leaves.
  • 11. An apparatus according to claim 1 further where the blades are positioned within a box and the box comprising a hatch with a door in the front of the box so that a user can collect the trimmed plants by opening the door and allowing the trimmed plants to fall through the hatch.
  • 12. A method of trimming dried plants comprising: obtaining a device featuring: two blades, including a first blade defined by at least one opening in a circular disk; and,a second blade wherein the second blade is underneath to the first blade and features at least one opening;a container housing the blades; and,a motor connected to the first blade;placing plants to be trimmed on top of the first blade so that extrusions of the plants are provided through the at least one opening of the first blade;turning on the motor so that the motor spins the first blade while the second blade remains stationary, so that a cutting action is accomplished at least between an edge of said at least one opening of the first blade and a corresponding edge of said at least one opening of the second blade whenever said edges intersect during rotation of the first blade relative to the second blade; and,allowing for the blades to trim extrusions off of the dried plants as said extrusions are provided through the at least one opening of the first blade.
  • 13. A method of trimming dried plants according to claim 12 wherein the two blades feature cutting patterns.
  • 14. The apparatus of claim 1 where said oblique angle is thirty degrees.
  • 15. The apparatus of claim 14 where plants are provided to a surface of the disk and said plants are trimmed by said cutting action so that said plants remain on said surface of the disk while trimmings pass through said openings of the first blade and said opening of the second blade.
  • 16. The apparatus of claim 15 where said plants move along a surface of the blades after being cut, where said movement is caused by the force of gravity.
  • 17. The apparatus of claim 1 where said one of the openings of the first blade is set in the annular pattern.
  • 18. A device featuring: two blades, including a first blade that is in a circular disk and features at least one opening and,a second blade wherein the second blade is underneath the first blade and features at least one opening;a container housing the blades; and,a motor connected to the first blade;wherein the motor is configured such that turning on the motor spins the first blade while the second blade remains stationary, so that a cutting action is accomplished at least between an edge of said at least one opening of the first blade and a corresponding edge of said at least one opening of the second blade whenever said edges intersect during rotation of the first blade relative to the second blade and wherein blades to trim extrusions off of dried plants that are set atop the first blade.
  • 19. The apparatus of claim 18 where an axis of rotation of the first blade when rotated by the motor is at an angle that is oblique to a horizontal plane.
  • 20. The apparatus of claim 19 where said oblique angle is thirty degrees.
CROSS-REFERENCE TO RELATED APPLICATIONS

This document is a division of U.S. application Ser. No. 14/455,804 (filed Aug. 8, 2014), and that document is hereby incorporated by reference in its entirety.

Divisions (1)
Number Date Country
Parent 14455804 Aug 2014 US
Child 15586206 US