Apparatus and system for swing adsorption processes

Information

  • Patent Grant
  • 11413567
  • Patent Number
    11,413,567
  • Date Filed
    Thursday, January 31, 2019
    5 years ago
  • Date Issued
    Tuesday, August 16, 2022
    a year ago
Abstract
Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve performing modeling to generate a swing adsorption system to manage a feed stream to produce a product stream within specification. The process may be utilized for swing adsorption processes, such as TSA and/or PSA, which are utilized to remove one or more contaminants from a gaseous feed stream.
Description
FIELD

The present techniques relate to a method and system associated with swing adsorption processes used in conditioning streams for downstream processing. In particular, the method and system involves generating a swing adsorption processes and performing swing adsorption processes to condition the streams within acceptable limits for a downstream process.


BACKGROUND

Gas separation is useful in many industries and can typically be accomplished by flowing a mixture of gases over an adsorbent material that preferentially adsorbs one or more gas components while not adsorbing one or more other gas components. The non-adsorbed components are recovered as a separate product.


One particular type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA), pressure swing adsorption (PSA), partial pressure swing adsorption (PPSA), rapid cycle temperature swing adsorption (RCTSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle partial pressure swing adsorption (RCPPSA), and not limited to but also combinations of the fore mentioned processes, such as pressure and temperature swing adsorption. As an example, PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure. That is, the higher the gas pressure, the greater the amount of readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed from the adsorbent material.


The swing adsorption processes (e.g., PSA and/or TSA) may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent material to different extents. For example, if a gas mixture, such as natural gas, is passed under pressure through a vessel containing an adsorbent material that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent material, and the gas exiting the vessel is enriched in methane. When the adsorbent material reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. Then, the adsorbent material is typically purged and repressurized prior to starting another adsorption cycle.


The swing adsorption processes typically involve adsorbent bed units, which include adsorbent beds disposed within a housing and configured to maintain fluids at various pressures for different steps in a cycle within the unit. These adsorbent bed units utilize different packing material in the bed structures. For example, the adsorbent bed units utilize checker brick, pebble beds or other available packing. As an enhancement, some adsorbent bed units may utilize engineered packing within the bed structure. The engineered packing may include a material provided in a specific configuration, such as a honeycomb, ceramic forms or the like.


Further, various adsorbent bed units may be coupled together with conduits and valves to manage the flow of fluids through the cycle. Orchestrating these adsorbent bed units involves coordinating the steps in the cycle for each of the adsorbent bed units with other adsorbent bed units in the system. A complete cycle can vary from seconds to minutes as it transfers a plurality of gaseous streams through one or more of the adsorbent bed units.


A challenge with rapid cycle processes is creating and designing the transition of streams through the adsorbent beds within a swing adsorbent system between the various steps in a cycle. These streams in the swing adsorbent processes may include one or more contaminants. For example, U.S. Pat. No. 7,645,324 describe forming tortuosity paths, but fails to consider other parameters to manage the separation processes.


Accordingly, there remains a need in the industry for apparatus, methods, and systems that provide enhancements to creation of swing adsorbent systems associated with hydrocarbon recovery processes. In particular, a need exists for enhancements to creation of swing adsorption systems in rapid cycle swing adsorption processes.


SUMMARY OF THE INVENTION

In one embodiment, a method for fabricating a swing adsorption system to perform a swing adsorption process is described. The method comprising: identifying one or more contaminants to be removed from a swing adsorption process; identifying a feed contaminant range for a feed stream to the swing adsorption process; identifying a product contaminant threshold for a product stream from the swing adsorption process; identifying a range of flow rates for the feed stream passing through the swing adsorption process; determining an adsorbent bed configuration for each of the adsorbent bed units in the swing adsorption system, wherein the adsorbent bed configuration is configured to provide a sharp adsorption front during the swing adsorption process; generating a swing adsorption configuration based on the identified one or more contaminants, the range of flow rates and/or the determined adsorbent bed configuration, wherein the swing adsorption system comprises a plurality of adsorbent bed units, wherein each of the plurality of adsorbent bed units comprise an adsorbent bed structure that has a plurality of channels passing through an adsorbent material; and fabricating the swing adsorption system based on the swing adsorption configuration.


In one or more embodiments, the method may include various enhancements. The enhancements may include determining the adsorbent bed configuration comprises modeling the adsorbent bed based on i) a range of adsorbent porosities, ii) a range of adsorption isotherms for the adsorbent material, and iii) a range of channel geometries; determining whether the adsorbent bed configuration is configured to provide a sharp adsorption front comprises: calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels, and determining that the adsorption front is a sharp adsorption front when the ratio is greater than or equal to 1; wherein calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation: Da=Ni/Ji, wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species I; wherein determining the range of adsorbent porosities further comprises: determining a porosity of the adsorbent material, determining a porosity of a binder material, determining a porosity of a remaining material, and combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities; wherein a combination of material forms a mixed matrix adsorbent layer with three distinct porous regions: the micropores within the zeolite crystal, the mesopores within the binder material that surrounds the zeolite crystals and the macropores that fill the remaining space in the layer; further comprising determining thickness of the adsorbent material based on a bed structure and an adsorbent layer formulation; wherein the bed structure comprises length of the adsorbent bed, diameter of the adsorbent bed, volume of the passages through the adsorbent bed; wherein the bed structure comprises determining a range of flow rates, and then a number of adsorbent beds required given a specific adsorbent isotherm, channel configuration and purity constraint; wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 10 microns and 100 microns, in a range between 20 microns and 80 microns, in a range between 20 microns and 50 microns; wherein the swing adsorption configuration comprises a cycle time for the swing adsorption process in a range between 10 seconds and 1,200 seconds; wherein the one or more contaminants include H2O, CO2, H2S, N2, ethane, and propane; wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent to 60 mole percent, in a range between 5 mole percent and 30 mole percent, in a range between 5 mole percent and 20 mole percent, or in a range between 5 mole percent and 10 mole percent; and/or wherein the product contaminant threshold for a product stream is less than 50 parts per million volume of CO2.


In another embodiment, a method for performing a swing adsorption process is described. The method comprising: a) performing a swing adsorption cycle, wherein the swing adsorption cycle comprises performing an adsorption step that comprises passing a feed stream through an adsorbent bed unit having an adsorbent bed to separate one or more contaminants from the feed stream to form a product stream, wherein the adsorbent bed has an adsorbent material and has a bed structure, the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries; b) determining whether the product stream satisfies a product contaminant threshold; c) if the product stream does not satisfy the product contaminant threshold, repeating steps a) to b) for at least one additional swing adsorption cycle; and d) if the product stream satisfies the product contaminant threshold; conducting away the product stream from the process.


In one or more embodiments, the method may include various enhancements. The enhancements may include wherein the cycle duration is for a period greater than 1 second and less than 600 seconds or the cycle duration is greater than 2 seconds and less than 180 seconds; wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream; wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is in the range of two hundred parts per million volume and less than or equal to about 2% volume of the gaseous feed stream; wherein the swing adsorption process is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million; comprising passing the product stream to a downstream process; wherein the downstream process is a liquefied natural gas (LNG) process that comprises an LNG process unit or is a cryogenic natural gas liquefaction (NGL) process having a NGL process unit; wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent and 30 mole percent; and/or wherein the swing adsorption process is based on a generated swing adsorption configuration, as noted in the embodiment above.


In yet another embodiment, a cyclical swing adsorption system is described. The cyclical swing adsorption system comprises: a plurality of manifolds, wherein the plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, and a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step; a plurality of adsorbent bed units coupled to the plurality of manifolds, each of the adsorbent bed units comprising: a housing; an adsorbent material disposed within the housing and the adsorbent material forming a bed structure, wherein the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries in the bed structure; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material.


In one or more embodiments, the cyclical swing adsorption system may include various enhancements. The enhancements may include wherein the plurality of valves comprise one or more poppet valves; wherein plurality of manifolds, the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara; comprising a liquefied natural gas (LNG) process that comprises an LNG process unit and is configured to receive the product stream; comprising a cryogenic natural gas liquefaction (NGL) process having a NGL process unit and is configured to receive the product stream; wherein the adsorbent material disposed within the housing and the adsorbent material forming a bed structure is based on a calculated ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation: Da=Ni/Ji, wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species i; wherein determining the range of adsorbent porosities further comprises: determining a porosity of the adsorbent material; determining a porosity of a binder material; determining a porosity of a remaining material; and combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities; and/or wherein the cyclical swing adsorption system, adsorption step and regeneration step are based on a swing adsorption configuration, as noted in the embodiment above.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments.



FIG. 1 is a three-dimensional diagram of the swing adsorption system with six adsorbent bed units and interconnecting piping in accordance with an embodiment of the present techniques.



FIG. 2 is a diagram of a portion of an adsorbent bed unit having associated valve assemblies and manifolds in accordance with an embodiment of the present techniques.



FIG. 3 is an exemplary flow chart for generating and using a swing adsorption process in accordance with an embodiment of the present techniques.



FIG. 4 is an exemplary flow chart for generating and modeling a swing adsorption process in accordance with an embodiment of the present techniques.



FIG. 5 is an exemplary diagram of the transport process used for generating a swing adsorption process in accordance with an embodiment of the present techniques.



FIGS. 6A, 6B, and 6C are exemplary diagrams of channels used for generating a swing adsorption process in accordance with an embodiment of the present techniques.



FIGS. 7A, 7B, and 7C are exemplary diagrams of isotherms used for generating a swing adsorption process in accordance with an embodiment of the present techniques.





DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.


As used herein, “stream” refers to fluid (e.g., solids, liquid and/or gas) being conducted through various equipment. The equipment may include conduits, vessels, manifolds, units or other suitable devices.


As used herein, “conduit” refers to a tubular member forming a channel through which something is conveyed. The conduit may include one or more of a pipe, a manifold, a tube or the like.


The provided processes, apparatus, and systems of the present techniques may be used in swing adsorption processes that remove contaminants (CO2, H2O, and H2S) from feed streams, such as hydrocarbon containing streams. As may be appreciated and as noted above, the hydrocarbon containing feed streams may have different compositions. For example, hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 volume percent (vol. %) acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves sources include concentrations of approximately: (a) 4 ppm H2S, 2 vol. % CO2, 100 ppm H2O (b) 4 ppm H2S, 0.5 vol. % CO2, 200 ppm H2O (c) 1 vol. % H2S, 2 vol. % CO2, 150 ppm H2O, (d) 4 ppm H2S, 2 vol. % CO2, 500 ppm H2O, and (e) 1 vol. % H2S, 5 vol. % CO2, 500 ppm H2O. Further, in certain applications the hydrocarbon containing stream may include predominately hydrocarbons with specific amounts of CO2 and/or water. For example, the hydrocarbon containing stream may have greater than 0.00005 volume percent CO2 based on the total volume of the gaseous feed stream and less than 2 volume percent CO2 based on the total volume of the gaseous feed stream; or less than 10 volume percent CO2 based on the total volume of the gaseous feed stream. The processing of feed streams may be more problematic when certain specifications have to be satisfied.


