Apparatus and system for swing adsorption processes related thereto

Information

  • Patent Grant
  • 9861929
  • Patent Number
    9,861,929
  • Date Filed
    Thursday, March 24, 2016
    8 years ago
  • Date Issued
    Tuesday, January 9, 2018
    6 years ago
Abstract
Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing fluids through an adsorbent bed unit having a contactor disposed within to separate contaminates from other target components. The process includes a purge stream that introduced into the contactor at a location between a first portion and a second portion of the contactor.
Description
FIELD

The present techniques relate to a system associated with a swing adsorption process. In particular, the system includes an adsorbent bed unit whose configuration includes a mid-bed purge system.


BACKGROUND

Gas separation is useful in many industries and can typically be accomplished by flowing a mixture of gases over an adsorbent material that preferentially adsorbs one or more gas components while not adsorbing one or more other gas components. The non-adsorbed components are recovered as a separate product.


One particular type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA), pressure swing adsorption (PSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle partial pressure swing adsorption (RCPPSA), and not limited to but also combinations of the fore mentioned processes, such as pressure and temperature swing adsorption. As an example, PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure. That is, the higher the gas pressure, the greater the amount of readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed from the adsorbent material.


The swing adsorption processes (e.g., PSA and TSA) may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent material to different extents. For example, if a gas mixture, such as natural gas, is passed under pressure through a vessel containing an adsorbent material that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent material, and the gas exiting the vessel is enriched in methane. When the adsorbent material reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. The adsorbent material is then typically purged and repressurized. Then, the adsorbent material is ready for another adsorption cycle.


The swing adsorption processes typically involve adsorption units, which include adsorbent bed units. These adsorbent bed units utilize different packing material in the bed structures. For example, the adsorbent bed units utilize checker brick, pebble beds or other available packing. As an enhancement, some adsorbent bed units may utilize engineered packing within the bed structure. The engineered packing may include a material provided in a specific configuration, such as a honeycomb, ceramic forms or the like.


Further, various adsorbent bed units may be coupled together with conduits and valves to manage the flow of fluids. Orchestrating these adsorbent bed units involves coordinating the cycles for each of the adsorbent bed unit with other adsorbent bed units in the system. A complete cycle can vary from seconds to minutes as it transfers a plurality of gaseous streams through one or more of the adsorbent bed units.


Unfortunately, conventional swing adsorption processes have certain limitations that are inefficient or do not operate properly for purging the contaminants from the adsorbent beds. That is, the conventional adsorbent bed units provide gas streams from one end or the other end of the adsorbent bed. The purging in conventional systems is time consuming and can be inefficient. For engineered packing, the structure of the bed further complicates the purging of fluids from within the engineered packing if the adsorbent bed is formed into a specific configuration.


Accordingly, there remains a need in the industry for apparatus, methods, and systems that provide an enhanced adsorbent bed unit. The present techniques provide a method and apparatus that overcome one or more of the deficiencies discussed above. In particular, the present techniques provide an adsorbent bed unit that includes a mid-bed purge system that enhances the operations of the swing adsorption processes to provide gas from a location other than the end of the adsorbent bed.


SUMMARY OF THE INVENTION

In one or more embodiments, the present techniques include an adsorbent bed unit for a cyclical swing process. The adsorbent bed unit includes: a housing having an interior region; one or more contactors disposed in the interior region, each of the one or more contactors having a first portion and a second portion, wherein the first portion is disposed upstream of the second portion, wherein the first portion comprises a first adsorbent material and the second portion comprises a second adsorbent material, and wherein each of the one or more contactors have fluid flow passages through the first adsorbent material and the second adsorbent material; and each of the one or more contactors have at least one gas purge inlet conduit disposed within the first portion and configured to provide a purge flow passage to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage within the at least one gas purge inlet conduit is fluidly separated and independent of the fluid flow passages through the first adsorbent material. The adsorbent bed unit may also include a plenum closure component disposed upstream of the first portion and having a distribution zone, wherein the plenum closure component is configured to: provide fluid communication between the distribution zone and the mid-purge distribution zone via the at least one gas purge inlet conduit; provide fluid communication between a primary fluid zone formed between the first portion and the plenum closure component and a location external to the housing; and isolate direct fluid communication between the distribution zone and the primary fluid zone. Also, the plenum closure component comprises one or more outlet conduits disposed adjacent to the first portion in the primary fluid zone and configured to provide fluid communication between the primary fluid zone and the external location. The mid-purge distribution zone may be positioned at a location that is between 10% and 60% of the length of the adsorbent bed, or at a location that is between 20% and 40% of the length of the adsorbent bed.


Further, in one or more embodiments, a method of manufacturing a contactor is described. The method comprises: fabricating a first portion of a contactor, wherein the first portion is configured to provide first fluid flow passages through a first adsorbent material, wherein the first portion has a gas purge inlet conduit that is configured to provide a purge flow passage through the first portion and the purge flow passage is fluidly separated and independent of the fluid flow passages through the first portion; fabricating a second portion of the contactor comprising a second adsorbent material, wherein the second portion is configured to provide second fluid flow passages through the second adsorbent material; and securing the first portion to the second portion, wherein the gas purge inlet conduit is configured to provide a purge flow passages to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage is fluidly separated and independent of the first fluid flow passages.


In yet other embodiments, a method of manufacturing an adsorbent bed unit is described. The method comprises: fabricating a plurality of contactors, wherein each of the plurality of contactors comprises: a first portion configured to provide first fluid flow passages through a first adsorbent material, wherein the first portion has a gas purge inlet conduit configured to provide a purge flow passage through the first portion and the purge flow passage is fluidly separated and independent of the first fluid flow passages through the first portion; a second portion comprising a second adsorbent material, wherein the second portion is configured to provide second fluid flow passages through the second adsorbent material; wherein the first portion is secured to the second portion; and wherein the gas purge inlet conduit is configured to provide a purge flow passage to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage is fluidly separated and independent of the fluid flow passages; securing two or more plurality of contactors to each other to forma an assembly of contactors; constructing an adsorbent bed unit housing, wherein the an adsorbent bed unit housing has an interior region; and disposing the assemble of contactors into an adsorbent bed unit housing.


A cyclical swing adsorption process for removing contaminants from gas feed streams comprising the steps of: passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion; interrupting the flow of the gaseous feed stream; performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit; performing a purge step, wherein the purge step reduces the pressure within the adsorbent bed unit and wherein the purge step involves passing a purge stream to a mid-purge distribution zone between first portion and the second portion; performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; and repeating the steps a) to e) for at least one additional cycle. The method may include: passing the purge stream through a distribution zone in a plenum closure component disposed upstream of the first portion prior to passing the purge stream to the mid-purge distribution zone via a at least one gas purge inlet conduit and/or passing the product stream through a primary fluid zone in a plenum closure component disposed upstream of the first portion, wherein the product stream is isolate direct fluid communication between the distribution zone and the primary fluid zone.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments.



FIG. 1 is a three-dimensional diagram of the swing adsorption system with six adsorbent bed units and interconnecting piping in accordance with an embodiment of the present techniques.



FIG. 2 is a diagram of a portion of an adsorbent bed unit having associated valve assemblies and manifolds in accordance with an embodiment of the present techniques.



FIGS. 3A, 3B, 3C and 3D are diagrams of exemplary components of an adsorbent bed unit having a mid-bed purge system in accordance with an embodiment of the present techniques.



FIGS. 4A, 4B, 4C, 4D and 4E are diagrams of forming a contactor having a mid-bed purge system in accordance with an embodiment of the present techniques.



FIGS. 5A, 5B, 5C and 5D are diagrams of forming an assembly of contactors for the adsorbent bed unit having a mid-bed purge system in accordance an embodiment of the present techniques.



FIGS. 6A, 6B, 6C, 6D, 6E and 6F are diagrams of an exemplary adsorbent bed unit having a mid-bed purge system in accordance with an embodiment of the present techniques.





DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.


The present techniques relate to an adsorbent bed unit having a mid-bed purge system. The mid-bed purge system may include a compact multi-purpose distribution chamber (e.g., the interior of a plenum closure component) configured to transfer a volume of stored fluid through a feed conduit. The distribution chamber also includes an integrated conduit for transferring a separate stream through a portion of the adsorbent bed.


In certain embodiments, the adsorbent bed unit may include different components that are utilized to enhance operations. For example, the adsorbent bed unit may include a gas inlet conduit (e.g., fluid inlet), which is fabricated as an integral component of the mid-bed purge system. Further, a distribution chamber and associated conduits can be fabricated in a sequence that provides a compact configuration with minimal moving components. This configuration may lessen internal hardware utilized and lessen complications in fabrication and reliability by utilizing such components in this configuration.


