1. Field of the Invention
Embodiments of the invention described herein pertain to the field of submersible pumps. More particularly, but not by way of limitation, one or more embodiments of the invention enable an apparatus, system and method for sealing submersible pump assemblies.
2. Description of the Related Art
Electric submersible pump (ESP) assemblies are used to artificially lift fluid to the surface in deep underground wells such as oil, water or gas wells. Exemplary downhole oil well fluid, for example, may include a mixture of oil, water and natural gas. A typical ESP assembly is shown in
Submersible pumps operate while submerged in the fluid to be pumped. The fluid enters the assembly at pump intake 120 and is lifted to the surface through production tubing 140. In order to function properly, electric motor 100 must be protected from well fluid ingress, and conventional seal section 110 provides a barrier to keep the well fluid from the motor and its motor oil. In addition, conventional seal section 110 supplies oil to the motor, provides pressure equalization to allow for expansion of motor oil in the well bore, and carries the thrust of pump 130 through the use of thrust bearings. A conventional multi-chamber seal section is further illustrated in
In many instances, naturally occurring sand is pulled into the pump assembly along with the well fluid and can accumulate in production tubing 140. When the pump is shut down, the sand may fall back down through the pump assembly and accumulate in conventional head 1125, at the top of seal section 110, which is traditionally open to the accumulation of debris, and includes conventional mechanical seal 1110 and conventional vent port 1105. As shown in
This accumulation of sand may also plug the conventional vent port 1105, which vents to conventional mechanical seal 1110. Vent ports function to provide an outlet for expanding motor oil into the well bore, in order to maintain equalized pressure. Pressure equalization may be accomplished by utilizing a u-tube or elastomeric bag design. In either case, the expanding oil is released through an internal check valve located inside conventional vent port 1105. If the vent port is blocked off by sand, conventional seal section 110 cannot equalize pressure, causing a pressure build up inside conventional seal section 110, such that the mechanical seal 1110 faces may eventually separate. If this occurs, well fluid and sand will enter the clean oil section of conventional seal section 110 (upstream of conventional mechanical seal 1110), impeding the seal's proper function which may lead to failure of the pump.
Accumulation of sand may also prevent well fluid from making contact with the faces of mechanical seal 1110 of conventional seal section 110. Mechanical seal 1110 faces must be in contact with well fluid to remain cool during operation. In the instance that sand compacts around the mechanical seal and prevents heat transfer with the well fluid, the sealing faces will overheat and cause failure of the seal whether or not the vent port is plugged. In addition, conventionally a bronze bushing (not shown) is located in conventional head 1125, just below the mechanical seal, to provide radial support. Well fluid contamination and sand will rapidly destroy the bushing, causing a catastrophic failure due to loss of radial shaft support.
As is apparent from the drawbacks of conventional designs, seal sections of submersible pump assemblies are unduly susceptible to damage and contamination by sand and well fluid. One conventional approach to address this drawback has been to add a plate over the top of conventional head 1125. Such plates capture a portion of sand that would otherwise fall into the seal section, but they also prevent cooling well fluid from exchanging heat with the mechanical seal. In addition, plates over the seal section do not adequately prevent sand from entering, as they are prone to leaks.
Another approach to address this drawback has been to include multiple seal chambers in order to provide redundancy. As shown in
Additionally, the location of conventional downthrust thrust bearing 1140, conventional thrust runner 1145 and conventional upthrust bearing 1150 in close proximity to the motor exposes the bearings to excessive amounts of heat. The conventional thrust bearings 1140, 1150, traditionally located at the bottom-most section of the seal assembly, sit immersed in clean motor oil to handle the thrust of the pump. Thrust bearings in the seal section carry the axial thrust and maintain shaft alignment. Hydrodynamic bearings are the most commonly implemented thrust bearings in submersible pump applications.
A conventional hydrodynamic bearing includes two round disks, which are usually submerged in a cavity of clean motor oil. One disk is fixed, while the other is turned by the shaft in rotation about the central axis of the fixed disk. An exemplary conventional thrust bearing of the prior art is illustrated in
The rotating disk of a hydrodynamic thrust bearing is typically a hard material such as tungsten carbide. The stationary disk, conventional downthrust bearing 1140 and conventional upthrust bearing 1150, typically include softer metal pads made of bronze. However, bronze is only capable of carrying a load of about 500 pounds per square inch. There is often insufficient space to include large enough copper pads on the stationary disk to carry the required loads.