The removal of contaminants may be performed by swing adsorption processes to prepare the stream for further downstream processing, such as NGL processing and/or LNG processing. For example, natural gas feed streams for liquefied natural gas (LNG) applications have stringent specifications on the CO2 content to ensure against formation of solid CO2 at cryogenic temperatures. The LNG specifications may involve the CO2 content to be less than or equal to 50 ppm. Such specifications are not applied on natural gas streams in pipeline networks, which may involve the CO2 content up to 2 vol. % based on the total volume of the gaseous feed stream. As such, for LNG facilities that use the pipeline gas (e.g., natural gas) as the raw feed, additional treating or processing steps are utilized to further purify the stream. Further, the present techniques may be used to lower the water content of the stream to less than 0.1 ppm. Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. US2017/0056814, US2017/0113175 and US2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992 and 10,040,022, which are each incorporated by reference herein.


The present techniques provide configurations and processes that are utilized to enhance swing adsorption processes. As noted above, rapid cycle pressure and temperature swing adsorption processes may be used to remove contaminants, such as dehydrating streams and/or removing low-level CO2. The present techniques may be used to model and to create swing adsorption configurations, which may include adsorbent bed configurations, such as adsorbent bed structures, necessary to achieve a high purity gas separation using rapid cycle swing adsorption processes. Similarly, the present techniques may also apply to rapid cycle thermal swing and rapid cycle pressure and thermal swing processes.


The swing adsorption configuration may be based on one or more contaminants in the feed stream, a range of flow rates and/or an adsorbent bed configuration. The swing adsorption configuration may represent a swing adsorption system that comprises two or more adsorbent bed units and associated manifolds or conduits to manage the streams through various steps in the swing adsorption process. The swing adsorption configuration may include adsorbent bed configurations for each of the adsorbent bed units, which may include an adsorbent bed structure that has a plurality of channels passing through an adsorbent material. The adsorbent bed configurations may include an adsorbent bed structure that represents a particular combination of adsorbent layer structure and adsorbent bed architecture. The adsorbent bed architecture may include multiple parallel channels that can be formed by, for example, bundles of hollow fibers, spiral wound corrugated sheets or extruded ceramic monoliths. The interior of the parallel channels may be coated with a layer containing adsorbent material, such as, for example, microporous zeolite and bound together by mesoporous material, such as colloidal silica. The combination of material forms a mixed matrix adsorbent layer with three distinct porous regions: the micropores within the zeolite crystal, the mesopores within the binder material that surrounds the zeolite crystals and the macropores that propagate through the layer.


The present techniques provided may involve computational modeling that the combination of the three porous regions in the adsorbent layer, as well as the zeolite adsorption isotherm and channel geometry may be carefully controlled to achieve a separation that yields a specific feed and product composition and desired throughput. The inability to control any one of these multiple parameters and/or features may result in an unacceptable broadening of the adsorption front that may result in a loss of purity that can compromise the separation.


The present techniques may be used to optimize the design of parallel channel adsorbent beds for use in rapid cycle swing adsorption processes. There are multiple parameters or settings that may be controlled during the design, and may be optimized to achieve a particular separation of contaminants from the feed stream. If these parameters are not managed or controlled, then the resulting separation process may not achieve the desired purity. By way of example, the tortuosity pathways through the channels in the adsorbent bed may be maintained in the range 2.5 less than (<) τ less than (<) 1 to realize significant process intensification through rapid cycle times and kinetic selectivity. The tortuosity pathways is only one of a number of parameters that describe the adsorbent bed design to provide a rapid cycle separation process.


The present techniques may be used to design the adsorbent bed structure necessary to achieve a high purity gas separation using rapid cycle swing adsorption processes. The adsorbent bed structure may be represented by a particular combination of adsorbent layer structure and bed architecture. The bed architecture may include multiple parallel channels. The interior of the parallel channels may be coated with an adsorbent material and a binding material. This combination of materials may form a mixed matrix adsorbent layer with three distinct porous regions, such as i) the micropores within the zeolite crystal, ii) the mesopores within the binder material that surrounds the zeolite crystals and iii) the macropores that fill the remaining space in the layer.


For any kinetic separation, a disparity in the effective diffusivity of the species that are to be separated may be determined. For example, the separation may involve CO2 adsorbing rapidly into an adsorbent material, such as DDR (e.g., ZSM-58) relative to CH4 to separate the CO2 from the CH4. In the swing adsorption system, the adsorption bed configuration may involve designing or modeling an adsorbent layer, such that this kinetic selectivity is not masked by external mass transfer processes. The method may involve control of a figure of merit, which may be the Damkohler number, Da, which may be greater than 1 and preferably greater than 2 to provide fast diffusing species (e.g., CO2). The Damkohler number may represent the ratio of the adsorption rate into the adsorbent layer to the convection rate along the channel, as shown in equations (e1) to (e3):









Da
=


N
i


J
i






(
e1
)







N
i

=


m
ads



k
i
t


Δ






q
i






(
e2
)







J
i

=


1000

puA


M
i






(
e3
)







In the equations (e1) to (e3), mads is the total mass of adsorbent, kti is the total adsorption rate constant of species i, Δqi is the adsorbent swing capacity of species i, ρ is the gas density in the channel, u is the gas velocity in the channel, A is the channel cross-sectional area, Ni is the total molar adsorption rate of species i, Ji is the total molar flux of species i along the channel and Mi is the molecular weight of species i. The total adsorption rate constant is a composite of the rate associated with four mass transfer mechanisms added in series of equations (e4) to (e8), as follows:










1

k
i
t


=

[


1

k
macro
i


+

1

k
meso
i


+

1

k
micro
i


+

1

k
film
i



]





(
e4
)







k
macro
i

=



ɛ
macro



D
m
i



τ





lP






(
e5
)







k
meso
i

=


D
k
i

tP





(
e6
)







k
micro
i

=


15


D
ads
i



r
c
2






(
e7
)







k
film
i

=



Sh
i



D
m
i




d
h


P






(
e8
)







In these equations (e4) to (e8), εmacro is the volume fraction of the adsorbent layer that is macro-voidage with pores greater than 500 Angstroms, Dim is the molecular diffusion coefficient of species i in the mixture, τ is the tortuosity, l is the layer thickness, P is the gas channel cross-section perimeter, Dik is the Knudsen diffusivity, t is the characteristic thickness of the meso-phase binder, Diads is the effective diffusivity of the adsorbent crystal, rc is the radius of the adsorbent crystal, Shi is the Sherwood number for species i, kimacro is the effective diffusion rate constant of species i through the macropores, kimeso is the effective diffusion rate of species i through the mesopores, kimicro is the effective diffusion rate of species i through the micropores, kifilm is the effective diffusion rate of species i through the gas film, kit is the total effective diffusion rate constant of species i and dh is the hydraulic diameter of the channel.


To fully specify the composite adsorption rate constant several correlations are necessary which depend on the details of the bed geometry. First, to specify the molecular diffusivity, the Fuller correlation is used, as in equation (e9):










d
m





i


=

0.00143






(
2




/


M
i


)

0.5



T
1.81





(

2


γ
i

1


/


3



)

2


P







(
e9
)








where γi is the atomic diffusion volume of species i. The Knudsen diffusivity is defined in equation (e10) as follows:










D
k
i

=



d
pore

3




(


8

RT


π






M
i



)


1


/


2







(
e10
)







where dpore is as the diameter of the pore throats in the mesoporous binder phase, R is the ideal gas constant and T is the absolute temperature.


The mass transfer correlations for parallel channels are shown in equations (e11) to (e14) as follows:










Sh
i

=

B







(

1
+

0.0095



d
k

l



ReSc
i



)

0.45






(
e11
)







Sc
i

=

μ

ρ






D
m
i







(
e12
)






Re
=


ρ






d
h


u

μ





(
e13
)






B
=

7.541


(

1
-

2.610


a
r


+

4.970


a
r
2


-

5.119


a
r
3


+

2.702


a
r
4


-

0.548


a
r
5



)






(
e14
)







where ar is the aspect ratio of the channel and is less than 1 and μ is the gas viscosity.


In addition to the requirement on Damkohler number Da, the adsorbent bed pressure drop may be designed and/or maintained to be at less than 20%, and preferably less than 15%, of the overall swing adsorption system pressure drop (as measured in atmospheric pressure). This is to ensure that the flow through the adsorbent bed is controlled by the pressure drop through the valves that start and stop flow through the adsorbent bed. The adsorbent bed pressure drop may be calculated in equations (e15) to (e17) as follows:











Δ





P

=

LF
drag


;




(
e15
)







F
drag

=



2

Re





μ





u


d
k
2




{




24


f
ar


Re

[

1
-

1

1
+

exp


(

-


Re
-
2100

300


)





]

+


0.0791

Re
0.25


[

1

1
+

exp


(

-


Re
-
2100

300


)




]


}






(
e16
)









f
ar

=

1
-

1.3553






a
r


+

1.9467






a
r
2


-

1.7012






a
r
3


+

0.9654






a
r
4


-

0.2537






a
r
5








(
e17
)








Where L is the effective length of the adsorbent bed structure, Fdrag is the drag force, fav is the friction factor, dh is the hydraulic diameter and Re is the Reynolds number.


The design equations, which are noted in equations (e1) to (e17) may be used in a number of different approaches. Below are several examples that constitute typical use of the methodology. While this is not an exhaustive list, the complex algebraic nature of the system of equations may require numerical solution.


The generation of the swing adsorption configuration may include various steps. First, an adsorbent bed structure and adsorbent layer formulation may be identified. The method may include determining the optimum adsorbent layer thickness to achieve a specified separation. For example, an adsorbent bed structure may be defined by a method of construction (e.g. spiral wound), a cell density in cells per square inch (CPSI) and coating fraction (e.g., fraction of the available surface that is coated with adsorbent layer). The adsorbent layer formulation is the specific adsorbent type, size, and adsorption capacity, the binder type, size and adsorption capacity along with the volume fractions of adsorbent, binder, macro pores and meso pores. The specified separation may constitute the feed composition and preferred product composition as well as the overall desired throughput.


In another step in the generation of the swing adsorption configuration, an adsorbent bed structure, adsorbent material and coating thickness may be determined. The optimum layer formulation may be determined to achieve a specified separation. The optimum amount of binder and amount voidage (both absolute and relative) to achieve a specified separation may be determined. The use of the methodology may set targets for adsorbent layer development that are beyond what would normally be achieved and have resulted in significant experimental effort.


In yet another step in the generation of the swing adsorption configuration, an adsorbent layer formulation and layer thickness may be determined. The step may include a determination of the throughput for a specified separation in a swing adsorption process.


Further, an adsorbent layer formulation may be determined for an optimum adsorbent bed structure to achieve a specified separation in the swing adsorption process. This aspect may be used to balance between the adsorbent bed structure, adsorbent layer formulation and separation performance.