The configuration of the mid-bed purge system balances the efficiency of the mid-system purge with the internal dead space volume. That is, the mid-system purge system is configured to increase efficiency of the purge step, while minimizing any changes to the internal dead space volume of the unit, if any. Accordingly, the mid-bed purge system may be configured to provide a separate purge gas stream into the absorbent bed at a location, such as a mid-purge distribution zone. As a result, the present techniques provide a mid-bed purge configuration that introduces a separate fluid stream into the absorbent bed at a location referred to as the mid-purge distribution zone, which is different from the ends of the absorbent bed. The mid-purge distribution zone may be positioned at a location along the length of the contactor or adsorbent bed between a first end and a second end as indicated from the primary fluid flow through the contactor or adsorbent bed (e.g. along the path of the feed fluid or other primary fluid being subjected to the adsorption process). The location of mid-purge distribution zone may be determined based on the inlet gas stream, the purge stream, the adsorbent material, contaminants being removed from the respective adsorbent material via the purge step or a combination thereof.


As an example, an adsorbent bed may have fluids (e.g., feed stream) that flow from a first end to a second end along a length of the adsorbent bed. The mid-purge distribution zone may be disposed between a first portion of the adsorbent bed and a second portion of the adsorbent bed. In certain embodiments, the mid-purge distribution zone may be positioned at a location that is substantially at the center of the adsorbent bed, between the first end and the second end. In other configurations, the mid-purge distribution zone may be positioned at a location that is between 10% and 60% of the length of the adsorbent bed measured from the first end, is between 20% and 40% of the length of the adsorbent bed measured from the first end, or is between 25% and 35% of the length of the adsorbent bed measured from the first end. The length of the adsorbent bed may be between 12 inches and 120 inches (0.3048 meters (m) and 3.048 m); between 18 inches and 60 inches (0.4572 m and 1.524 m); and between 24 inches and 48 inches (0.6096 m and 1.2192 m).


Alternatively, in other embodiments, the mid-purge distribution zone may include multiple zones that are distributed at various locations along the length of the adsorbent bed. For example, two mid-purge distribution zones may be utilized with a first mid-purge distribution zone being disposed between a first portion of the adsorbent bed and a second portion of the adsorbent bed and a second mid-purge distribution zone being disposed between a third portion of the adsorbent bed and the second portion of the adsorbent bed. In certain embodiments, the mid-purge distribution zone may be positioned at a location that is substantially equally spaced from the nearest respective ends of the adsorbent bed and the other mid-purge distribution zone. In other configurations, the first mid-purge distribution zone may be positioned at a location that is between 10% and 40% of the length of the adsorbent bed measured from the first end, while the second mid-purge distribution zone may be positioned at a location that is between 60% and 90% of the length of the adsorbent bed measured from the first end; or a first mid-purge distribution zone may be positioned at a location that is between 20% and 35% of the length of the adsorbent bed measured from the first end, while the second mid-purge distribution zone may be positioned at a location that is between 65% and 80% of the length of the adsorbent bed measured from the first end. As may be appreciated, other configurations may include three mid-purge distribution zones, four mid-purge distribution zones or other numbers of mid-purge distribution zones.


The mid-purge distribution zone may divide the adsorbent bed into a different portions based on the number of mid-purge distribution zones. As may be appreciated, the different portions may include the same type of adsorbent material or different portions may include different types of adsorbent material. That is, one configuration may include one adsorbent material for each of the different portions of the adsorbent bed, while another configuration may include a first adsorbent material and a second portion may include a second adsorbent material. If different materials are utilized, each may be selected to remove certain contaminates or to further enhance the purge step.


In one or more embodiments, the present techniques can be used for any type of swing adsorption process. Non-limiting swing adsorption processes for which the present invention can be used include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes, such as pressure/temperature swing adsorption. Exemplary kinetic swing adsorption processes are described in U.S. Pat. Nos. 7,959,720, 8,545,602, 8,529,663, 8,444,750, 8,529,662 and U.S. Patent Publication No. 2014/0013955, which are each herein incorporated by reference in their entirety.


The present techniques provide various enhancements to swing adsorption systems. For example, the enhancements may include uniformly distributed gas streams at select contactor or adsorbent bed locations. Also, the mid-system purge may be utilized to enhance the efficiency of the purge step and to lessen the period of time involved with the purge step. Further, the mid-bed purge system may lessen internal hardware and lessen complications in fabrication and reliability. The present techniques may be further understood with reference to the FIGS. 1 to 6F below.



FIG. 1 is a three-dimensional diagram of the swing adsorption system 100 having six adsorbent bed units and interconnecting piping. While this configuration is a specific example, the present techniques broadly relate to adsorbent bed units that can be deployed in a symmetrical orientation, or non-symmetrical orientation and/or combination of a plurality of hardware skids. Further, this specific configuration is for exemplary purposes as other configurations may include different numbers of adsorbent bed units.


In this system, the adsorbent bed units, such as adsorbent bed unit 102, may be configured for a cyclical swing adsorption process for removing contaminants from feed streams (e.g., fluids, gaseous or liquids). For example, the adsorbent bed unit 102 may include various conduits (e.g., conduit 104) for managing the flow of fluids through, to or from the adsorbent bed within the adsorbent bed unit 102. These conduits from the adsorbent bed units 102 may be coupled to a manifold (e.g., manifold 106) to distribute the flow to, from or between components. The adsorbent bed within an adsorbent bed unit may separate one or more contaminants from the feed stream to form a product stream. As may be appreciated, the adsorbent bed units may include other conduits to control other fluid steams as part of the process, such as purge streams, depressurizations streams, and the like. Further, the adsorbent bed unit may also include one or more equalization vessels, such as equalization vessel 108, which are dedicated to the adsorbent bed unit and may be dedicated to one or more step in the swing adsorption process.


As an example, which is discussed further below in FIG. 2, the adsorbent bed unit 102 may include a housing, which may include a head portion and other body portions, that forms a substantially gas impermeable partition, an adsorbent bed disposed within the housing and a plurality of valves (e.g., poppet valves) providing fluid flow passages through openings in the housing between the interior region of the housing and locations external to the interior region of the housing. Each of the poppet valves may include a disk element that is seatable within the head or a disk element that is seatable within a separate valve seat inserted within the head (not shown). The configuration of the poppet valves may be any variety of valve patterns or configuration of types of poppet valves. As an example, the adsorbent bed unit may include one or more poppet valves, each in flow communication with a different conduit associated with different streams. The poppet valves may provide fluid communication between the adsorbent bed and one of the respective conduits, manifolds or headers. The term “in direct flow communication” or “in direct fluid communication” means in direct flow communication without intervening valves or other closure means for obstructing flow. As may be appreciated, other variations may also be envisioned within the scope of the present techniques.


The adsorbent bed comprises a solid adsorbent material capable of adsorbing one or more components from the feed stream. Such solid adsorbent materials are selected to be durable against the physical and chemical conditions within the adsorbent bed unit 102 and can include metallic, ceramic, or other materials, depending on the adsorption process. Further examples of adsorbent materials are noted further below.



FIG. 2 is a diagram 200 of a portion of an adsorbent bed unit having valve assemblies and manifolds in accordance with an embodiment of the present techniques. The portion of the adsorbent bed unit 200, which may be a portion of the adsorbent bed unit 102 of FIG. 1, includes a housing or body, which may include a cylindrical wall 214 and cylindrical insulation layer 216 along with an upper head 218 and a lower head 220. An adsorbent bed 210 is disposed between an upper head 218 and a lower head 220 and the insulation layer 216, resulting in an upper open zone, and lower open zone, which open zones are comprised substantially of open flow path volume. Such open flow path volume in adsorbent bed unit contains gas that has to be managed for the various steps. The housing may be configured to maintain a pressure from 0 bar a (bar absolute) to 100 bar a within the interior region.


The upper head 218 and lower head 220 contain openings in which valve structures can be inserted, such as valve assemblies 222 to 240, respectively (e.g., poppet valves). The upper or lower open flow path volume between the respective head 218 or 220 and adsorbent bed 210 can also contain distribution lines (not shown) which directly introduce fluids into the adsorbent bed 210. The upper head 218 contains various openings (not shown) to provide flow passages through the inlet manifolds 242 and 244 and the outlet manifolds 248, 250 and 252, while the lower head 220 contains various openings (not shown) to provide flow passages through the inlet manifold 254 and the outlet manifolds 256, 258 and 260. Disposed in fluid communication with the respective manifolds 242 to 260 are the valve assemblies 222 to 240. If the valve assemblies 222 to 240 are poppet valves, each may include a disk element connected to a stem element which can be positioned within a bushing or valve guide. The stem element may be connected to an actuating means (not shown), which is configured to have the respective valve impart linear motion to the respective stem. As may be appreciated, the actuating means may be operated independently for different steps in the process to activate a single valve or a single actuating means may be utilized to control two or more valves. Further, while the openings may be substantially similar in size, the openings and inlet valves for inlet manifolds may have a smaller diameter than those for outlet manifolds, given that the gas volumes passing through the inlets may tend to be lower than product volumes passing through the outlets.