Conventional thrust bearings are not well suited for submersible pump applications since they must be operated in a cavity of clean motor oil uncontaminated by sand, dirt or water. In submersible pump applications where solid laden fluid is pumped, this means placing the thrust bearings close to the motor in a cavity of clean motor oil, which is not an ideal location for carrying thrust and maintaining shaft alignment.
Thus, it is apparent that conventional sealing techniques do not satisfactorily provide protection from sand contamination in submersible pump assemblies. Therefore, there is a need for an additional apparatus, system and method for sealing submersible pump assemblies.
One or more embodiments of the invention enable an apparatus, system and method for sealing submersible pump assemblies.
An apparatus, system and method for sealing submersible pump assemblies are described. An illustrative embodiment of a seal section for an electric submersible pump assembly comprises a rotatable shaft extending axially through a seal section, a head tubularly encasing a top portion of the seal section and threadedly coupled to a centrifugal pump intake, wherein the head further comprises, at least one well-fluid entrance aperture proximate to a bearing set, the entrance aperture extending radially through a wall of the head, and at least one well-fluid exit aperture proximate to a mechanical seal and extending radially through the wall of the head, a stationary sand barrier downstream of the mechanical seal, the sand barrier sealedly coupled to the rotatable shaft on an inner diameter and the head on an outer diameter, the hydrodynamic bearing set located between the sand barrier and the mechanical seal, the hydrodynamic bearing set comprising a thrust bearing fixedly attached to the head and a thrust runner keyed to the rotatable shaft, and a motor-oil vent port located upstream of the mechanical seal and extending radially through the wall of the head from a communication port. In some embodiments, the thrust bearing and thrust runner each comprise a plurality of diamond-coated pads circumferentially disposed about a locking plate. In some embodiments, the sand barrier further comprises an o-ring on an outer diameter and a lip seal on an inner diameter. In some embodiments, a space between the thrust bearing and thrust runner is between about 0.00001 and 0.005 inches thick.
An illustrative embodiment of an electric submersible pump (ESP) system for pumping solid-laden fluid comprises a thrust chamber of an ESP seal section, the thrust chamber sealed from well fluid on a downstream side by a stationary sand barrier and on an upstream side by a mechanical seal, the thrust chamber further comprising, a rotatable shaft extending axially through the chamber, a head tubularly encasing the thrust chamber, the head threadedly coupled to a centrifugal pump intake, and a diamond-coated hydrodynamic bearing set inside the thrust chamber, wherein well fluid enters and exits the chamber through cross-drilled apertures in the head, and wherein the well fluid forms a hydrodynamic film between the bearing set. In some embodiments, the system further comprises a check valve located upstream of the chamber and extending radially through the head, the check valve fluidly coupled to a communication port and configured to vent expanding motor oil. In some embodiments, the bearing set comprises a bearing pad, the bearing pad further comprising a facing table of polycrystalline diamond integrally bonded to a substrate.
An illustrative embodiment of an apparatus for absorbing a thrust of an electric submersible pump (ESP) comprises an ESP configured to pump a well fluid, an electric motor operatively coupled to the ESP, the motor operating to rotate a shaft of the ESP, a seal section located between the ESP and the motor, the seal section comprising, a stationary thrust bearing comprising a first plurality of diamond coated pads arranged circumferentially about a thrust bearing locking plate, a thrust runner paired with the stationary thrust bearing and configured to rotate with the shaft, the thrust runner comprising a second plurality of diamond coated pads arranged circumferentially about a thrust runner locking plate, and wherein the well fluid forms a hydrodynamic film between the first plurality of diamond coated pads and the second plurality of diamond coated pads during operation of the motor. In some embodiments, the thrust runner comprises nine pads and the thrust bearing comprises nine pads. In some embodiments, the first and second plurality of diamond coated pads comprise a coating of leached diamond. In some embodiments, the seal section comprises a single stationary thrust bearing and a single thrust runner.