The present techniques may be a swing adsorption process, and specifically a rapid cycle adsorption process. The present techniques may include some additional equipment, such as one or more conduits and/or one or more manifolds that provide a fluid path for the cooling step and/or dampening system. In addition, other components and configurations may be utilized to provide the swing adsorption process, such as rapid cycle enabling hardware components (e.g., parallel channel adsorbent bed designs, rapid actuating valves, adsorbent bed configurations that integrate with other processes). Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. US2017/0056814, US2017/0113175 and US2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992 and 10,040,022, which are each incorporated by reference herein.


In one or more configurations, a swing adsorption process may include performing various steps. For the example, the present techniques may be used to remove contaminants from a gaseous feed stream with a swing adsorption process, which may be utilized with one or more downstream processes. The process comprising: a) performing a regeneration step (e.g., purge step), wherein the purge step comprises passing purge stream through an adsorbent bed unit to remove contaminants from an adsorbent bed within a housing of the adsorbent bed unit to form a purge product stream, which may be a heated purge stream; b) performing one or more adsorption steps, wherein each of the one or more adsorption steps comprise passing a gaseous feed stream through an adsorbent bed unit having an adsorbent bed to separate contaminants from the gaseous feed stream to form a product stream. In addition, the method may include determining whether the product stream and/or purge stream is within a temperature specification and/or composition specification; c) if the product stream is within the respective specification (e.g., is below a certain threshold), passing the product stream to a downstream process; and d) if the product stream is not within the specification (e.g., above a certain threshold), adjusting the swing adsorption system.


In other certain embodiments, the swing adsorption process may be integrated with downstream equipment and processes. The downstream equipment and processes may include control freeze zone (CFZ) applications, nitrogen removal unit (NRU), cryogenic NGL recovery applications, LNG applications, and other such applications. Each of these different applications may include different specifications for the feed stream in the respective process. For example, a cryogenic NGL process or an LNG process and may be integrated with the respective downstream equipment. As another example, the process may involve H2O and/or CO2 removal upstream of a cryogenic NGL process or the LNG process and may be integrated with respective downstream equipment.


In certain configurations, the system utilizes a combined swing adsorption process, which combines TSA and PSA, for treating of pipeline quality natural gas to remove contaminants for the stream to satisfy LNG specifications. The swing adsorption process, which may be a rapid cycle process, is used to treat natural gas that is at pipeline specifications (e.g., a feed stream of predominately hydrocarbons along with less than or equal to about 2% volume CO2 and/or less than or equal to 4 ppm H2S) to form a stream satisfying the LNG specifications (e.g., less than 50 ppm CO2 and less than about 4 ppm H2S). The product stream, which may be the LNG feed stream, may have greater than 98 volume percent hydrocarbons based on the total volume of the product stream, while the CO2 and water content are below certain thresholds. The LNG specifications and cryogenic NGL specifications may involve the CO2 content to be less than or equal to 50 ppm, while the water content of the stream may be less than 0.1 ppm.


Moreover, the present techniques may include a specific process flow to remove contaminants, such as CO2 and/or water. For example, the process may include an adsorbent step and a regeneration step, which form the cycle. The adsorbent step may include passing a gaseous feed stream at a feed pressure and feed temperature through an adsorbent bed unit to separate one or more contaminants from the gaseous feed stream to form a product stream. The feed stream may be passed through the adsorbent bed in a forward direction (e.g., from the feed end of the adsorbent bed to the product end of the adsorbent bed). Then, the flow of the gaseous feed stream may be interrupted for a regeneration step. The regeneration step may include one or more depressurization steps, one or more heating steps, and/or one or more purge steps. The depressurization steps, which may be or include a blowdown step, may include reducing the pressure of the adsorbent bed unit by a predetermined amount for each successive depressurization step, which may be a single step and/or multiple steps. The depressurization step may be provided in a forward direction or may preferably be provided in a countercurrent direction (e.g., from the product end of the adsorbent bed to the feed end of the adsorbent bed). The purge step may include passing a purge stream into the adsorbent bed unit, which may be a once through purge step and the purge stream may be provided in countercurrent flow relative to the feed stream. The purge stream may be provided at a purge temperature and purge pressure, which may include the purge temperature and purge pressure being similar to the heating temperature and heating pressure used in the heating step. Then, the cycle may be repeated for additional streams. Additionally, the process may include one or more re-pressurization steps after the purge step and prior to the adsorption step. The one or more re-pressurization steps may be performed, wherein the pressure within the adsorbent bed unit is increased with each re-pressurization step by a predetermined amount with each successive re-pressurization step. The cycle duration may be for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 300 seconds, for a period greater than 2 second and less than 180 seconds, for a period greater than 5 second and less than 150 seconds or for a period greater than 5 second and less than 90 seconds.


In one or more embodiments, the present techniques can be used for any type of swing adsorption process. Non-limiting swing adsorption processes for which the present techniques may be used include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes. For example, the preferred swing adsorption process may include a combined pressure swing adsorption and temperature swing adsorption, which may be performed as a rapid cycle process. Exemplary swing adsorption processes are further described in U.S. Patent Publication Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. US2017/0056814, US2017/0113175 and US2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992, 10,040,022, 7,959,720, 8,545,602, 8,529,663, 8,444,750, 8,529,662 and 9,358,493, which are each herein incorporated by reference in their entirety.


In one or more configurations, a method for fabricating a swing adsorption system to perform a swing adsorption process is described. The method comprising: identifying one or more contaminants to be removed from a swing adsorption process; identifying a feed contaminant range for a feed stream to the swing adsorption process; identifying a product contaminant threshold for a product stream from the swing adsorption process; identifying a range of flow rates for the feed stream passing through the swing adsorption process; determining an adsorbent bed configuration for each of the adsorbent bed units in the swing adsorption system, wherein the adsorbent bed configuration is configured to provide a sharp adsorption front during the swing adsorption process; generating a swing adsorption configuration based on the identified one or more contaminants, the range of flow rates and/or the determined adsorbent bed configuration, wherein the swing adsorption system comprises a plurality of adsorbent bed units, wherein each of the plurality of adsorbent bed units comprise an adsorbent bed structure that has a plurality of channels passing through an adsorbent material; and fabricating the swing adsorption system based on the swing adsorption configuration.


In another configuration, a method for performing a swing adsorption process is described. The method comprising: a) performing a swing adsorption cycle, wherein the swing adsorption cycle comprises performing an adsorption step that comprises passing a feed stream through an adsorbent bed unit having an adsorbent bed to separate one or more contaminants from the feed stream to form a product stream, wherein the adsorbent bed has an adsorbent material and has a bed structure, the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries; b) determining whether the product stream satisfies a product contaminant threshold; c) if the product stream does not satisfy the product contaminant threshold, repeating steps a) to b) for at least one additional swing adsorption cycle; and d) if the product stream satisfies the product contaminant threshold; conducting away the product stream from the process. In this method, the swing adsorption process may be based on a generated swing adsorption configuration, as noted in the configuration above.


In yet another configuration, a cyclical swing adsorption system is described. The cyclical swing adsorption system comprises: a plurality of manifolds, wherein the plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, and a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step; a plurality of adsorbent bed units coupled to the plurality of manifolds, each of the adsorbent bed units comprising: a housing; an adsorbent material disposed within the housing and the adsorbent material forming a bed structure, wherein the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries in the bed structure; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material. In this system, the cyclical swing adsorption system, adsorption step and regeneration step may be based on a swing adsorption configuration, as noted in the configuration above.


In one or more configurations, the method or system may include various enhancements. The enhancements may include determining the adsorbent bed configuration comprises modeling the adsorbent bed based on i) a range of adsorbent porosities, ii) a range of adsorption isotherms for the adsorbent material, and iii) a range of channel geometries; determining whether the adsorbent bed configuration is configured to provide a sharp adsorption front comprises: calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels, and determining that the adsorption front is a sharp adsorption front when the ratio is greater than or equal to 1; wherein calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation: Da=Ni/Ji, wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species I; wherein determining the range of adsorbent porosities further comprises: determining a porosity of the adsorbent material, determining a porosity of a binder material, determining a porosity of a remaining material, and combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities; wherein a combination of material forms a mixed matrix adsorbent layer with three distinct porous regions: the micropores within the zeolite crystal, the mesopores within the binder material that surrounds the zeolite crystals and the macropores that fill the remaining space in the layer; further comprising determining thickness of the adsorbent material based on a bed structure and an adsorbent layer formulation; wherein the bed structure comprises length of the adsorbent bed, diameter of the adsorbent bed, volume of the passages through the adsorbent bed; wherein the bed structure comprises determining a range of flow rates, and then a number of adsorbent beds required given a specific adsorbent isotherm, channel configuration and purity constraint; wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 10 microns and 100 microns, in a range between 20 microns and 80 microns, in a range between 20 microns and 50 microns; wherein the swing adsorption configuration comprises a cycle time for the swing adsorption process in a range between 10 seconds and 1,200 seconds; wherein the one or more contaminants include H2O, CO2, H2S, N2, ethane, and propane; wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent to 60 mole percent, in a range between 5 mole percent and 30 mole percent, in a range between 5 mole percent and 20 mole percent, or in a range between 5 mole percent and 10 mole percent; and/or wherein the product contaminant threshold for a product stream is less than 50 parts per million volume of CO2.


Further, in other configurations, the enhancements may include wherein the cycle duration is for a period greater than 1 second and less than 600 seconds or the cycle duration is greater than 2 seconds and less than 180 seconds; wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream; wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is in the range of two hundred parts per million volume and less than or equal to about 2% volume of the gaseous feed stream; wherein the swing adsorption process is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million; comprising passing the product stream to a downstream process; wherein the downstream process is a liquefied natural gas (LNG) process that comprises an LNG process unit or is a cryogenic natural gas liquefaction (NGL) process having a NGL process unit; and/or wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent and 30 mole percent.


Moreover, in yet other configurations, the system may include various enhancements. The enhancements may include wherein the plurality of valves comprise one or more poppet valves; wherein plurality of manifolds, the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara; comprising a liquefied natural gas (LNG) process that comprises an LNG process unit and is configured to receive the product stream; comprising a cryogenic natural gas liquefaction (NGL) process having a NGL process unit and is configured to receive the product stream; wherein the adsorbent material disposed within the housing and the adsorbent material forming a bed structure is based on a calculated ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation: Da=Ni/Ji, wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species i; wherein determining the range of adsorbent porosities further comprises: determining a porosity of the adsorbent material; determining a porosity of a binder material; determining a porosity of a remaining material; and/or combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities.


Further still, in one or more configurations, a variety of adsorbent materials may be used to provide the mechanism for the separations. Examples include zeolite 3A, 4A, 5A, ZK4 and MOF-74. However, the process is not limited to these adsorbent materials, and others may be used as well. The present techniques may be further understood with reference to the FIGS. 1 to 7C below.