In swing adsorption processes, the cycle involves two or more steps that each has a certain time interval, which are summed together to be the cycle time. These steps include regeneration of the adsorbent bed following the adsorption step using a variety of methods including pressure swing, vacuum swing, temperature swing, purging (via any suitable type of purge fluid for the process), and combinations thereof. As an example, a PSA cycle may include the steps of adsorption, depressurization, purging, and re-pressurization. When performing the separation at high pressure, depressurization and re-pressurization (which may be referred to as equalization) is performed in multiple steps to reduce the pressure change for each step and enhance efficiency. In some swing adsorption processes, such as rapid cycle swing adsorption processes, a substantial portion of the total cycle time is involved in the regeneration of the adsorbent bed. Accordingly, any reductions in the amount of time for regeneration results in a reduction of the total cycle time. This reduction may also reduce the overall size of the swing adsorption system.


To provide certain enhancements, the adsorbent bed unit may include a mid-bed purge system. The mid-bed purge system may include one or more plenum closure components, such as plenum closure components 262 and 264, gas purge inlets or conduits (not shown) and one or more gas purge passages (not shown). The plenum closure components may be divided into different regions and/or the gas purge inlets or conduits may be provided to different locations in the adsorbent bed 210. Exemplary components of the adsorbent bed unit are shown in FIGS. 3A to 3D.



FIGS. 3A, 3B, 3C and 3D are diagrams 300, 320, 340, and 360 of exemplary components of an adsorbent bed unit having a mid-bed purge system in accordance with an embodiment of the present techniques. FIG. 3A is a diagram 300 of an exemplary assembly of poppet valve assembly 306 and vessel head assembly 304 in the adsorbent bed unit 302 in accordance with an embodiment of the present techniques. In the diagram 300, the poppet valve assembly 306 and vessel head assembly 304, which may be one of the valves assemblies 222 to 240 of FIG. 2, may be utilized to manage the flow of fluids into or out of the adsorbent bed unit 302.



FIG. 3B is a diagram 320 of an exemplary view of an assembly of contactors 322 in the adsorbent bed unit 302 of FIG. 3A. In this diagram 320, each of the contactors 322 has a gas purge inlet conduit 324 (e.g., a tubular member or other suitable channel that provides isolated flow through the adsorbent material) located at the center of the hexagon shape of the respective contactor 322. While the contactors are formed into a hexagon shape, any shape may be utilized, such as a triangular, square, circular or other suitable triangular shape. The contactors 322 may also include one or more gas outlets, such as gas outlet conduit 326, which may be a tubular member or other suitable mechanism for managing the flow of a fluid. The gas outlets may be disposed adjacent to the adsorbent bed to manage the fluid flow from the adsorbent bed to the associated conduits or manifold. For example, each of the contactors 322 in this configuration includes three gas outlets and one gas purge inlet conduit 324. These gas outlets may be evenly spaced to provide uniform flow.



FIG. 3C is a diagram 340 of a cross section of a portion of an exemplary contactor 322 and associated plenum closure component 342 in the assembly of contactors in FIG. 3B. In diagram 340, the adsorbent bed unit has a contactor 322 disposed in a liner 348 and adjacent to the plenum closure component 342. The contactor 322 may be formed in a hexagon shape along with the liner 348 and the liner may be secured to the contactor 322 via an external weld 350. The plenum closure component 342 has a plenum bottom plate 344, plenum top plate 345 and plenum side plate 346. The plenum closure component 342 is configured to separate the fluids from the contactor 322 from the fluids passing through other conduits, such as the gas purge inlet conduit 324. For example, the plenum closure component 342 provides isolated flow locations at the end of the contactor 322, but the purge fluid is introduced into the contactor 322 at the gas purge passage 356, which is the mid-purge distribution zone.


In this diagram 340, the fluid flow through the contactor 322 and the plenum closure component 342 are shown by various arrows. For example, the passage through the plenum closure component 342 via the gas outlet conduit 360 may be used to as a passage for fluids passing through the adsorbent material or bed of the contactor 322, as indicated by arrows 352 and 353. The passage within the plenum closure component 342 is the passage for fluids into the gas purge inlet conduit 324 and ultimately into the adsorbent material of the contactor 322, as indicated by arrows 354 and 355. The flow passages (e.g., fluid flow passages) along arrows 352 and 353 are fluidly separated and independent of the flow passages (e.g., purge flow passage) along arrow 355 for the length of the gas purge inlet conduit 324, but are shared within the adsorbent material of the contactor 322, as shown by arrow 354. Further, the flow passages along arrows 352, 353, 354 and 355 are substantially parallel with the exception of portion of the flow through the gas purge passage 356.


The mid-bed purge system includes the plenum closure component 342, gas purge inlet conduit 324 and gas purge passage 356. The gas purge inlet conduit 324 may be configured to provide a passage or channel through the adsorbent material to a certain depth 358 within the contactor 322. The depth 358 is based on the location of the mid-purge distribution zone, which may be positioned at a location that is between 10% and 60% of the length of the contactor 322 measured from the first end (with the length being the depth 358 plus the portion of the contactor 322 to the second end which is not shown in this figure). Other embodiments may include depths between 20% and 40% of the length of the contactor 322 measured from the first end, or is between 25% and 35% of the length of the contactor 322 measured from the first end. As an example, the depth 358 may be 8 inches (0.2032 m).


Also, the gas purge passage 356 may be configured to distribute the purge fluid in a uniform manner into the adsorbent material of the contactor 322. The gas purge passage 356 may be a passage having a height 359. The height 359 may be based on the purge fluid being provided to the mid-purge distribution zone, the cross section dimensions of the contactor and any combination thereof. Accordingly, the height 359 may be between 0.10 inches and 1.0 inches (0.00254 m and 0.0254 m), between 0.15 inches and 0.75 inches (0.00381 m and 0.01905 m) and between 0.20 inches and 0.45 inches (0.00508 m and 0.01143 m). As a specific example, the gas purge passage 356 may be a passage having a height 359 of 0.25 inches (0.00635 m).


Further, the plenum closure component 342 may be configured to distribute the purge fluid in a uniform manner into the contactor 322 via the distribution zone of the plenum closure component 342 that has a depth 357. The depth 357 may be based on the purge fluid being provided to the mid-purge distribution zone, the volume of purge fluid to be utilized in the purge step, the cross section dimensions of the contactor and any combination thereof. Accordingly, the depth 357 may be between 0.5 inches and 10 inches (0.0127 m and 0.254 m), between 1.0 inches and 7.5 inches (0.0254 m and 0.1905 m) and between 1.5 inches and 5 inches (0.0381 m and 0.127 m). As an example, the depth 357 may be a passage having a length of 2.75 inches (0.06985 m).


Along with the distribution zone, the plenum closure component 342 is configured to manage the flow of fluids from the end of the contactor 322 via the primary fluid zone. This primary fluid zone 351 is formed between the end of the contactor 322 and the plenum bottom plate 344 of the plenum closure component 342. The number and configuration of outlet conduits may be adjusted to manage the flow of the inlet stream into the primary fluid zone or from the primary fluid zone to a location external to the adsorbent bed unit. The specific configuration of the outlet conduits and the specific depth of the primary fluid zone may be based on the primary fluids (e.g., feed streams, product streams, waste streams and purge streams) being provided to and from the contactor, the uniformity pattern of the fluids, the volume of primary fluid zone, the cross section dimensions of the contactor and any combination thereof. Accordingly, the depth of the primary fluid zone may be between 0.1 inches and 5 inches (0.00254 m and 0.127 m), between 0.2 inches and 4 inches (0.00508 m and 0.1016 m) and/or between 0.4 inches and 3 inches (0.00381 m and 0.01905 m). As an example, the depth of the primary fluid zone may be 0.25 inches (0.00635 m).



FIG. 3D is a diagram 360 of a partial view of the exemplary assembly of contactors 322 of FIGS. 3B and 3C. In the diagram 360, the adsorbent bed unit has various contactors 322 disposed adjacent to the plenum closure component 342 and gas purge inlet conduits 324 and gas outlet conduits 326 associated with the plenum closure component 342. The contactor 322 may be formed in a hexagon shape, while the plenum closure component 342 may be formed in to a cylindrical shape or other suitable shape. For example, the plenum closure component 342 may be configured to be dedicated to manage the fluid flow for one of the contactors in the assembly of contactors or may be utilized to manage the fluid flow for two or more of the contactors in the assembly of contactors.


Beneficially, the configuration provides various enhancements. For example, the plenum closure component provides flow management, while minimizing the dead volume. Also, the configuration can be fabricated in a manner that provides a compact configuration with minimal or no moving components. That is, this configuration distributes the flow and may lessen hardware spacing constrains. Further, the configuration lessens the complications by providing components that are easy to fabricate and the plenum closure component lessens spacing issues for operation and maintenance of the unit.