In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments. In further embodiments, additional features may be added to the specific embodiments described herein.
The above and other aspects, features and advantages of the invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
An apparatus, system and method for sealing submersible pump assemblies will now be described. In the following exemplary description, numerous specific details are set forth in order to provide a more thorough understanding of embodiments of the invention. It will be apparent, however, to an artisan of ordinary skill that the present invention may be practiced without incorporating all aspects of the specific details described herein. In other instances, specific features, quantities, or measurements well known to those of ordinary skill in the art have not been described in detail so as not to obscure the invention. Readers should note that although examples of the invention are set forth herein, the claims, and the full scope of any equivalents, are what define the metes and bounds of the invention.
As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an aperture includes one or more apertures.
As used in this specification and the appended claims, the term “diamond” includes true diamond as well as other natural or manmade diamond-like carbon materials, which may have a crystalline, polycrystalline and/or graphite structure. “Diamond coating” and “diamond coated” as used herein is intended to encompass composites of diamond in combination with other materials and having at least 5% pure diamond by weight.
As used herein, the terms “sand”, “debris”, “dirt”, “particles”, and “solids” are used interchangeably to refer to solid contamination in pumped well fluid.
As used herein, the term “outer” or “outward” means the radial direction away from the shaft of the ESP pump assembly. In the art, “outer diameter” and “outer circumference” are sometimes used equivalently. As used herein, the outer diameter is used to describe what might otherwise be called the outer circumference of a pump component such as a thrust bearing, thrust runner or sand barrier.
As used herein, the term “inner” or “inward” means the radial direction towards the shaft of the ESP pump assembly. In the art “inner diameter” and “inner circumference” are sometimes used equivalently. Herein, the inner diameter is used to describe what might otherwise be called the inner circumference of a pump component such as a thrust bearing, thrust runner or sand barrier.
“Coupled” refers to either a direct connection or an indirect connection (e.g., at least one intervening connection) between one or more objects or components. The phrase “directly attached” means a direct connection between objects or components.
“Downstream” refers to the direction substantially with the principal flow of well fluid when the submersible pump assembly is in operation. The “top” of a component of an ESP assembly refers to the downstream portion of that component. By way of example but not limitation, in a vertical downhole ESP assembly, the downstream direction may be towards the surface of the well.
“Upstream” refers to the direction substantially opposite the principal flow of well fluid when the submersible pump assembly is in operation. The “bottom” of a component of an ESP assembly refers to the upstream portion of that component. By way of example but not limitation, in a vertical downhole ESP assembly, the upstream direction may be opposite the surface of the well.
One or more embodiments of the invention provide an apparatus, system and method for sealing submersible pump assemblies. While for illustration purposes the invention is described in terms of a submersible pump assembly, nothing herein is intended to limit the invention to that embodiment. The invention may be equally applicable to any pump assembly and/or electric motor which must be sealed from fluids and/or particulate contamination, such as a horizontal surface pump assembly.
The invention disclosed herein includes an apparatus, system and method for sealing submersible pump assemblies. Illustrative embodiments improve the performance of an ESP seal section, particularly when pumping solid-laden well fluid. Improvements to the seal section of a submersible pump assembly may include a fixed (stationary) sand barrier in the head of the seal section, downstream of a mechanical seal, the sand barrier sealed from leaks to prevent sand from falling down production tubing and accumulating on the mechanical seal. A diamond-coated thrust bearing and thrust runner may be located in a thrust chamber created between the sand barrier and the mechanical seal, in the seal section head away from the motor, to reduce buckling of the assembly. Well fluid flowing through this thrust chamber may serve as a hydrodynamic fluid for the bearing set, which bearing set, unlike conventional hydrodynamic bearings, need not be located in a clean chamber of motor oil. One or more horizontal apertures in the head of the seal section may allow well fluid to lubricate and cool the thrust bearing and/or mechanical seal, act as a hydrodynamic fluid and/or flush away accumulated debris. A vent port for venting expanding motor oil, may be located in the wall of the head of the seal section upstream of the mechanical seal, run substantially perpendicular to the shaft, be fluidly coupled to the communication port and/or prevent sand from plugging the communication port of the seal section. A tungsten carbide bushing set upstream of the mechanical seal may provide radial support in contaminated well fluid conditions.