FIG. 1 is a three-dimensional diagram of the swing adsorption system 100 having six adsorbent bed units and interconnecting piping. While this configuration is a specific example, the present techniques broadly relate to adsorbent bed units that can be deployed in a symmetrical orientation and/or non-symmetrical orientation. Further, this specific configuration is for exemplary purposes as other configurations may include different numbers of adsorbent bed units.


In this system, the adsorbent bed units, such as adsorbent bed unit 102, may be configured for a cyclical swing adsorption process for removing contaminants from feed streams (e.g., fluids, gaseous or liquids). For example, the adsorbent bed unit 102 may include various conduits (e.g., conduit 104) for managing the flow of fluids through, to or from the adsorbent bed within the adsorbent bed unit 102. These conduits from the adsorbent bed units 102 may be coupled to a manifold (e.g., manifold 106) to distribute the flow to, from or between components. The adsorbent bed within an adsorbent bed unit may separate one or more contaminants from the feed stream to form a product stream. As may be appreciated, the adsorbent bed units may include other conduits to control other fluid steams as part of the process, such as purge streams, depressurizations streams, and the like. In particular, the adsorbent bed units may include equipment, such as one or more heating units (not shown), one or more manifolds, which may be one of the manifolds 106, and one or more expanders, as noted further below. Further, the adsorbent bed unit may also include one or more equalization vessels, such as equalization vessel 108, which are dedicated to the adsorbent bed unit and may be dedicated to one or more step in the swing adsorption process. The equalization vessel 108 may be used to store the streams in one or more steps in the cycle.


As an example, which is discussed further below in FIG. 2, the adsorbent bed unit 102 may include a housing, which may include a head portion and other body portions, that forms a substantially gas impermeable partition, an adsorbent bed disposed within the housing and a plurality of valves (e.g., poppet valves) providing fluid flow passages through openings in the housing between the interior region of the housing and locations external to the interior region of the housing. Each of the poppet valves may include a disk element that is seatable within the head or a disk element that is seatable within a separate valve seat inserted within the head (not shown). The configuration of the poppet valves may be any variety of valve patterns or configuration of types of poppet valves. As an example, the adsorbent bed unit may include one or more poppet valves, each in flow communication with a different conduit associated with different streams. The poppet valves may provide fluid communication between the adsorbent bed and one of the respective conduits, manifolds or headers. The term “in direct flow communication” or “in direct fluid communication” means in direct flow communication without intervening valves or other closure means for obstructing flow. As may be appreciated, other variations may also be envisioned within the scope of the present techniques.


The adsorbent bed comprises a solid adsorbent material capable of adsorbing one or more components from the feed stream. Such solid adsorbent materials are selected to be durable against the physical and chemical conditions within the adsorbent bed unit 102 and can include metallic, ceramic, or other materials, depending on the adsorption process. Further examples of adsorbent materials are noted further below.



FIG. 2 is a diagram of a portion of an adsorbent bed unit 200 having valve assemblies and manifolds in accordance with an embodiment of the present techniques. The portion of the adsorbent bed unit 200, which may be a portion of the adsorbent bed unit 102 of FIG. 1, includes a housing or body, which may include a cylindrical wall 214 and cylindrical insulation layer 216 along with an upper head 218 and a lower head 220. An adsorbent bed 210 is disposed between an upper head 218 and a lower head 220 and the insulation layer 216, resulting in an upper open zone, and lower open zone, which open zones are comprised substantially of open flow path volume. Such open flow path volume in adsorbent bed unit contains gas that has to be managed for the various steps. The housing may be configured to maintain a pressure from 0 bara (bar absolute) or 0.1 bara to 150 bara within the interior region.


The upper head 218 and lower head 220 contain openings in which valve structures can be inserted, such as valve assemblies 222 to 240 (i.e., 222, 224, 226, 228, 230, 232, 234, 236, 238 and 240), respectively (e.g., poppet valves). The upper or lower open flow path volume between the respective head 218 or 220 and adsorbent bed 210 can also contain distribution lines (not shown) which directly introduce fluids into the adsorbent bed 210. The upper head 218 contains various openings (not show) to provide flow passages through the inlet manifolds 242 and 244 and the outlet manifolds 248, 250 and 252, while the lower head 220 contains various openings (not shown) to provide flow passages through the inlet manifold 254 and the outlet manifolds 256, 258 and 260. Disposed in fluid communication with the respective manifolds 242 to 260 are the valve assemblies 222 to 240. If the valve assemblies 222 to 240 are poppet valves, each may include a disk element connected to a stem element which can be positioned within a bushing or valve guide. The stem element may be connected to an actuating means, such as actuating means (not shown), which is configured to have the respective valve impart linear motion to the respective stem. As may be appreciated, the actuating means may be operated independently for different steps in the process to activate a single valve or a single actuating means may be utilized to control two or more valves. Further, while the openings may be substantially similar in size, the openings and inlet valves for inlet manifolds may have a smaller diameter than those for outlet manifolds, given that the gas volumes passing through the inlets may tend to be lower than product volumes passing through the outlets.


In swing adsorption processes, the cycle involves two or more steps that each has a certain time interval, which are summed together to be the cycle time or cycle duration. These steps include regeneration of the adsorbent bed following the adsorption step using a variety of methods including pressure swing, vacuum swing, temperature swing, purging (via any suitable type of purge fluid for the process), and combinations thereof. As an example, a PSA cycle may include the steps of adsorption, depressurization, purging, and re-pressurization. When performing the separation at high pressure, depressurization and re-pressurization (which may be referred to as equalization) may be performed in multiple steps to reduce the pressure change for each step and enhance efficiency. In some swing adsorption processes, such as rapid cycle swing adsorption processes, a substantial portion of the total cycle time is involved in the regeneration of the adsorbent bed. Accordingly, any reductions in the amount of time for regeneration results in a reduction of the total cycle time. This reduction may also reduce the overall size of the swing adsorption system.


Further, one or more of the manifolds and associated valves may be utilized as a dedicated flow path for one or more streams. For example, during the adsorption or feed step, the manifold 242 and valve assembly 222 may be utilized to pass the feed gas stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the product stream from the adsorbent bed 210. During the regeneration or purge step, the manifold 244 and valve assembly 224 may be utilized to pass the purge or heating stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the purge product stream from the adsorbent bed 210. Further, the manifold 254 and valve assembly 232 may be utilized for a cooling stream, while the valve assembly 230 and manifold 252 may be used to conduct away the cooling product stream from the adsorbent bed 210. As may be appreciated, the purge stream and/or cooling stream may be configured to flow counter current to the feed stream in certain embodiments.


Alternatively, the swing adsorption process may involve sharing one or more of the manifolds and associated valves. Beneficially, this configuration may be utilized to lessen any additional valves or connections for adsorbent bed unit configurations that are subject to space limitations on the respective heads.


As noted above, the present techniques include various procedures that may be utilized for generating a swing adsorption system to perform a swing adsorption process. The present techniques may involve modeling the transition of different streams within the adsorbent bed units for a swing adsorption configuration between the steps in the cycle. The present techniques may include determining various features or settings for a swing adsorption configuration. For example, the present techniques may include identifying one or more contaminants to be removed from a swing adsorption process; identifying a feed contaminant range for a feed stream to the swing adsorption process; identifying a product contaminant threshold for a product stream from the swing adsorption process; identifying a range of flow rates for the feed stream passing through the swing adsorption process; determining a swing adsorption system configuration for the swing adsorption process, wherein the swing adsorption system may include specific settings for adsorbent bed configurations, which are configured to provide a sharp adsorption front. Then, the present techniques may include generating a representation of an swing adsorption configuration, which may include specific swing adsorbent beds, based on the identified one or more contaminants, the range of flow rates and/or the determined adsorbent bed configuration, wherein the adsorbent bed comprises an adsorbent bed structure that comprises a plurality of channels passing through the adsorbent bed and adsorbent material and fabricating the swing adsorption configuration, such as the individual adsorbent beds, based on the modeling. The determination of the swing adsorption configuration comprises modeling the adsorbent bed units based on i) a range of adsorbent porosities; ii) a range of adsorption isotherms for the adsorbent material; and iii) a range of channel geometries.


As an example, FIG. 3 is an exemplary flow chart for generating and using a swing adsorption process in accordance with an embodiment of the present techniques. In this flow chart 300, a swing adsorption system may be generated and fabricated to perform a swing adsorption process that may remove one or more contaminants from a feed stream. The flow chart 300 may include determining and fabricating a swing adsorption system, as shown in blocks 302 to 310 (i.e., 302, 304, 306, 308 and 310). Then, the swing adsorption system may be deployed and used to perform the swing adsorption process, which removes one or more contaminants from a feed stream and passed to the downstream equipment, as shown in blocks 312 to 322 (i.e., 312, 314, 316, 318, 320 and 322).


The process begins by determining and fabricating a swing adsorption system, as shown in blocks 302 to 310. At block 302, specifications are obtained for feed stream and product stream. The specifications may include identifying a feed contaminant range for a feed stream to the swing adsorption process; identifying a product contaminant threshold for a product stream from the swing adsorption process; and/or identifying a range of flow rates for the feed stream passing through the swing adsorption process. The specifications for the feed stream may include contaminants, such as water and CO2. For example, the feed stream may include water content in a range between 10 parts per million (ppm) to 2,000 ppm or in a range between 50 parts per million (ppm) to 800 ppm, while the feed stream may include a CO2 content in the range between 80 mole percent to 50 ppm. The specifications for the product stream may include water content less than 10 ppm, less than 5 ppm, less than 1 ppm, or less than 0.1 ppm and/or may include a CO2 content less than 10 mol %, less than 2 mol % or less than 50 ppm. The feed stream may also include methane, propane, butane, nitrogen and other components that are substantially passed through the system. At block 304, one or more contaminants are identified to be removed from the feed stream. The one or more contaminants may be removed in an adsorption step, and the contaminants conducted away from the swing adsorption system in a regeneration step. The regeneration step may include one or more purge steps (e.g., passing the purge stream through the adsorbent bed units to create a purge product stream that is conducted away from the adsorbent bed units). The product purge stream may include the external stream and a portion of the contaminants within the adsorbent bed. At block 306, flow rates for the streams are identified. The identifying flow rates may include determining a range of flow rates for the feed stream passing through the swing adsorption process. The flow rates may include flow rates from 50 million standard cubic feet per day (mmscfd) to 800 mmscfd. At block 308, the swing adsorption configuration may be generated based on flow rates and specifications. The swing adsorption configuration may include two or more adsorbent bed units and each of the two or more adsorbent bed units may include an adsorbent bed configuration. The adsorbent bed configuration may be configured to provide a sharp adsorption front during the swing adsorption process. The adsorbent bed configuration may comprise modeling the adsorbent bed or adsorbent bed unit based on i) a range of adsorbent porosities; ii) a range of adsorption isotherms for the adsorbent material; and iii) a range of channel geometries. Also, the adsorbent bed configuration may be configured to provide a sharp adsorption front comprises: calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels; and determining that the adsorption front is a sharp adsorption front when the ratio is greater than or equal to 1. At block 310, the swing adsorption configuration may be used to fabricate the swing adsorption system. The fabrication of the swing adsorption system may include fabricating the adsorbent bed based on the adsorbent bed configuration, installing the adsorbent bed into an adsorbent bed unit, coupling conduits and/or manifolds to the adsorbent bed units in the swing adsorption system.