FIGS. 4A, 4B, 4C, 4D and 4E are diagrams 400, 410, 420, 430 and 440 of forming a contactor having a mid-bed purge system in accordance with an embodiment of the present techniques. FIG. 4A is a diagram 400 of a sheet of material 402 which is disposed around a gas inlet conduit 404, which may be the gas purge inlet conduit 324 of FIGS. 3B to 3D. In this diagram 400, the sheet of material 402 may be secured (e.g., via a weld or other fastening mechanism) to the gas inlet conduit 404. The materials may be configured to separate a target gas form a gaseous mixture. The material may include an adsorbent material supported on a non-adsorbent support. The adsorbent materials may include alumina, microporous zeolites, carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, aluminum phosphorous and oxygen (ALPO) materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), silicon aluminum phosphorous and oxygen (SAPO) materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), metal organic framework (MOF) materials (microporous and mesoporous materials comprised of a metal organic framework) and zeolitic imidazolate frameworks (ZIF) materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary and other non protogenic basic groups such as amidines, guanidines and biguanides.



FIG. 4B is a diagram 410 of the sheet of material 402 disposed around a gas inlet conduit 404. In this diagram 410, the sheet of material 402 may be mechanically rolled to a designed size. In other embodiments, the monolith bed may be cast around gas inlet conduit 404 or 3D printing may be used to form the material around the as inlet conduit.



FIG. 4C is a diagram 420 of the sheet of material 402 disposed around a gas inlet conduit 404 and further shaped along two surfaces 422 and 424. In this diagram 420, a machining technique, such as electrical discharge machining (EDM) (e.g., wire trimmed), may be performed on the sheet of material 402 to form two surfaces of a hexagonal shape.



FIG. 4D is a diagram 430 of the sheet of material 402 which is disposed around a gas inlet conduit 404 in a completed hexagonal contactor. In this diagram 430, the sheet of material 402 has been formed into the designed shape, which is a hexagonal shape. The hexagon shape may be preferred because of the ability to pack objects into a more efficient configuration that lessens the void space (e.g., direct loss or valuable internal area). However, it should be noted that other suitable shapes may be formed as well. For example, the contactor may be formed into a circular, square or rectangular shape.



FIG. 4E is a diagram 440 of the hexagonal adsorbent material being disposed into the liner 442 to form the contactor. In this diagram 440, the shaped sheet of material 402 disposed around a gas inlet conduit 404 is inserted into the liner 442, as shown by the arrow 444.



FIGS. 5A, 5B, 5C and 5D are diagrams 500, 520, 540 and 560 of forming an assemble of contactors for the adsorbent bed unit having a mid-bed purge system in accordance an embodiment of the present techniques. Specifically, FIG. 5A is a diagram 500 of a three-dimensional partial view of a portion of the contactor 502, which may be the contactor in FIG. 4E. In this configuration, the portion of the contactor 502 has an absorbent material 504, a liner 506, an inlet gas conduit 508, and a sealing component 510. The sealing component 510 may be disposed between the absorbent material 504 and liner 506. The sealing component 510 may be used to prevent flow between the outer surface (e.g., external surface, which is opposite the inlet gas conduit 508) of the absorbent material 504 and the liner 506. The sealing component 510 may also bond the absorbent material 504 to the liner 506. The sealing component 510 may include a bonding agent that is a polymer-based composition, e.g., thermoplastic and thermosets, adhesive compositions, such as contact adhesives or hot melt adhesives, rubber, i.e., natural or synthetic, elastomers, or combination thereof. Also, the bonding agent may include a heavy petroleum wax (e.g., Apiezon), bitumen, asphalt, etc. and the like. Exemplary components are described in U.S. Patent Application Publication No. 2014/0013955, which is herein incorporated by reference in their entirety.



FIG. 5B is a diagram 520 of a three-dimensional view of the portion of the contactor 502 coupled to another portion of the contactor 522 (e.g., the remaining portion of the contactor). The other portion of the contactor 522 may be formed of the adsorbent material, another adsorbent material, or may include center conduit that provides flow for certain fluids. The portions of the contactor 502 and 522 may be coupled together via one or more welds between the different portions, welds between the different liners (e.g., liner 506 and the liner for the remaining portion of the contactor), welds between one or more of the different portions and the liner or other suitable coupling mechanisms. The remaining portion of the contactor 522 may be 28 inches (0.7112 m) in length, as an example.



FIG. 5C is a diagram 540 of a three-dimensional partial view of a plurality of contactors, which may be the contactor of FIGS. 5A and 5B, into an assembly of contactors. The contactors 502 may be welded together into the assembly of contactors via one or more welds, such as weld 542. The welds may be formed on tapered tabs, such as tabs 544, from the liners of the respective contactors 502. These tabs 544 may also be utilized with the plenum bottom plate to form the primary fluid zone.



FIG. 5D is a diagram 560 of another three-dimensional partial view of the assembly of contactors 502, which may be the contactors 502 of FIG. 5C. In this diagram 560, the contactors 502 may also be welded together into the assembly of contactors 502 via one or more welds (not shown). In addition, each of the contactors 502 may include a tab 562 formed from a recess of the respective liner 506 to the absorbent material 504 (e.g., an extension of the liner beyond the adsorbent material). The tab may be used to provide the gas purge passage, such as gas purge passage 356. The gas purge passage may also include additional spacers (not shown) to maintain the structure of the passage.


As may be appreciated, this fabrication process may be adjusted to provide for two or more mid-purge distribution zones that are distributed at various locations along the length of the adsorbent bed. For example, two mid-purge distribution zones may be utilized with a first mid-purge distribution zone being disposed between a first portion of the adsorbent bed and a second portion of the adsorbent bed and a second mid-purge distribution zone being disposed between a third portion of the adsorbent bed and the second portion of the adsorbent bed. In this configuration, two portions of the contactors (e.g., the first portion and the third portion) may be fabricated as noted above, while the second potion may be fabricated of adsorbent material, as noted above, as well. Alternatively, the inlet conduit may include additional passages, such as divider or another conduit disposed within the purge inlet conduit. For this configuration, a first passage may be distributed between the first and second portions, while the second passage may be distributed between the second and third portions. Similar techniques may be utilized to provide three or more mid-purge distribution zones, which may even combine the above techniques.



FIGS. 6A, 6B, 6C, 6D, 6E and 6F are diagrams 600, 610, 620, 630, 640 and 650 of a portion of an exemplary adsorbent bed unit having a mid-bed purge system in accordance with an embodiment of the present techniques. FIG. 6A is a diagram 600 of a three-dimensional view of a portion of the assembly of contactors 602, which may be the assembly of contactors of FIGS. 5C and 5D, along with the plenum bottom plate 607. In this configuration, each of the assembly of contactors 602 has an absorbent material (not shown), a liner 604, and an inlet gas conduit 606. Also, in this diagram 600, the plenum bottom plate 607 may include one or more purge gas outlets 608 and an opening for each of the inlet gas conduits 606. The plenum bottom plate 607 may be welded to the purge gas outlets 608 prior to installation or may be fabricated as a single component. The plenum bottom plate 607 may lower, as shown by arrow 609 to rest on the liner tabs 605.



FIG. 6B is a diagram 610 of a three-dimensional view of a portion of the assembly of contactors 602 of FIG. 6A once the plenum bottom plate 607 is lowered onto the tabs 605 of the liners 604. Once lowered, a sealing component and/or a weld may be disposed between the plenum bottom plate 607 and the inlet gas conduits 606. Further, one or more of the tabs 605 may also be secured (e.g., welded) to the plenum bottom plate 607.



FIG. 6C is a diagram 620 of a three-dimensional view of a portion of the assembly of contactors 602 of FIGS. 6A and 6B with the plenum top plate 622. In this configuration, the plenum top plate 622 may include one or more openings for the purge gas outlets 608. The plenum top plate 622 may lower, as shown by arrow 624 to rest on the purge gas outlets 608. The purge gas outlets 608 may include a plenum side plate (not shown) and/or a tab or spacer (not shown) that is utilized to position the plenum top plate 622 a specific distance from the bottom plenum plate 607. The plenum top plate 622 may be welded to the plenum side plate prior to installation or may be fabricated as a single component.



FIG. 6D is a diagram 630 of a three-dimensional view of a portion of the assembly of contactors 602 of FIG. 6C once the plenum top plate 622 is lowered onto the purge gas outlets 608. Once lowered, a sealing component and/or a weld may be disposed between the plenum top plate 622 and the purge gas outlets 608. Further, the plenum bottom plate 607 may be secured (e.g., welded) to plenum side plate (not shown) and/or the plenum top plate 622.



FIG. 6E is a diagram 640 of a three-dimensional view of a portion of the assembly of contactors 602 of FIG. 6D once the plenum top plate 622 is secured to the purge gas outlets. In this configuration, the tab 642 may be formed from a recess of the respective liner 604 to the absorbent material 644.