The invention includes an apparatus for sealing submersible pump assemblies.
Seal section 200 may be a seal section of a submersible pump assembly located in a downhole well, such as an oil, water and/or gas well. As shown in
Sand Barrier
As shown in
Seal Section Thrust Chamber
Bearing set 270, including thrust bearing 260 and thrust runner 205, may be located in thrust chamber 212 of seal section 200, the thrust chamber 212 created by and located between sand barrier 210 and mechanical seal 250. Bearing set 270 (thrust bearing 260 and thrust runner 205) may reduce or eliminate incipient buckling of shaft 220, even in the instances where there are multiple seal chambers in the pump assembly. Thrust bearing 260 and thrust runner 205 may be located in thrust chamber 212 substantially adjacent and/or downstream of mechanical seal 250 within head 280, and/or between mechanical seal 250 and sand barrier 230. Locating thrust bearing 260 and thrust runner 205 near and/or in the top (downstream) portion of seal 200 and/or in head 280, rather than in the bottom-most seal section chamber (adjacent to the base) next to the motor, eliminates buckling concerns and removes thrust bearing 260 and thrust runner 205 from the heat generated by the pump's motor. In some embodiments, placing bearing set 270 in thrust chamber 212 keeps bearing set 270 in excess of about 100 degrees Fahrenheit cooler as compared to conventional locations in the base of the seal section and/or close to the motor of the pump assembly. Instead of conventional bearings, low cost spacers may be included in the bottom-most seal chamber by the motor, to momentarily absorb upthrust and keep the shaft in the correct position during start-up. Thrust bearing 260 and thrust runner 205 may be hydrodynamic thrust bearings making use of well fluid as the hydrodynamic film. In such embodiments, thrust bearing 260 and/or thrust runner 205 may be diamond coated and/or solid tungsten carbide for increased strength. In some embodiments, only a single thrust bearing 260 and a single thrust runner 205 are necessary, rather than conventional arrangements requiring separate upthrust and downthrust bearings.
Thrust Chamber Apertures
Entry aperture 330 and exit aperture 335 may be cross-drilled into head 280 of seal section 200 to allow well fluid, otherwise sealed off by sand barrier 230, to cool and lubricate thrust bearing 260, thrust runner 205 and/or mechanical seal 250. Entry aperture 330 may be located proximate and/or radially outwards from bearing set 270. Exit aperture 335 may be located proximate and/or radially outwards from mechanical seal 250. In some embodiments, apertures 330, 335 may extend in a radial direction, as judged from shaft 220, through the wall of head 280. Apertures 330, 335 may be cross-drilled substantially perpendicular to shaft 220, extending entirely through the wall of head 280. Entry aperture 330 may allow well fluid to lubricate and cool thrust bearing 260, thrust runner 205 and/or mechanical seal 250 without allowing the well fluid to contaminate the electrical motor and/or without allowing sand to accumulate on mechanical seal 250. Exit aperture 335 may allow accumulated debris to be flushed away from mechanical seal 250 and/or mechanical seal faces 255 with well fluid when the pump assembly is stopped. In such instances, well fluid may back flow through the bottom end of the pump due to gravity and flush any debris (solids) around mechanical seal 250 and/or mechanical seal faces 255.