After being fabricated, the swing adsorption system may be deployed and used to perform the swing adsorption process, which removes one or more contaminants from a feed stream and passed to the downstream equipment, as shown in blocks 312 to 322. At block 312, the swing adsorption system may be deployed. The deployment of the swing adsorption system may involve fabricating an adsorbent bed based on the adsorbent bed configuration, assembling the adsorbent bed units (e.g., housing and adsorbent bed), coupling conduits and manifolds to the adsorbent bed units, and shipping the equipment and/or swing adsorption system to the location for performing the swing adsorption process. At block 314, the swing adsorption system may begin processing of the feed stream. The swing adsorption system may involve beginning swing adsorption process in a startup mode, which may be operated at reduced flow rates until operating properly and converted to normal mode. At block 316, the product stream from the swing adsorption system is monitored. The monitoring the product stream may be measured by a temperature sensor and/or a gas chromatograph or using another gas component analysis equipment. The product stream may also be measured by taking samples, using a moisture analyzer. Then, at block 318, a determination may be made whether the product stream is within the respective specification. The determination may include analyzing the product stream to determine the level of one or more of the contaminants is below the specification. If the product stream is within specification (e.g., contaminants are at or below a specific threshold), the product stream may be passed to downstream process, as shown in block 322. The downstream processes may include a CFZ process, a cryogenic NGL recovery process, or an LNG process, with the associated equipment for each. However, if the product stream is not within specifications, the product stream may be swing adsorption system may be adjusted, as shown in block 320. The adjustment of the swing adsorption system may include performing additional generation of a swing adsorption system in block 308 and/or adjusting the operation of the swing adsorption system.


As an example, FIG. 4 is an exemplary flow chart for generating and modeling a swing adsorption process in accordance with an embodiment of the present techniques. In this flow chart 400, a swing adsorption system may be generated and modeled to perform a swing adsorption process that may remove one or more contaminants from a feed stream, which is a detailed version of generation in block 308 of FIG. 3. The flow chart 400 may include determining properties and settings for a swing adsorption system, as shown in blocks 402 to 410 (i.e., 402, 404, 406, 408 and 410). Then, the swing adsorption configuration may be modeled to simulate performance of the swing adsorption process, as shown in blocks 412 to 420.


The process begins by determining properties and settings for a swing adsorption system, as shown in blocks 402 to 410. At block 402, specifications and flow rates are obtained. The specifications and flow rates may be for various streams, such as the feed stream and product stream, which may be similar to the determinations in block 302 of FIG. 3. The specifications and flow rates may be adjusted to be settings for the modeling, which may be specific values or ranges of values. At block 404, a range of porosities of the adsorbent material are identified. The range of porosities in the adsorbent coating may be in the range between 20% and 80% or in a range between 30% and 50%. At block 406, a range of adsorption isotherms for the adsorbent material are identified. The identifying adsorption isotherms for the adsorbent material are described further below in FIGS. 7A to 7C. At block 408, a range of channel geometries in the bed structure are identified. The identifying channel geometries for the adsorbent bed structure may include square, round, trapezoidal, triangular, or rectangular shapes, which are described further in FIGS. 6A to 6C. At block 410, the settings for the swing adsorption configuration may be determined. The determination of the settings may include defining values for the modeling based on the obtained specifications and flow rates, identified range of porosities of the adsorbent material, identified range of adsorption isotherms for the adsorbent material, and/or identified range of channel geometries in the bed structure. The settings may be associated with individual swing adsorption configurations and/or a set of swing adsorption configurations.


Once the settings are determined, the swing adsorption configuration may be modeled to simulate performance of the swing adsorption process, as shown in blocks 412 to 420 (i.e., 412, 414, 416, 418 and 420). At block 412, the swing adsorption process with the swing adsorption configuration is modeled. The modeling of the swing adsorption configuration may include simulation of the time dependent bed loading, pressure and temperature during each stage of the swing adsorption process. The modeling of the swing adsorption process with the settings for the swing adsorption configuration is used to generate model results. The modeling may include performing the steps of simulating the time dependent coupled flow of fluid through the channels of the adsorption bed, and the adsorption of each species in the adsorbent coating, and the heat transfer within the adsorbent coating and bed structure. The model results may include the time dependent evolution of pressure, temperature, flow rate, and concentration in each process stream during every step in the swing adsorption process. At block 414, the model results for the swing adsorption configuration may be evaluated. The evaluation of the swing adsorption configurations may include determining an objective function, calculating a values of the objective function, and analyzing the objective function values to determine modifications to the swing adsorption configuration. Then, at block 416, a determination may be made whether the modeling results are within the respective specification. The determination may include analyzing the product stream in the modeling results to determine the level of one or more of the contaminants is below the specification. If the modeling results is within specification (e.g., contaminants are at or below a specific threshold), the swing adsorption configuration may be outputted, as shown in block 420. The outputting of the swing adsorption configuration may include storing the swing adsorption configuration and/or displaying the swing adsorption configuration. However, if the modeling results are not within specifications, the settings in the swing adsorption configuration may be adjusted, as shown in block 418. The adjustment of the swing adsorption configuration may include adjusting the settings, which may be based on the evaluation of the modeling results (e.g., objective function values or a notification based on the objective functions). Then, the modeling of the swing adsorption process with the swing adsorption configuration may be repeated with the adjusted settings.


In other configurations, the modeling of the swing adsorption process with the swing adsorption configuration may be repeated numerous times to generate a set of swing adsorption configurations. Then, the set of swing adsorption configurations may be ranked and evaluated against a pre-determined set of criteria that may include product purity, total throughput and minimal energy consumption.


By way of example, the present techniques may include additional steps or mechanisms to model and generate a swing adsorption system associated with the transition of streams within the adsorbent beds between the steps in the swing adsorption cycle. In particular, the method may be used to fabricate and utilize the rapid cycle swing adsorption process, which is shown in FIGS. 5 to 7C.



FIG. 5 is an exemplary diagram 500 of the transport process used in generating a swing adsorption process in accordance with an embodiment of the present techniques. In this diagram 500, the feed stream gas flow passes through a passage, as shown along the arrow 502. A gas film forms between the line 504 and the adsorbent material, which is shown as a coating layer 506 that includes adsorbent particles 508. A portion of the feed stream passes into the coating layer 506, which is shown along arrow 510. An expanded view of this stream as it moves through coating layer 506 is shown in diagram 520. The stream, as shown along arrow 510, passes along the adsorbent particle 522. The contaminants from the stream interact with the absorbent particle 522 to form a contaminant layer 528, and the contaminants are adsorbed by the adsorbent particle as shown along arrow 524.



FIGS. 6A, 6B, and 6C are exemplary diagrams 600, 620, and 640 of channels used for generating a swing adsorption process in accordance with an embodiment of the present techniques. FIG. 6A is a diagram 600 of rectangular channel 602, which may be a foil cell. The rectangular channel has an adsorbent layer 604 that is disposed on some of the surfaces of the support structure 606. The adsorbent material may be disposed on each of the support structures forming the rectangular channel 602 or may be disposed on one or more of the support structures forming the rectangular channel 602.



FIG. 6B is a diagram 620 of trapezoidal channel 622, which may be a foil cell construction. The trapezoidal channel has an adsorbent layer 624 that is disposed on some of the surfaces of the foil cell 628 which may be optionally further supported by a separate support structure 626. The adsorbent material may be disposed on each of the foil cells forming the trapezoidal cell or channel 622 or may be disposed on one or more sheets of foil and forming the trapezoidal cell or channel 622.



FIG. 6C is a diagram 640 of trapezoidal channel 642, which may be a mesh cell construction. The trapezoidal channel has an adsorbent layer 644 that is disposed on some of the surfaces of the mesh cell 648 which may be optionally further supported by a separate support structure 646. The adsorbent material may be disposed on each of the mesh cells forming the trapezoidal cell or channel 642 or may be disposed on one or more sheets of mesh and forming the trapezoidal cell channel 642.



FIGS. 7A, 7B, and 7C are exemplary diagrams 700, 720, and 740 of isotherms used for generating a swing adsorption process in accordance with an embodiment of the present techniques. FIG. 7A is a diagram 700 of water (H2O) isotherms for 3A adsorbent crystals. In this diagram 700, various responses 706, 708, 710, 712 and 714 are shown along a pressure axis 702 in bars and a loading axis 704 in milli-moles per gram (mmol/g). The response 706 is a water isotherm at 25° C., while the response 708 is a water isotherm at 50° C., the response 710 is a water isotherm at 100° C., the response 712 is a water isotherm at 125° C., and the response 714 is a water isotherm at 150° C. FIGS. 7B and 7C are CO2 and CH4 isotherms, respectively, for 5A adsorbent crystals. FIG. 7B is a diagram 720 of carbon dioxide (CO2) isotherms for 5A adsorbent crystals. In this diagram 720, various responses 726, 728 and 730 are shown along a pressure axis 722 in torr and a loading axis 724 in milli-moles per gram (mmol/g). The response 726 is a CO2 isotherm at 30° C., while the response 728 is a CO2 isotherm at 120° C., and the response 730 is a CO2 isotherm at 200° C. FIG. 7C is a diagram 740 of methane (CH4) isotherms for 5A adsorbent crystals. In this diagram 740, various responses 746, 748 and 750 are shown along a pressure axis 742 in bar and a loading axis 744 in milli-moles per gram (mmol/g). The response 746 is a CH4 isotherm at 28° C., while the response 748 is a CH4 isotherm at 60° C., and the response 750 is a CH4 isotherm at 75° C.


In one or more embodiments, the material may include an adsorbent material supported on a non-adsorbent support. The adsorbent materials may include alumina, microporous zeolites, carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, aluminum phosphorous and oxygen (ALPO) materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), silicon aluminum phosphorous and oxygen (SAPO) materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), metal organic framework (MOF) materials (microporous and mesoporous materials comprised of a metal organic framework) and zeolitic imidazolate frameworks (ZIF) materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary amines and other non protogenic basic groups such as amidines, guanidines and biguanides.


In one or more embodiments, the adsorbent bed unit may be utilized to separate contaminants from a feed stream. The method may include a) passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion; b) interrupting the flow of the gaseous feed stream; performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit; c) performing an optional heating step, wherein the heating step increases the temperature of the adsorbent bed unit to form a temperature differential between the feed end of the adsorbent bed and the product end of the adsorbent bed; and d) performing a cooling step, wherein the cooling step reduces the temperature within the adsorbent bed unit; e) performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; and repeating the steps a) to e) for at least one additional cycle.