FIG. 6F is a diagram 650 of a three-dimensional view of a portion of the assembly of contactors 602 of FIGS. 6D and 6E with the plenum closure component 652 (e.g., plenum bottom plate 607, plenum top plate 622 and plenum side plate (not shown) coupled to the assembly of contactors 602 and liners 604. In this configuration, the plenum closure component 652 may provide a passage 654 that provides access to the respective inlet gas conduits 606.


In one or more embodiments, the adsorbent bed unit may be utilized to separate contaminants from a feed stream. The method may include passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion; interrupting the flow of the gaseous feed stream; performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit; performing a purge step, wherein the purge step reduces the pressure within the adsorbent bed unit and wherein the purge step involves passing a purge stream to a mid-purge distribution zone between first portion and the second portion; performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; and repeating the steps a) to e) for at least one additional cycle. Further the method may include that the mid-purge distribution zone is positioned at a location that is between 10% and 60% of the length of the adsorbent bed; that the mid-purge distribution zone is positioned at a location that is between 20% and 40% of the length of the adsorbent bed; the further step of passing the purge stream through a distribution zone in a plenum closure component disposed upstream of the first portion prior to passing the purge stream to the mid-purge distribution zone via at least one gas purge inlet conduit; and the further step of passing the product stream through a primary fluid zone in a plenum closure component disposed upstream of the first portion, wherein the product stream isolates direct fluid communication between the distribution zone and the primary fluid zone.


Further, in one or more embodiments, the adsorbent bed unit may include an adsorbent bed that can be used for the separation of a target gas form a gaseous mixture. The adsorbent is usually comprised of an adsorbent material supported on a non-adsorbent support, or contactor. Such contactors contain substantially parallel flow channels wherein 20 volume percent, preferably 15 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in pores greater than about 20 angstroms. A flow channel is taken to be that portion of the contactor in which gas flows, if a steady state pressure difference is applied between the point or place at which a feed stream enters the contactor and the point or place at which a product stream leaves the contactor. In the contactor, the adsorbent is incorporated into the wall of the flow channel.


Non-limiting examples of adsorbent materials that can be used with the method and system include high surface area (>10 m2/gm and preferably >75 m2/gm) alumina, microporous zeolites (preferably zeolites with particle sizes <1 mm), other microporous materials, mesoporous materials and ordered mesoporous materials. Nonlimiting examples of these materials include carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, ALPO materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), SAPO materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), MOF materials microporous and mesoporous materials comprised of a metal organic framework) and ZIF materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary and other non protogenic basic groups such as amidines, guanidines and biguanides.


In one or more embodiments, the swing adsorption process using the polygon thermal contactors of the present techniques is a temperature swing adsorption (TSA) or a rapid cycle temperature swing adsorption (RCTSA). For TSA the total cycle times are typically less than 12 hours, preferably less than 8 hours, preferably less than 6 hours, preferably less than 4 hours. For RCTSA the total cycle times are typically less than 600 seconds, preferably less than 200 seconds, more preferably less than 100 seconds, and even more preferably less than 60 seconds.


Adsorptive kinetic separation processes, apparatus, and systems, as described above, are useful for development and production of hydrocarbons, such as gas and oil processing. Particularly, the provided processes, apparatus, and systems are useful for the rapid, large scale, efficient separation of a variety of target gases from gas mixtures. In particular, the processes, apparatus, and systems may be used to prepare natural gas products by removing contaminants and heavy hydrocarbons, i.e., hydrocarbons having at least two carbon atoms. The provided processes, apparatus, and systems are useful for preparing gaseous feed streams for use in utilities, including separation applications such as dew point control, sweetening/detoxification, corrosion protection/control, dehydration, heating value, conditioning, and purification. Examples of utilities that utilize one or more separation applications include generation of fuel gas, seal gas, non-potable water, blanket gas, instrument and control gas, refrigerant, inert gas, and hydrocarbon recovery. Exemplary “not to exceed” product (or “target”) gas specifications include: (a) 2 volume percent (vol. %) CO2, 4 parts per million (ppm) H2S, (b) 50 ppm CO2, 4 ppm H2S, or (c) 1.5 vol. % CO2, 2 ppm H2S.


The provided processes, apparatus, and systems may be used to remove acid gas from hydrocarbon streams. Acid gas removal technology may be useful for gas reserves that exhibit higher concentrations of acid gas, i.e., sour gas resources. Hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 vol. % acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves include concentrations of at least: (a) 1 vol. % H2S, 5 vol. % CO2, (b) 1 vol. % H2S, 15 vol. % CO2, (c) 1 vol. % H2S, 60 vol. % CO2, (d) 15 vol. % H2S, 15 vol. % CO2, and (e) 15 vol. % H2S, 30 vol. % CO2.


In one or more embodiments, the streams provided to the adsorbent bed and removed from an adsorbent bed may have different compositions. For example, the hydrocarbon containing stream may have greater than 0.005 volume percent CO2 based on the total volume of the gaseous feed stream and an adsorbent material in the adsorbent bed has a higher selectivity to CO2 as compared to hydrocarbons. Also, the product stream may have greater than 98 volume percent hydrocarbons based on the total volume of the product stream. Further, the gaseous feed stream may be a hydrocarbon containing stream having greater than 20 volume percent CO2 based on the total volume of the gaseous containing stream.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.