Bearings
An illustrative embodiment of thrust bearing 260 is shown in
As shown in
Operation of the Pump
Once the pump assembly has been positioned at the desired location, operation of the pump may be initiated. In instances where pumped fluid is employed as the hydrodynamic fluid, unlike motor oil, the water and/or pumped fluid may not provide boundary layer separation between faces 425 and 1035 when the ESP pump is first started. This is predominantly due to well fluid's relatively lower viscosity of about 1, the lack of additives in pumped fluid that would otherwise provide boundary layer lubrication and/or due to contaminants in the water or pumped fluid. Thus, water and/or pumped fluid would not typically be used as a hydrodynamic film in pump assemblies. As a result of the lack of lubrication, thrust runner 205 and thrust bearing 260 must endure contact of faces 425 and 1035 during pump start-up. Illustrative embodiments of thrust runner 205 and thrust bearing 260 are uniquely suited to solve this problem. Diamond coat 600 may endure face to face contact and prevent damage to thrust runner 205 and thrust bearing 260 prior to formation of the hydrodynamic film, due to the extreme hardness of diamond as employed in illustrative embodiments. Upon continued operation of the ESP pump, a hydrodynamic film may form in space 500 between faces 425, 1035 from the pumped fluid. In embodiments in which well fluid forms the hydrodynamic film, thrust runner 205 and thrust bearing 225 may handle increased axial loads due to the well fluid's improved heat transfer rate over motor oil which is used in traditional seals. In some embodiments, thrust runner 205 and thrust bearing 260, configured as described herein, may handle loads of about 5,000-10,000 pounds.
Motor Oil Vent Port
Returning to
Abrasion Resistant Trim
As shown in
The inventions described herein may be suitable for a variety of types of seal sections 200. For ease of description, the embodiments described herein are in terms of an electrical submersible pump assembly, but those of skill in the art will recognize that the apparatus, system and method of the invention may be used to seal any type of electrical motor that may be exposed to fluid, sand and/or other contaminants. The inventions described herein prevent or reduce sand, well fluid and/or other contaminants from accumulating on mechanical seal 250 and/or bearing set 270, plugging vent port 290 and/or entering the electrical motor of a pump assembly. The risk of incipient buckling of the assembly may also be reduced or eliminated despite contaminated well fluid conditions (i.e., well fluid contaminated with sand). The inventions described herein improve the thrust handling (thrust absorbing) capabilities of ESP pumps. The bearing pads 415, runner pads 1020 and/or diamond coating 605 on plate faces allow the thrust bearings of illustrative embodiments to be placed closer to the pump, away from the motor and/or eliminate the need for the bearings to be placed in a cavity of clean oil. Use of pumped fluid to act as a hydrodynamic film in space 500 between the bearings improves the heat and thrust absorbing capabilities of the bearings, improving the function of the pump assembly and increasing its lifespan. Other types of pump assemblies, such as horizontal surface pumps or other pumps requiring improved thrust handling capabilities may benefit from the apparatus, system and method of the invention. Those of ordinary skill in the art will recognize that the bearing set of illustrative embodiments may be implemented in other locations of a submersible pump assembly where bearings may be used, for example, the thrust chamber of a horizontal surface pump. Using the apparatus, systems and methods of the invention, well fluid may assist in cooling components of the seal section without contaminating the electrical motor or disturbing the pressure equalization function of the seal section.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims. The foregoing description is therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
The present application is a continuation of U.S. Ser. No. 14/274,233 to Parmeter et al., filed May 9, 2014 and entitled APPARATUS AND SYSTEM FOR SEALING SUBMERSIBLE PUMP ASSEMBLIES, which claims the benefit of U.S. Provisional Application No. 61/822,085 to Parmeter et al., filed May 10, 2013 and entitled “APPARATUS, SYSTEMS AND METHODS FOR SEALING SUBMERSIBLE PUMP ASSEMBLIES,” and U.S. Provisional Application No. 61/974,907 to Lunk et al., filed Apr. 3, 2014 and entitled “APPARATUS, SYSTEM AND METHOD FOR A HYDRODYNAMIC THRUST BEARING FOR USE IN HORIZONTAL PUMP ASSEMBLIES,” which are each hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2363420 | Howard | Nov 1944 | A |
5367214 | Turner, Jr. | Nov 1994 | A |
5404061 | Parmeter | Apr 1995 | A |
20050087343 | Du et al. | Apr 2005 | A1 |
20070140876 | Parmeter et al. | Jun 2007 | A1 |
20070207046 | Du et al. | Sep 2007 | A1 |
20070277969 | Hall et al. | Dec 2007 | A1 |
20100078177 | Parmeter et al. | Apr 2010 | A1 |
20100218995 | Sexton et al. | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150184671 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61974907 | Apr 2014 | US | |
61822085 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14274233 | May 2014 | US |
Child | 14657835 | US |