In one or more embodiments, when using RCTSA or an integrated RCPSA and RCTSA process, the total cycle times are typically less than 600 seconds, preferably less than 400 seconds, preferably less than 300 seconds, preferably less than 250 seconds, preferably less than 180 seconds, more preferably less than 90 seconds, and even more preferably less than 60 seconds. In other embodiment, the rapid cycle configuration may be operated at lower flow rates, which may result in the cycle durations being longer than the cycle durations. For example, the cycle duration may be extended to 1,000 seconds for some cycles.


EMBODIMENTS
Embodiment 1

A method for fabricating a swing adsorption system to perform a swing adsorption process, the method comprising:

    • a. identifying one or more contaminants to be removed from a swing adsorption process;
    • b. identifying a feed contaminant range for a feed stream to the swing adsorption process;
    • c. identifying a product contaminant threshold for a product stream from the swing adsorption process;
    • d. identifying a range of flow rates for the feed stream passing through the swing adsorption process;
    • e. determining an adsorbent bed configuration for each of the adsorbent bed units in the swing adsorption system, wherein the adsorbent bed configuration is configured to provide a sharp adsorption front during the swing adsorption process;
    • f. generating a swing adsorption configuration based on the identified one or more contaminants, the range of flow rates and/or the determined adsorbent bed configuration, wherein the swing adsorption system comprises a plurality of adsorbent bed units, wherein each of the plurality of adsorbent bed units comprise an adsorbent bed structure that has a plurality of channels passing through an adsorbent material; and
    • g. fabricating the swing adsorption system based on the swing adsorption configuration.


Embodiment 2

The method of claim 1, wherein determining the adsorbent bed configuration comprises modeling the adsorbent bed based on i) a range of adsorbent porosities; ii) a range of adsorption isotherms for the adsorbent material; and iii) a range of channel geometries.


Embodiment 3

The method of any one of claims 1 to 2, determining whether the adsorbent bed configuration is configured to provide a sharp adsorption front comprises:

    • calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels; and
    • determining that the adsorption front is a sharp adsorption front when the ratio is greater than or equal to 1.


Embodiment 4

The method of claim 3, wherein calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation:

Da=Ni/Ji

wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species i.


Embodiment 5

The method of claim 4, wherein calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels further comprises determining an effective diffusion rate constant of species i through the macropores, kimacro, an effective diffusion rate constant of species i through the mesopores, kimeso, an effective diffusion rate constant of species i through the micropores, kimicro, an effective diffusion rate constant of species i through the gas film, kifilm, and a total effective diffusion rate constant, kit.


Embodiment 6

The method of claim 4, wherein the pressure drop across at least one if the adsorbent bed unit (ΔP) is determined by the following equations:

ΔP=LFdrag;


wherein:


L is equal to the effective length of the adsorbent bed structure,








F
drag

=



2

Re





μ





u


d
h
2




{




24


f
ar


Re

[

1
-

1

1
+

exp


(

-


Re
-
2100

300


)





]

+


0.0791

Re
0.25


[

1

1
+

exp


(

-


Re
-
2100

300


)




]


}



,




and






1
-

1.3553






a
r


+

1.9467






a
r
2


-

1.7012






a
r
3


+

0.9654






a
r
4


-

0.2537







a
r
5

.






Embodiment 7

The method of claim 6, wherein the pressure drop across at least one of the adsorbent bed units (ΔP) is designed to be less than 20% of the overall system pressure drop of the swing adsorption system.


Embodiment 8

The method of claim 2, wherein determining the range of adsorbent porosities further comprises:

    • determining a porosity of the adsorbent material;
    • determining a porosity of a binder material;
    • determining a porosity of a remaining material; and
    • combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities.


Embodiment 9

The method of claim 2, wherein a combination of material forms a mixed matrix adsorbent layer with three distinct porous regions: the micropores within the zeolite crystal, the mesopores within the binder material that surrounds the zeolite crystals and the macropores that fill the remaining space in the layer.


Embodiment 10

The method of claim 2, further comprising determining thickness of the adsorbent material based on a bed structure and an adsorbent layer formulation.


Embodiment 11

The method of claim 1, wherein the bed structure comprises length of the adsorbent bed, diameter of the adsorbent bed, volume of the passages through the adsorbent bed.


Embodiment 12

The method of claim 1, wherein the bed structure comprises determining a range of flow rates, and then a number of adsorbent beds required given a specific adsorbent isotherm, channel configuration and purity constraint.


Embodiment 13

The method of any one of claims 1 to 12, wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 10 microns and 100 microns.


Embodiment 14

The method of any one of claims 1 to 12, wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 20 microns and 80 microns.


Embodiment 15

The method of any one of claims 1 to 12, wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 20 microns and 50 microns.


Embodiment 16

The method of any one of claims 1 to 15, wherein the swing adsorption configuration comprises a cycle time for the swing adsorption process in a range between 10 seconds and 1,200 seconds.


Embodiment 17

The method of any one of claims 1 to 16, wherein the one or more contaminants include H2O, CO2, H2S, N2, ethane, and propane.


Embodiment 18

The method of claim 17, wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent to 60 mole percent.


Embodiment 19

The method of claim 17, wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent and 30 mole percent.


Embodiment 20

The method of claim 17, wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent and 20 mole percent.


Embodiment 21

The method of claim 17, wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent and 10 mole percent.


Embodiment 22

The method of any one of claims 1 to 21, wherein the product contaminant threshold for a product stream is less than 50 parts per million volume of CO2.


Embodiment 23

A method for performing a swing adsorption process, the method comprising:

    • a. performing a swing adsorption cycle, wherein the swing adsorption cycle comprises performing an adsorption step that comprises passing a feed stream through an adsorbent bed unit having an adsorbent bed to separate one or more contaminants from the feed stream to form a product stream, wherein the adsorbent bed has an adsorbent material and has a bed structure, the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries;
    • b. determining whether the product stream satisfies a product contaminant threshold;
    • c. if the product stream does not satisfy the product contaminant threshold, repeating steps a) to b) for at least one additional swing adsorption cycle; and
    • d. if the product stream satisfies the product contaminant threshold; conducting away the product stream from the process.


Embodiment 24

The method of claim 23, wherein the cycle duration is for a period greater than 1 second and less than 600 seconds.


Embodiment 25

The method of claim 23, wherein the cycle duration is greater than 2 seconds and less than 180 seconds.


Embodiment 26

The method of any one of claims 23 to 25, wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream.


Embodiment 27

The method of any one of claims 23 to 26, wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is in the range of two hundred parts per million volume and less than or equal to about 2% volume of the gaseous feed stream.


Embodiment 28

The method of any one of claims 23 to 27, wherein the swing adsorption process is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million.


Embodiment 29

The method of any one of claims 23 to 28, further comprising passing the product stream to a downstream process.


Embodiment 30

The method of claim 29, wherein the downstream process is a liquefied natural gas (LNG) process that comprises an LNG process unit.


Embodiment 31

The method of claim 29, wherein the downstream process is a cryogenic natural gas liquefaction (NGL) process that comprises a NGL process unit.


Embodiment 32

The method of any one of claims 23 to 31, wherein the swing adsorption process is based on the swing adsorption configuration of claim 1.


Embodiment 33

A cyclical swing adsorption system comprising:

    • a. a plurality of manifolds, wherein the plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, and a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step;
    • b. a plurality of adsorbent bed units coupled to the plurality of manifolds, each of the adsorbent bed units comprising:
      • i. a housing;
      • ii. an adsorbent material disposed within the housing and the adsorbent material forming a bed structure, wherein the adsorbent bed is fabricated based on a combination of a range of porosities of the adsorbent material; a range of adsorption isotherms for the adsorbent material; and a range of channel geometries in the bed structure;
      • iii. a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material.


Embodiment 34

The cyclical swing adsorption system of claim 33, wherein the plurality of valves comprise one or more poppet valves.


Embodiment 35

The cyclical swing adsorption system of any one of claims 33 to 34, wherein plurality of manifolds, the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara.


Embodiment 36

The cyclical swing adsorption system of any one of claims 33 to 35, further comprising a liquefied natural gas (LNG) process that comprises an LNG process unit and is configured to receive the product stream.


Embodiment 37

The cyclical swing adsorption system of any one of claims 33 to 36, further comprising a cryogenic natural gas liquefaction (NGL) process comprises a NGL process unit and is configured to receive the product stream.


Embodiment 38

The cyclical swing adsorption system of any one of the claims 33 to 37, wherein the adsorbent material disposed within the housing and the adsorbent material forming a bed structure is based on a calculated ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation:

Da=Ni/Ji

wherein Da is the Damkohler number, Ni is the total molar adsorption rate of species i and Ji is the total molar flow rate through the channels of species i.


Embodiment 39

The cyclical swing adsorption system of claim 38, wherein determining the range of adsorbent porosities further comprises:

    • a. determining a porosity of the adsorbent material;
    • b. determining a porosity of a binder material;
    • c. determining a porosity of a remaining material; and
    • d. combining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities.


Embodiment 40

The cyclical swing adsorption system of any one of claims 33 to 39, wherein the cyclical swing adsorption system, adsorption step and regeneration step are based on the swing adsorption configuration of claim 1.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.