Claims
  • 1. An adsorbent bed unit for a cyclical swing process comprising: a housing having an interior region;one or more contactors disposed in the interior region, each of the one or more contactors having a first portion and a second portion, wherein the first portion is disposed upstream of the second portion, wherein the first portion comprises a first adsorbent material and the second portion comprises a second adsorbent material, and wherein each of the one or more contactors have fluid flow passages through the first adsorbent material and the second adsorbent material; andeach of the one or more contactors have at least one gas purge inlet conduit disposed within the first portion and configured to provide a purge flow passage to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage within the at least one gas purge inlet conduit is fluidly separated and independent of the fluid flow passages through the first adsorbent material.
  • 2. The adsorbent bed unit of claim 1, further comprising a plenum closure component disposed upstream of the first portion and having a distribution zone, wherein the plenum closure component is configured to: provide fluid communication between the distribution zone and the mid-purge distribution zone via the at least one gas purge inlet conduit;provide fluid communication between a primary fluid zone formed between the first portion and the plenum closure component and a location external to the housing; andisolate direct fluid communication between the distribution zone and the primary fluid zone.
  • 3. The adsorbent bed unit of claim 2, wherein the plenum closure component comprises one or more outlet conduits disposed adjacent to the first portion in the primary fluid zone and configured to provide fluid communication between the primary fluid zone and the external location.
  • 4. The adsorbent bed unit of claim 2, wherein one or more contactors comprise a first contactor and a second contactor, and, wherein the plenum closure component is configured to:provide fluid communication between the distribution zone and the respective mid-purge distribution zones of the via the respective gas purge inlet conduit;provide fluid communication between primary fluid zone between the respective first portions and the plenum closure component and the location external to the housing; andisolate direct fluid communication between the distribution zone and the primary fluid zone.
  • 5. The adsorbent bed unit of claim 1, wherein the housing is configured to maintain a pressure from 0 bar a to 100 bar a within the interior region.
  • 6. The adsorbent bed unit of claim 1, wherein the mid-purge distribution zone is positioned at a location that is between 10% and 60% of the length of the adsorbent bed.
  • 7. The adsorbent bed unit of claim 1, wherein the mid-purge distribution zone is positioned at a location that is between 20% and 40% of the length of the adsorbent bed.
  • 8. The adsorbent bed unit of claim 1, wherein the purge flow passage and the fluid flow passages are substantially parallel relative to the flow through the first portion.
  • 9. A method of manufacturing a contactor, comprising: fabricating a first portion of a contactor, wherein the first portion is configured to provide first fluid flow passages through a first adsorbent material, wherein the first portion has a gas purge inlet conduit that is configured to provide a purge flow passage through the first portion and the purge flow passage is fluidly separated and independent of the fluid flow passages through the first portion;fabricating a second portion of the contactor comprising a second adsorbent material, wherein the second portion is configured to provide second fluid flow passages through the second adsorbent material; andsecuring the first portion to the second portion, wherein the gas purge inlet conduit is configured to provide a purge flow passages to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage is fluidly separated and independent of the first fluid flow passages.
  • 10. The method of claim 9, wherein fabricating the first portion of the contactor comprises: providing a sheet of the first adsorbent material;securing the sheet of the first adsorbent material to the gas purge inlet conduit; andwrapping the sheet of the first adsorbent material around the gas inlet conduit.
  • 11. The method of claim 10, wherein securing the sheet of the first adsorbent material to the gas purge inlet conduit comprises welding the sheet of the first adsorbent material to the gas purge inlet conduit.
  • 12. The method of claim 10, wherein wrapping the sheet of the first adsorbent material around a gas inlet conduit comprises mechanically rolling the sheet of first adsorbent material around a gas inlet conduit to a designed size.
  • 13. The method of claim 10, wherein the first adsorbent material comprises one or more of alumina, microporous zeolites, carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, ALPO materials, SAPO materials, MOF materials and ZIF materials.
  • 14. The method of claim 10, further comprising trimming the wrapped sheet of first adsorbent material into a polygon shape.
  • 15. The method of claim 10, further comprising disposing a liner around the outer surface of the sheet of first adsorbent material.
  • 16. The method of claim 15, further comprising disposing a sealing component between the liner and the sheet of first adsorbent material, wherein the sealing component is configured to prevent fluids from passing between the liner and the sheet of first adsorbent material.
  • 17. A method of manufacturing an adsorbent bed unit, comprising: fabricating a plurality of contactors, wherein each of the plurality of contactors comprises:a first portion configured to provide first fluid flow passages through a first adsorbent material, wherein the first portion has a gas purge inlet conduit configured to provide a purge flow passage through the first portion and the purge flow passage is fluidly separated and independent of the first fluid flow passages through the first portion;a second portion comprising a second adsorbent material, wherein the second portion is configured to provide second fluid flow passages through the second adsorbent material;wherein the first portion is secured to the second portion; andwherein the gas purge inlet conduit is configured to provide a purge flow passage to a mid-purge distribution zone between the first portion and the second portion, wherein the purge flow passage is fluidly separated and independent of the fluid flow passages;securing two or more plurality of contactors to each other to form an assembly of contactors;constructing an adsorbent bed unit housing, wherein the an adsorbent bed unit housing has an interior region; anddisposing the assembly of contactors into an adsorbent bed unit housing.
  • 18. The method of claim 17, wherein each of the contactors in the assembly of contactors provides separate flow passages through the respective contactor.
  • 19. The method of claim 17, wherein each of the contactors in the assembly of contactors comprises a liner disposed around the first portion of the contactor.
  • 20. The method of claim 19, wherein each liner has one or more tabs that extends beyond the first portion and wherein securing the two or more plurality of contactors to each other comprises welding tabs between adjacent contactors.
  • 21. The method of claim 17, further comprising securing a plenum closure component to the first portion, wherein the plenum closure component has a distribution zone, wherein the plenum closure component is configured to: provide fluid communication between the distribution zone and the mid-purge distribution zone via the gas purge inlet for each of the contactors;provide fluid communication between a primary fluid zone between the first portion and the plenum closure component and an external location external to the housing; andisolate direct fluid communication between the distribution zone and the primary fluid zone.
  • 22. The method of claim 21, wherein the plenum closure component comprises a plenum bottom plate, a plenum top plate and a plenum side plate; and wherein securing a plenum closure component to the first portion comprises:securing the plenum top plate and the plenum side plate to outlet gas conduits.
  • 23. A cyclical swing adsorption process for removing contaminants from gas feed streams comprising the steps of: a) passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion;b) interrupting the flow of the gaseous feed stream;c) performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit;d) performing a purge step, wherein the purge step involves passing a purge stream to a mid-purge distribution zone between first portion and the second portion and wherein the purge step comprises passing the purge stream through a distribution zone in a plenum closure component disposed upstream of the first portion prior to passing the purge stream to the mid-purge distribution zone via a at least one gas purge inlet conduit;e) performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; andf) repeating the steps a) to e) for at least one additional cycle.
  • 24. The process of claim 23, wherein the mid-purge distribution zone is positioned at a location that is between 10% and 60% of the length of the adsorbent bed.
  • 25. The process of claim 23, wherein the mid-purge distribution zone is positioned at a location that is between 20% and 40% of the length of the adsorbent bed.
  • 26. A cyclical swing adsorption process for removing contaminants from gas feed streams comprising the steps of: a) passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion;b) interrupting the flow of the gaseous feed stream;c) performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unitd) performing a purge step, wherein the purge step involves passing a purge stream to a mid-purge distribution zone between the first portion and the second portion and wherein the purge step comprises passing the product stream through a primary fluid zone in a plenum closure component disposed upstream of the first portion, wherein the product stream is isolated from direct fluid communication between the distribution zone and the primary fluid zone;e) performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; andf) repeating the steps a) to e) for at least one additional cycle.
  • 27. The process of claim 26, wherein the mid-purge distribution zone is positioned at a location that is between 10% and 60% of the length of the adsorbent bed.
  • 28. The process of claim 26, wherein the mid-purge distribution zone is positioned at a location that is between 20% and 40% of the length of the adsorbent bed.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Patent Application 62/162,186 filed May 15, 2015 entitled APPARATUS AND SYSTEM FOR SWING ADSORPTION PROCESSES RELATED THERETO, the entirety of which is incorporated by reference herein.