Claims
  • 1. A method for fabricating a swing adsorption system to perform a swing adsorption process, the method comprising: a. identifying one or more contaminants to be removed from a swing adsorption process;b. identifying a feed contaminant range for a feed stream to the swing adsorption process;c. identifying a product contaminant threshold for a product stream from the swing adsorption process;d. identifying a range of flow rates for the feed stream passing through the swing adsorption process;e. determining an adsorbent bed configuration for each of a plurality of adsorbent bed units in the swing adsorption system, each of the plurality of adsorbent bed units having an adsorbent bed structure, the adsorbent bed structure having a plurality of channels passing through an adsorbent material, the adsorbent material comprising an adsorbent layer in each of the plurality of channels, wherein the adsorbent bed configuration is configured to provide a sharp adsorption front during the swing adsorption process;f. generating a swing adsorption configuration based on the identified one or more contaminants, the range of flow rates and/or the determined adsorbent bed configuration; andg. fabricating the swing adsorption system based on the swing adsorption configuration;wherein determining whether the adsorbent bed configuration is configured to provide the sharp adsorption front comprises: calculating a ratio of an adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels; anddetermining that the adsorption front is a sharp adsorption front when the ratio is greater than or equal to 1;wherein calculating the ratio of the adsorption rate into the adsorbent layer to a convection rate along one of the plurality of the channels comprises solving the following equation (e1):
  • 2. The method of claim 1, wherein determining the adsorbent bed configuration comprises modeling the adsorbent bed based on i) a range of adsorbent porosities; ii) a range of adsorption isotherms for the adsorbent material; and iii) a range of channel geometries.
  • 3. The method of claim 2, wherein a pressure drop across at least one of the adsorbent bed units (ΔP) is determined by the following equations:
  • 4. The method of claim 3, wherein the pressure drop across at least one of the adsorbent bed units (ΔP) is designed to be less than 20% of the overall system pressure drop of the swing adsorption system.
  • 5. The method of claim 2, wherein determining the range of adsorbent porosities further comprises: determining a porosity of the adsorbent material;determining a porosity of a binder material;determining a porosity of a remaining material; andcombining the porosity of the adsorbent material, the porosity of a binder material and the porosity of a remaining material to form the range of adsorbent porosities.
  • 6. The method of claim 2, wherein a combination of material forms a mixed matrix adsorbent layer with three distinct porous regions: the micropores within the zeolite crystal, the mesopores within the binder material that surrounds the zeolite crystals and the macropores that fill the remaining space in the adsorbent layer.
  • 7. The method of claim 2, further comprising determining thickness of the adsorbent material based on the adsorbent bed structure and an adsorbent layer formulation, wherein the adsorbent bed structure comprises length of the adsorbent bed, diameter of the adsorbent bed, volume of the passages through the adsorbent bed.
  • 8. The method of claim 1, wherein the adsorbent bed structure comprises determining a range of flow rates, and then a number of adsorbent beds required given a specific adsorbent isotherm, channel configuration and purity constraint.
  • 9. The method of claim 1, wherein the swing adsorption configuration comprises an adsorbent material thickness in a range between 10 microns and 100 microns.
  • 10. The method of claim 1, wherein the swing adsorption configuration comprises a cycle time for the swing adsorption process in a range between 10 seconds and 1,200 seconds.
  • 11. The method of claim 1, wherein the one or more contaminants include H2O, CO2, H2S, N2, ethane, and propane.
  • 12. The method of claim 11, wherein the one or more contaminants in the feed stream is CO2 in a range between 5 mole percent to 60 mole percent and the product contaminant threshold for a product stream is less than 50 parts per million volume of CO2.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/636,452 filed 28 Feb. 2018 entitled APPARATUS AND SYSTEM FOR SWING ADSORPTION PROCESSES, the entirety of which is incorporated by reference herein.