US Referenced Citations (385)
Number Name Date Kind
1868138 Fisk Jul 1932 A
3103425 Meyer Sep 1963 A
3124152 Payne Mar 1964 A
3142547 Marsh Jul 1964 A
3365859 Sandberg Jan 1968 A
3436839 Ellington Apr 1969 A
3508758 Strub Apr 1970 A
3602247 Bunn et al. Aug 1971 A
3788036 Lee et al. Jan 1974 A
3967464 Cormier et al. Jul 1976 A
4187092 Woolley Feb 1980 A
4261815 Kelland Apr 1981 A
4321069 Ritter Mar 1982 A
4324565 Benkmann Apr 1982 A
4325565 Winchell Apr 1982 A
4326858 Benkmann Apr 1982 A
4329162 Pitcher May 1982 A
4340398 Doshi et al. Jul 1982 A
4386947 Mizuno et al. Jun 1983 A
4445441 Tanca May 1984 A
4461630 Cassidy et al. Jul 1984 A
4496376 Hradek Jan 1985 A
4705627 Miwa et al. Nov 1987 A
4711968 Oswald et al. Dec 1987 A
4737170 Searle Apr 1988 A
4770676 Sircar et al. Sep 1988 A
4783205 Searle Nov 1988 A
4784672 Sircar Nov 1988 A
4790272 Woolenweber Dec 1988 A
4814146 Brand et al. Mar 1989 A
4816039 Krishnamurthy et al. Mar 1989 A
4877429 Hunter Oct 1989 A
4977745 Heichberger Dec 1990 A
5104426 Yamada Apr 1992 A
5110328 Yokota et al. May 1992 A
5125934 Krishnamurthy et al. Jun 1992 A
5169006 Stelzer Dec 1992 A
5174796 Davis et al. Dec 1992 A
5224350 Mehra Jul 1993 A
5234472 Krishnamurthy et al. Aug 1993 A
5292990 Kantner et al. Mar 1994 A
5306331 Auvil et al. Apr 1994 A
5354346 Kumar Oct 1994 A
5365011 Ramachandran et al. Nov 1994 A
5370728 LaSala et al. Dec 1994 A
5447558 Acharya Sep 1995 A
5547641 Smith et al. Aug 1996 A
5565018 Baksh et al. Oct 1996 A
5672196 Acharya et al. Sep 1997 A
5700310 Bowman et al. Dec 1997 A
5733451 Coellner et al. Mar 1998 A
5735938 Baksh et al. Apr 1998 A
5750026 Gadkaree et al. May 1998 A
5755857 Acharya May 1998 A
5766311 Ackley et al. Jun 1998 A
5792239 Reinhold, III et al. Aug 1998 A
5807423 Lemcoff et al. Sep 1998 A
5811616 Holub et al. Sep 1998 A
5827358 Kulish et al. Oct 1998 A
5906673 Reinhold, III et al. May 1999 A
5914455 Jain Jun 1999 A
5924307 Nenov Jul 1999 A
5930910 Trapp et al. Aug 1999 A
5935444 Johnson et al. Aug 1999 A
5968234 Midgett, II et al. Oct 1999 A
5976221 Bowman et al. Nov 1999 A
5997617 Czabala et al. Dec 1999 A
6007606 Baksh et al. Dec 1999 A
6011192 Baker et al. Jan 2000 A
6023942 Thomas et al. Feb 2000 A
6053966 Moreau et al. Apr 2000 A
6063161 Keefer et al. May 2000 A
6099621 Ho Aug 2000 A
6129780 Millet et al. Oct 2000 A
6136222 Friesen et al. Oct 2000 A
6147126 DeGeorge et al. Nov 2000 A
6171371 Derive et al. Jan 2001 B1
6176897 Keefer Jan 2001 B1
6179900 Behling et al. Jan 2001 B1
6194079 Hekal Feb 2001 B1
6210466 Whysall et al. Apr 2001 B1
6231302 Bonardi May 2001 B1
6245127 Kane et al. Jun 2001 B1
6284021 Lu et al. Sep 2001 B1
6311719 Hill et al. Nov 2001 B1
6345954 Al-Himyary et al. Feb 2002 B1
6398853 Keefer et al. Jun 2002 B1
6402813 Monereau et al. Jun 2002 B2
6406523 Connor et al. Jun 2002 B1
6432379 Heung Aug 2002 B1
6436171 Wang et al. Aug 2002 B1
6444012 Dolan et al. Sep 2002 B1
6444014 Mullhaupt et al. Sep 2002 B1
6444523 Fan et al. Sep 2002 B1
6451095 Keefer et al. Sep 2002 B1
6457485 Hill et al. Oct 2002 B2
6471939 Boix et al. Oct 2002 B1
6488747 Keefer et al. Dec 2002 B1
6497750 Butwell et al. Dec 2002 B2
6500241 Reddy Dec 2002 B2
6500404 Camblor Fernandez et al. Dec 2002 B1
6503299 Baksh et al. Jan 2003 B2
6506351 Jain et al. Jan 2003 B1
6514318 Keefer Feb 2003 B2
6514319 Keefer et al. Feb 2003 B2
6517609 Monereau et al. Feb 2003 B1
6531516 Davis et al. Mar 2003 B2
6533846 Keefer et al. Mar 2003 B1
6565627 Golden et al. May 2003 B1
6565635 Keefer et al. May 2003 B2
6565825 Ohji et al. May 2003 B2
6572678 Wijmans et al. Jun 2003 B1
6579341 Baker et al. Jun 2003 B2
6593541 Herren Jul 2003 B1
6595233 Pulli Jul 2003 B2
6605136 Graham et al. Aug 2003 B1
6607584 Moreau et al. Aug 2003 B2
6630012 Wegeng et al. Oct 2003 B2
6631626 Hahn Oct 2003 B1
6641645 Lee et al. Nov 2003 B1
6651645 Nunez Suarez Nov 2003 B1
6660064 Golden et al. Dec 2003 B2
6660065 Byrd et al. Dec 2003 B2
6692626 Keefer et al. Feb 2004 B2
6712087 Hill et al. Mar 2004 B2
6742507 Keefer et al. Jun 2004 B2
6746515 Wegeng et al. Jun 2004 B2
6752852 Jacksier et al. Jun 2004 B1
6770120 Neu et al. Aug 2004 B2
6773225 Yuri et al. Aug 2004 B2
6802889 Graham et al. Oct 2004 B2
6814771 Scardino et al. Nov 2004 B2
6835354 Woods et al. Dec 2004 B2
6840985 Keefer Jan 2005 B2
6866950 Connor et al. Mar 2005 B2
6889710 Wagner May 2005 B2
6890376 Arquin et al. May 2005 B2
6893483 Golden et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6916358 Nakamura et al. Jul 2005 B2
6918953 Lomax, Jr. et al. Jul 2005 B2
6921597 Keefer et al. Jul 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7025801 Monereau Apr 2006 B2
7027929 Wang Apr 2006 B2
7029521 Johansson Apr 2006 B2
7074323 Ghijsen Jul 2006 B2
7077891 Jaffe et al. Jul 2006 B2
7087331 Keefer et al. Aug 2006 B2
7094275 Keefer et al. Aug 2006 B2
7097925 Keefer et al. Aug 2006 B2
7112239 Kimbara et al. Sep 2006 B2
7117669 Kaboord et al. Oct 2006 B2
7128775 Celik et al. Oct 2006 B2
7144016 Gozdawa Dec 2006 B2
7160356 Koros et al. Jan 2007 B2
7160367 Babicki et al. Jan 2007 B2
7166149 Dunne et al. Jan 2007 B2
7172645 Pfister et al. Feb 2007 B1
7189280 Alizadeh-Khiavi et al. Mar 2007 B2
7250073 Keefer et al. Jul 2007 B2
7250074 Tonkovich et al. Jul 2007 B2
7255727 Monereau et al. Aug 2007 B2
7258725 Ohmi et al. Aug 2007 B2
7276107 Baksh et al. Oct 2007 B2
7279029 Occhialini et al. Oct 2007 B2
7285350 Keefer et al. Oct 2007 B2
7297279 Johnson et al. Nov 2007 B2
7311763 Neary Dec 2007 B2
RE40006 Keefer et al. Jan 2008 E
7314503 Landrum et al. Jan 2008 B2
7354562 Ying et al. Apr 2008 B2
7387849 Keefer et al. Jun 2008 B2
7390350 Weist, Jr. et al. Jun 2008 B2
7404846 Golden et al. Jul 2008 B2
7449049 Thomas et al. Nov 2008 B2
7456131 Klett et al. Nov 2008 B2
7510601 Whitley et al. Mar 2009 B2
7527670 Ackley et al. May 2009 B2
7553568 Keefer Jun 2009 B2
7578864 Watanabe et al. Aug 2009 B2
7604682 Seaton Oct 2009 B2
7637989 Bong Dec 2009 B2
7641716 Lomax, Jr. et al. Jan 2010 B2
7645324 Rode et al. Jan 2010 B2
7651549 Whitley Jan 2010 B2
7674319 Lomax, Jr. et al. Mar 2010 B2
7674539 Keefer et al. Mar 2010 B2
7687044 Keefer et al. Mar 2010 B2
7713333 Rege et al. May 2010 B2
7717981 LaBuda et al. May 2010 B2
7722700 Sprinkle May 2010 B2
7731782 Kelley et al. Jun 2010 B2
7740687 Reinhold, III Jun 2010 B2
7744676 Leitmayr et al. Jun 2010 B2
7744677 Barclay et al. Jun 2010 B2
7758051 Roberts-Haritonov et al. Jul 2010 B2
7758988 Keefer et al. Jul 2010 B2
7763098 Alizadeh-Khiavi et al. Jul 2010 B2
7763099 Verma et al. Jul 2010 B2
7792983 Mishra et al. Sep 2010 B2
7806965 Stinson Oct 2010 B2
7819948 Wagner Oct 2010 B2
7828877 Sawada et al. Nov 2010 B2
7828880 Moriya et al. Nov 2010 B2
7854793 Rarig et al. Dec 2010 B2
7858169 Yamashita Dec 2010 B2
7862645 Whitley et al. Jan 2011 B2
7867320 Baksh et al. Jan 2011 B2
7938886 Hershkowitz et al. May 2011 B2
7947118 Rarig et al. May 2011 B2
7947120 Deckman et al. May 2011 B2
7959720 Deckman et al. Jun 2011 B2
8016918 LaBuda et al. Sep 2011 B2
8034164 Lomax, Jr. et al. Oct 2011 B2
8071063 Reyes et al. Dec 2011 B2
8128734 Song Mar 2012 B2
8142745 Reyes et al. Mar 2012 B2
8142746 Reyes et al. Mar 2012 B2
8192709 Reyes et al. Jun 2012 B2
8210772 Gillecriosd Jul 2012 B2
8227121 Adams et al. Jul 2012 B2
8262773 Northrop et al. Sep 2012 B2
8262783 Stoner et al. Sep 2012 B2
8268043 Celik et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8272401 McLean Sep 2012 B2
8287629 Fujita et al. Oct 2012 B2
8319090 Kitamura Nov 2012 B2
8337594 Corma Canos et al. Dec 2012 B2
8361200 Sayari et al. Jan 2013 B2
8361205 Desai et al. Jan 2013 B2
8377173 Chuang Feb 2013 B2
8444750 Deckman et al. May 2013 B2
8470395 Khiavi et al. Jun 2013 B2
8480795 Siskin et al. Jul 2013 B2
8512569 Eaton et al. Aug 2013 B2
8518356 Schaffer et al. Aug 2013 B2
8529662 Kelley et al. Sep 2013 B2
8529663 Reyes et al. Sep 2013 B2
8529664 Deckman et al. Sep 2013 B2
8529665 Manning et al. Sep 2013 B2
8535414 Johnson et al. Sep 2013 B2
8545602 Chance et al. Oct 2013 B2
8551444 Agnihotri et al. Oct 2013 B2
8573124 Havran et al. Nov 2013 B2
8591627 Jain Nov 2013 B2
8591634 Winchester et al. Nov 2013 B2
8616233 McLean et al. Dec 2013 B2
8657922 Yamawaki et al. Feb 2014 B2
8673059 Leta et al. Mar 2014 B2
8715617 Genkin et al. May 2014 B2
8752390 Wright et al. Jun 2014 B2
8778051 Weist, Jr. et al. Jul 2014 B2
8784533 Leta et al. Jul 2014 B2
8784534 Kamakoti et al. Jul 2014 B2
8784535 Ravikovitch et al. Jul 2014 B2
8795411 Hufton et al. Aug 2014 B2
8808425 Genkin et al. Aug 2014 B2
8808426 Sundaram Aug 2014 B2
8814985 Gerds et al. Aug 2014 B2
8852322 Gupta et al. Oct 2014 B2
8858683 Deckman Oct 2014 B2
8875483 Wettstein Nov 2014 B2
8906138 Rasmussen et al. Dec 2014 B2
8921637 Sundaram et al. Dec 2014 B2
8939014 Kamakoti et al. Jan 2015 B2
9005561 Leta Apr 2015 B2
9017457 Tammera Apr 2015 B2
9028595 Sundaram et al. May 2015 B2
9034078 Wanni et al. May 2015 B2
9034079 Deckman et al. May 2015 B2
9067168 Frederick et al. Jun 2015 B2
9095809 Deckman et al. Aug 2015 B2
9108145 Kalbassi et al. Aug 2015 B2
9120049 Sundaram et al. Sep 2015 B2
9126138 Deckman et al. Sep 2015 B2
9162175 Sundaram Oct 2015 B2
9168485 Deckman et al. Oct 2015 B2
20010047824 Hill et al. Dec 2001 A1
20020124885 Hill et al. Sep 2002 A1
20020162452 Butwell et al. Nov 2002 A1
20030075485 Ghijsen Apr 2003 A1
20030129101 Zettel Jul 2003 A1
20030131728 Kanazirev et al. Jul 2003 A1
20030170527 Finn et al. Sep 2003 A1
20030202918 Ashida et al. Oct 2003 A1
20030205130 Neu et al. Nov 2003 A1
20030223856 Yuri et al. Dec 2003 A1
20040099142 Arquin et al. May 2004 A1
20040197596 Connor et al. Oct 2004 A1
20040232622 Gozdawa Nov 2004 A1
20050014511 Spain Jan 2005 A1
20050109419 Ohmi et al. May 2005 A1
20050114032 Wang May 2005 A1
20050129952 Sawada et al. Jun 2005 A1
20050145111 Keefer et al. Jul 2005 A1
20050150378 Dunne et al. Jul 2005 A1
20050229782 Monereau et al. Oct 2005 A1
20050252378 Celik et al. Nov 2005 A1
20060048648 Gibbs et al. Mar 2006 A1
20060049102 Miller et al. Mar 2006 A1
20060076270 Poshusta et al. Apr 2006 A1
20060099096 Shaffer et al. May 2006 A1
20060105158 Fritz et al. May 2006 A1
20060162556 Ackley et al. Jul 2006 A1
20060165574 Sayari Jul 2006 A1
20060169142 Rode et al. Aug 2006 A1
20060236862 Golden et al. Oct 2006 A1
20070084241 Kretchmer et al. Apr 2007 A1
20070084344 Moriya et al. Apr 2007 A1
20070222160 Roberts-Haritonov et al. Sep 2007 A1
20070253872 Keefer et al. Nov 2007 A1
20070261557 Gadkaree et al. Nov 2007 A1
20070283807 Whitley Dec 2007 A1
20080051279 Klett et al. Feb 2008 A1
20080072822 White Mar 2008 A1
20080128655 Garg et al. Jun 2008 A1
20080282883 Rarig et al. Nov 2008 A1
20080282884 Kelley et al. Nov 2008 A1
20080282885 Deckman et al. Nov 2008 A1
20080282886 Reyes et al. Nov 2008 A1
20080282887 Chance et al. Nov 2008 A1
20080282892 Deckman et al. Nov 2008 A1
20080289497 Barclay et al. Nov 2008 A1
20080307966 Stinson Dec 2008 A1
20080314550 Greco Dec 2008 A1
20090004073 Gleize et al. Jan 2009 A1
20090014902 Koivunen et al. Jan 2009 A1
20090025553 Keefer et al. Jan 2009 A1
20090037550 Mishra et al. Feb 2009 A1
20090071333 LaBuda et al. Mar 2009 A1
20090079870 Matsui Mar 2009 A1
20090107332 Wagner Apr 2009 A1
20090151559 Verma et al. Jun 2009 A1
20090162268 Hufton et al. Jun 2009 A1
20090180423 Kroener Jul 2009 A1
20090241771 Manning et al. Oct 2009 A1
20090284013 Anand et al. Nov 2009 A1
20090308248 Siskin et al. Dec 2009 A1
20090314159 Haggerty Dec 2009 A1
20100059701 McLean Mar 2010 A1
20100077920 Baksh et al. Apr 2010 A1
20100089241 Stoner et al. Apr 2010 A1
20100186445 Minta et al. Jul 2010 A1
20100212493 Rasmussen et al. Aug 2010 A1
20100251887 Jain Oct 2010 A1
20100252497 Ellison et al. Oct 2010 A1
20100263534 Chuang Oct 2010 A1
20100282593 Speirs et al. Nov 2010 A1
20100288704 Amsden et al. Nov 2010 A1
20100326272 Asaro et al. Dec 2010 A1
20110002818 Tonkovich et al. Jan 2011 A1
20110031103 Deckman et al. Feb 2011 A1
20110067440 Van Aken Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110217218 Gupta et al. Sep 2011 A1
20110277620 Havran et al. Nov 2011 A1
20110291051 Hershkowitz et al. Dec 2011 A1
20110296871 Van Soest-Vercammen et al. Dec 2011 A1
20110308524 Brey et al. Dec 2011 A1
20120011887 Nakamura Jan 2012 A1
20120024152 Yamawaki et al. Feb 2012 A1
20120031144 Northrop et al. Feb 2012 A1
20120067216 Corma Canos et al. Mar 2012 A1
20120152115 Gerds et al. Jun 2012 A1
20120222551 Deckman Sep 2012 A1
20120222552 Ravikovitch et al. Sep 2012 A1
20120222553 Kamakoti et al. Sep 2012 A1
20120222554 Leta et al. Sep 2012 A1
20120222555 Gupta et al. Sep 2012 A1
20120255377 Kamakoti et al. Oct 2012 A1
20120308456 Leta et al. Dec 2012 A1
20120312163 Leta et al. Dec 2012 A1
20130061755 Frederick et al. Mar 2013 A1
20130068101 Knapp et al. Mar 2013 A1
20130225898 Sundaram et al. Aug 2013 A1
20140013955 Tammera et al. Jan 2014 A1
20140060326 Sundaram et al. Mar 2014 A1
20140157986 Ravikovitch et al. Jun 2014 A1
20140208797 Kelley et al. Jul 2014 A1
20140216254 Tammera et al. Aug 2014 A1
20140271394 Jiang et al. Sep 2014 A1
20150196870 Albright et al. Jul 2015 A1
Foreign Referenced Citations (55)
Number Date Country
2297590 Sep 2000 CA
2297591 Sep 2000 CA
2224471 Oct 2000 CA
2234924 Dec 2001 CA
2237103 Dec 2001 CA
2228206 Jan 2002 CA
2357356 Nov 2005 CA
2616701 Feb 2007 CA
2423178 Apr 2013 CA
102009003610 Nov 2009 DE
0225736 Jun 1987 EP
0257493 Feb 1988 EP
0262934 Apr 1988 EP
0426937 May 1991 EP
1004341 May 2000 EP
1018359 Jul 2000 EP
1413348 Aug 2002 EP
1 459 799 Sep 2004 EP
1577561 Sep 2005 EP
1203610 Dec 2005 EP
1674555 Jun 2006 EP
1798197 Jun 2007 EP
1045728 Nov 2009 EP
2823872 Jan 2015 EP
2924951 Jun 2009 FR
2013101 Aug 1979 GB
58-114715 Jul 1983 JP
59-232174 Dec 1984 JP
60-189318 Dec 1985 JP
2002-253818 Oct 1990 JP
04-180978 Jun 1992 JP
2011-169640 Jun 1999 JP
2011-280921 Oct 1999 JP
2000-024445 Aug 2001 JP
2002-348651 Dec 2002 JP
2006-016470 Jan 2006 JP
2006-036849 Feb 2006 JP
2008-272534 Nov 2008 JP
WO1999043418 Sep 1999 WO
WO2000035560 Jun 2000 WO
WO2002024309 Mar 2002 WO
WO2002073728 Sep 2002 WO
WO2003031328 Apr 2003 WO
WO2005032694 Apr 2005 WO
WO2005070518 Aug 2005 WO
WO2005090793 Sep 2005 WO
WO2006017940 Feb 2006 WO
WO2006074343 Jul 2006 WO
WO2007111738 Oct 2007 WO
WO2008143967 Nov 2008 WO
WO2009003171 Dec 2008 WO
WO2009003174 Dec 2008 WO
WO2010081809 Jul 2010 WO
WO2010123598 Oct 2010 WO
WO2011139894 Nov 2011 WO
Non-Patent Literature Citations (13)
Entry
Conviser, S. A. (1964) “Removal of CO2 from Natural Gas With Molecular Sieves,” Proceedings of the Gas Conditioning Conf. Univ. of Oklahoma, pp. 1F-12F.
ExxonMobil Research and Engineering and Xebec (2008) RCPSA-Rapid Cycle Pressure Swing Adsorption—An Advanced, Low-Cost Commercialized H2 Recovery Process, Brochure, 2 pages.
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs.
Farooq, S. et al. (1990) “Continuous Contercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314.
FlowServe (2005)“Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1.
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs.
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symosium, pp. 73-95.
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262.
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pgs.
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622.
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73.
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Realiability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages.
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73.
Related Publications (1)
Number Date Country
20160332105 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
62162186 May 2015 US