US Referenced Citations (458)
Number Name Date Kind
1868138 Fisk Jul 1932 A
3103425 Meyer Sep 1963 A
3124152 Payne Mar 1964 A
3142547 Marsh et al. Jul 1964 A
3508758 Strub Apr 1970 A
3594983 Yearout Jul 1971 A
3602247 Bunn et al. Aug 1971 A
3788036 Lee et al. Jan 1974 A
3967464 Cormier et al. Jul 1976 A
4187092 Woolley Feb 1980 A
4261815 Kelland Apr 1981 A
4324565 Benkmann Apr 1982 A
4325565 Winchell Apr 1982 A
4329162 Pitcher May 1982 A
4340398 Doshi et al. Jul 1982 A
4386947 Mizuno et al. Jun 1983 A
4421531 Dalton, Jr. et al. Dec 1983 A
4445441 Tanca May 1984 A
4461630 Cassidy et al. Jul 1984 A
4496376 Hradek Jan 1985 A
4631073 Null et al. Dec 1986 A
4693730 Miller et al. Sep 1987 A
4705627 Miwa et al. Nov 1987 A
4711968 Oswald et al. Dec 1987 A
4737170 Searle Apr 1988 A
4770676 Sircar et al. Sep 1988 A
4783205 Searle Nov 1988 A
4784672 Sircar Nov 1988 A
4790272 Woolenweber Dec 1988 A
4814146 Brand et al. Mar 1989 A
4816039 Krishnamurthy et al. Mar 1989 A
4877429 Hunter Oct 1989 A
4977745 Heichberger Dec 1990 A
5110328 Yokota et al. May 1992 A
5125934 Krishnamurthy et al. Jun 1992 A
5169006 Stelzer Dec 1992 A
5174796 Davis et al. Dec 1992 A
5224350 Mehra Jul 1993 A
5234472 Krishnamurthy et al. Aug 1993 A
5292990 Kantner et al. Mar 1994 A
5306331 Auvil et al. Apr 1994 A
5354346 Kumar Oct 1994 A
5365011 Ramachandran et al. Nov 1994 A
5370728 LaSala et al. Dec 1994 A
5486227 Kumar et al. Jan 1996 A
5547641 Smith et al. Aug 1996 A
5565018 Baksh et al. Oct 1996 A
5672196 Acharya et al. Sep 1997 A
5700310 Bowman et al. Dec 1997 A
5733451 Coellner et al. Mar 1998 A
5735938 Baksh et al. Apr 1998 A
5750026 Gadkaree et al. May 1998 A
5769928 Leavitt Jun 1998 A
5779768 Anand et al. Jul 1998 A
5792239 Reinhold, III et al. Aug 1998 A
5807423 Lemcoff et al. Sep 1998 A
5811616 Holub et al. Sep 1998 A
5827358 Kulish et al. Oct 1998 A
5882380 Sircar Mar 1999 A
5906673 Reinhold, III et al. May 1999 A
5912426 Smolarek. et al. Jun 1999 A
5914294 Park et al. Jun 1999 A
5924307 Nenov Jul 1999 A
5935444 Johnson et al. Aug 1999 A
5968234 Midgett, II et al. Oct 1999 A
5976221 Bowman et al. Nov 1999 A
5997617 Czabala et al. Dec 1999 A
6007606 Baksh et al. Dec 1999 A
6011192 Baker et al. Jan 2000 A
6023942 Thomas et al. Feb 2000 A
6053966 Moreau et al. Apr 2000 A
6063161 Keefer et al. May 2000 A
6096115 Kleinberg Aug 2000 A
6099621 Ho Aug 2000 A
6102985 Naheiri et al. Aug 2000 A
6129780 Millet et al. Oct 2000 A
6136222 Friesen et al. Oct 2000 A
6147126 DeGeorge et al. Nov 2000 A
6152991 Ackley Nov 2000 A
6156101 Naheiri Dec 2000 A
6171371 Derive et al. Jan 2001 B1
6176897 Keefer Jan 2001 B1
6179900 Behling et al. Jan 2001 B1
6183538 Naheiri Feb 2001 B1
6194079 Hekal Feb 2001 B1
6210466 Whysall et al. Apr 2001 B1
6231302 Bonardi May 2001 B1
6245127 Kane et al. Jun 2001 B1
6284021 Lu et al. Sep 2001 B1
6311719 Hill et al. Nov 2001 B1
6345954 Al-Himyary et al. Feb 2002 B1
6398853 Keefer et al. Jun 2002 B1
6402813 Monereau et al. Jun 2002 B2
6406523 Connor et al. Jun 2002 B1
6425938 Xu et al. Jul 2002 B1
6432379 Heung Aug 2002 B1
6436171 Wang et al. Aug 2002 B1
6444012 Dolan et al. Sep 2002 B1
6444014 Mullhaupt et al. Sep 2002 B1
6444523 Fan et al. Sep 2002 B1
6444610 Yamamoto Sep 2002 B1
6451095 Keefer et al. Sep 2002 B1
6457485 Hill et al. Oct 2002 B2
6458187 Fritz et al. Oct 2002 B1
6464761 Bugli Oct 2002 B1
6471749 Kawai et al. Oct 2002 B1
6471939 Boix et al. Oct 2002 B1
6488747 Keefer Dec 2002 B1
6497750 Butwell et al. Dec 2002 B2
6500234 Ackley et al. Dec 2002 B1
6500241 Reddy Dec 2002 B2
6500404 Camblor Fernandez et al. Dec 2002 B1
6503299 Baksh et al. Jan 2003 B2
6506351 Jain et al. Jan 2003 B1
6514318 Keefer Feb 2003 B2
6514319 Keefer et al. Feb 2003 B2
6517609 Monereau et al. Feb 2003 B1
6531516 Davis et al. Mar 2003 B2
6533846 Keefer et al. Mar 2003 B1
6565627 Golden et al. May 2003 B1
6565635 Keefer et al. May 2003 B2
6565825 Ohji et al. May 2003 B2
6572678 Wijmans et al. Jun 2003 B1
6579341 Baker et al. Jun 2003 B2
6593541 Herren Jul 2003 B1
6595233 Pulli Jul 2003 B2
6605136 Graham et al. Aug 2003 B1
6607584 Moreau et al. Aug 2003 B2
6630012 Wegeng et al. Oct 2003 B2
6631626 Hahn Oct 2003 B1
6641645 Lee et al. Nov 2003 B1
6651645 Nunez-Suarez Nov 2003 B1
6660064 Golden et al. Dec 2003 B2
6660065 Byrd et al. Dec 2003 B2
6692626 Keefer et al. Feb 2004 B2
6712087 Hill et al. Mar 2004 B2
6742507 Keefer et al. Jun 2004 B2
6746515 Wegeng et al. Jun 2004 B2
6752852 Jacksier et al. Jun 2004 B1
6770120 Neu et al. Aug 2004 B2
6773225 Yuri et al. Aug 2004 B2
6802889 Graham et al. Oct 2004 B2
6814771 Scardino et al. Nov 2004 B2
6835354 Woods et al. Dec 2004 B2
6840985 Keefer Jan 2005 B2
6866950 Connor et al. Mar 2005 B2
6889710 Wagner May 2005 B2
6890376 Arquin et al. May 2005 B2
6893483 Golden et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6916358 Nakamura et al. Jul 2005 B2
6918953 Lomax, Jr. et al. Jul 2005 B2
6921597 Keefer et al. Jul 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7025801 Monereau Apr 2006 B2
7027929 Wang Apr 2006 B2
7029521 Johansson Apr 2006 B2
7074323 Ghijsen Jul 2006 B2
7077891 Jaffe et al. Jul 2006 B2
7087331 Keefer et al. Aug 2006 B2
7094275 Keefer et al. Aug 2006 B2
7097925 Keefer et al. Aug 2006 B2
7112239 Kimbara et al. Sep 2006 B2
7117669 Kaboord et al. Oct 2006 B2
7122073 Notaro et al. Oct 2006 B1
7128775 Celik et al. Oct 2006 B2
7144016 Gozdawa Dec 2006 B2
7160356 Koros et al. Jan 2007 B2
7160367 Babicki et al. Jan 2007 B2
7166149 Dunne et al. Jan 2007 B2
7172645 Pfister et al. Feb 2007 B1
7189280 Alizadeh-Khiavi et al. Mar 2007 B2
7243679 Thelen Jul 2007 B2
7250073 Keefer et al. Jul 2007 B2
7250074 Tonkovich et al. Jul 2007 B2
7255727 Monereau et al. Aug 2007 B2
7258725 Ohmi et al. Aug 2007 B2
7276107 Baksh et al. Oct 2007 B2
7279029 Occhialini et al. Oct 2007 B2
7285350 Keefer et al. Oct 2007 B2
7297279 Johnson et al. Nov 2007 B2
7311763 Neary Dec 2007 B2
RE40006 Keefer et al. Jan 2008 E
7314503 Landrum et al. Jan 2008 B2
7354562 Ying et al. Apr 2008 B2
7387849 Keefer et al. Jun 2008 B2
7390350 Weist, Jr. et al. Jun 2008 B2
7404846 Golden et al. Jul 2008 B2
7438079 Cohen et al. Oct 2008 B2
7449049 Thomas et al. Nov 2008 B2
7456131 Klett et al. Nov 2008 B2
7510601 Whitley et al. Mar 2009 B2
7527670 Ackley et al. May 2009 B2
7553568 Keefer Jun 2009 B2
7578864 Watanabe et al. Aug 2009 B2
7604682 Seaton Oct 2009 B2
7637989 Bong Dec 2009 B2
7641716 Lomax, Jr. et al. Jan 2010 B2
7645324 Rode et al. Jan 2010 B2
7651549 Whitley Jan 2010 B2
7674319 Lomax, Jr. et al. Mar 2010 B2
7674539 Keefer et al. Mar 2010 B2
7687044 Keefer et al. Mar 2010 B2
7713333 Rege et al. May 2010 B2
7717981 LaBuda et al. May 2010 B2
7722700 Sprinkle May 2010 B2
7731782 Kelley et al. Jun 2010 B2
7740687 Reinhold, III Jun 2010 B2
7744676 Leitmayr et al. Jun 2010 B2
7744677 Barclay et al. Jun 2010 B2
7758051 Roberts-Haritonov et al. Jul 2010 B2
7758988 Keefer et al. Jul 2010 B2
7763098 Alizadeh-Khiavi et al. Jul 2010 B2
7763099 Verma et al. Jul 2010 B2
7792983 Mishra et al. Sep 2010 B2
7793675 Cohen et al. Sep 2010 B2
7806965 Stinson Oct 2010 B2
7819948 Wagner Oct 2010 B2
7828877 Sawada et al. Nov 2010 B2
7828880 Moriya et al. Nov 2010 B2
7854793 Rarig et al. Dec 2010 B2
7858169 Yamashita Dec 2010 B2
7862645 Whitley et al. Jan 2011 B2
7867320 Baksh et al. Jan 2011 B2
7902114 Bowie et al. Mar 2011 B2
7938886 Hershkowitz et al. May 2011 B2
7947118 Rarig et al. May 2011 B2
7947120 Deckman et al. May 2011 B2
7959720 Deckman et al. Jun 2011 B2
8016918 LaBuda et al. Sep 2011 B2
8034164 Lomax, Jr. et al. Oct 2011 B2
8071063 Reyes et al. Dec 2011 B2
8128734 Song Mar 2012 B2
8142745 Reyes et al. Mar 2012 B2
8142746 Reyes et al. Mar 2012 B2
8192709 Reyes et al. Jun 2012 B2
8210772 Gillecriosd Jul 2012 B2
8227121 Adams et al. Jul 2012 B2
8262773 Northrop et al. Sep 2012 B2
8262783 Stoner et al. Sep 2012 B2
8268043 Celik et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8272401 McLean Sep 2012 B2
8287629 Fujita et al. Oct 2012 B2
8319090 Kitamura Nov 2012 B2
8337594 Corma Canos et al. Dec 2012 B2
8361200 Sayari et al. Jan 2013 B2
8361205 Desai et al. Jan 2013 B2
8377173 Chuang Feb 2013 B2
8444750 Deckman et al. May 2013 B2
8449649 Greenough May 2013 B2
8470395 Khiavi et al. Jun 2013 B2
8480795 Siskin et al. Jul 2013 B2
8512569 Eaton et al. Aug 2013 B2
8518356 Schaffer et al. Aug 2013 B2
8529662 Kelley et al. Sep 2013 B2
8529663 Reyes et al. Sep 2013 B2
8529664 Deckman et al. Sep 2013 B2
8529665 Manning et al. Sep 2013 B2
8535414 Johnson et al. Sep 2013 B2
8545602 Chance et al. Oct 2013 B2
8551444 Agnihotri et al. Oct 2013 B2
8573124 Havran et al. Nov 2013 B2
8591627 Jain Nov 2013 B2
8591634 Winchester et al. Nov 2013 B2
8616233 McLean et al. Dec 2013 B2
8657922 Yamawaki et al. Feb 2014 B2
8673059 Leta et al. Mar 2014 B2
8680344 Weston et al. Mar 2014 B2
8715617 Genkin et al. May 2014 B2
8752390 Wright et al. Jun 2014 B2
8753428 Lomax, Jr. et al. Jun 2014 B2
8778051 Weist, Jr. et al. Jul 2014 B2
8784533 Leta et al. Jul 2014 B2
8784534 Kamakoti et al. Jul 2014 B2
8784535 Ravikovitch et al. Jul 2014 B2
8790618 Adams et al. Jul 2014 B2
8795411 Hufton et al. Aug 2014 B2
8808425 Genkin et al. Aug 2014 B2
8808426 Sundaram Aug 2014 B2
8814985 Gerds et al. Aug 2014 B2
8852322 Gupta et al. Oct 2014 B2
8858683 Deckman Oct 2014 B2
8875483 Wettstein Nov 2014 B2
8906138 Rasmussen et al. Dec 2014 B2
8921637 Sundaram et al. Dec 2014 B2
8939014 Kamakoti et al. Jan 2015 B2
9005561 Leta Apr 2015 B2
9017457 Tammera Apr 2015 B2
9028595 Sundaram et al. May 2015 B2
9034078 Wanni et al. May 2015 B2
9034079 Deckman May 2015 B2
9050553 Alizadeh-Khiavi et al. Jun 2015 B2
9067168 Frederick et al. Jun 2015 B2
9067169 Patel Jun 2015 B2
9095809 Deckman et al. Aug 2015 B2
9108145 Kalbassi et al. Aug 2015 B2
9120049 Sundaram et al. Sep 2015 B2
9126138 Deckman et al. Sep 2015 B2
9162175 Sundaram Oct 2015 B2
9168483 Ravikovitch et al. Oct 2015 B2
9168485 Deckman et al. Oct 2015 B2
9272264 Coupland Mar 2016 B2
9278338 Coupland Mar 2016 B2
9358493 Tammera et al. Jun 2016 B2
9573116 Johnson et al. Feb 2017 B2
9597655 Beeckman Mar 2017 B2
9737846 Carstensen et al. Aug 2017 B2
9744521 Brody et al. Aug 2017 B2
10040022 Fowler et al. Aug 2018 B2
10080991 Johnson et al. Sep 2018 B2
10080992 Nagavarapu et al. Sep 2018 B2
10124286 McMahon et al. Nov 2018 B2
20010047824 Hill et al. Dec 2001 A1
20020053547 Schlegel et al. May 2002 A1
20020124885 Hill et al. Sep 2002 A1
20020162452 Butwell et al. Nov 2002 A1
20030075485 Ghijsen Apr 2003 A1
20030129101 Zettel Jul 2003 A1
20030131728 Kanazirev et al. Jul 2003 A1
20030145726 Gueret et al. Aug 2003 A1
20030170527 Finn et al. Sep 2003 A1
20030188635 Lomax, Jr. et al. Oct 2003 A1
20030202918 Ashida et al. Oct 2003 A1
20030205130 Neu et al. Nov 2003 A1
20030223856 Yuri et al. Dec 2003 A1
20040099142 Arquin et al. May 2004 A1
20040118277 Kim Jun 2004 A1
20040118747 Cutler et al. Jun 2004 A1
20040197596 Connor et al. Oct 2004 A1
20040232622 Gozdawa Nov 2004 A1
20050045041 Hechinger et al. Mar 2005 A1
20050109419 Ohmi et al. May 2005 A1
20050114032 Wang May 2005 A1
20050129952 Sawada et al. Jun 2005 A1
20050014511 Keefer et al. Jul 2005 A1
20050145111 Keefer et al. Jul 2005 A1
20050150378 Dunne et al. Jul 2005 A1
20050229782 Monereau et al. Oct 2005 A1
20050252378 Celik et al. Nov 2005 A1
20060017940 Takayama Jan 2006 A1
20060048648 Gibbs et al. Mar 2006 A1
20060049102 Miller et al. Mar 2006 A1
20060076270 Poshusta et al. Apr 2006 A1
20060099096 Shaffer et al. May 2006 A1
20060105158 Fritz et al. May 2006 A1
20060116430 Wentink et al. Jun 2006 A1
20060116460 Georget et al. Jun 2006 A1
20060162556 Ackley et al. Jul 2006 A1
20060165574 Sayari Jul 2006 A1
20060169142 Rode et al. Aug 2006 A1
20060236862 Golden et al. Oct 2006 A1
20070084241 Kretchmer et al. Apr 2007 A1
20070084344 Moriya et al. Apr 2007 A1
20070222160 Roberts-Haritonov et al. Sep 2007 A1
20070253872 Keefer et al. Nov 2007 A1
20070261550 Ota Nov 2007 A1
20070261557 Gadkaree et al. Nov 2007 A1
20070283807 Whitley Dec 2007 A1
20080051279 Klett et al. Feb 2008 A1
20080072822 White Mar 2008 A1
20080128655 Garg et al. Jun 2008 A1
20080202336 Hofer et al. Aug 2008 A1
20080282883 Rarig et al. Nov 2008 A1
20080282884 Kelley et al. Nov 2008 A1
20080282885 Deckman et al. Nov 2008 A1
20080282886 Reyes et al. Nov 2008 A1
20080282887 Chance Nov 2008 A1
20080282892 Deckman et al. Nov 2008 A1
20080289497 Barclay et al. Nov 2008 A1
20080307966 Stinson Dec 2008 A1
20080314550 Greco Dec 2008 A1
20090004073 Gleize et al. Jan 2009 A1
20090014902 Koivunen et al. Jan 2009 A1
20090025553 Keefer et al. Jan 2009 A1
20090025555 Lively et al. Jan 2009 A1
20090037550 Mishra et al. Feb 2009 A1
20090071333 LaBuda et al. Mar 2009 A1
20090079870 Matsui Mar 2009 A1
20090107332 Wagner Apr 2009 A1
20090151559 Verma et al. Jun 2009 A1
20090162268 Hufton et al. Jun 2009 A1
20090180423 Kroener Jul 2009 A1
20090241771 Manning et al. Oct 2009 A1
20090284013 Anand et al. Nov 2009 A1
20090294366 Wright et al. Dec 2009 A1
20090308248 Siskin et al. Dec 2009 A1
20090314159 Haggerty Dec 2009 A1
20100059701 McLean Mar 2010 A1
20100077920 Baksh et al. Apr 2010 A1
20100089241 Stoner et al. Apr 2010 A1
20100186445 Minta et al. Jul 2010 A1
20100212493 Rasmussen et al. Aug 2010 A1
20100251887 Jain Oct 2010 A1
20100252497 Ellison et al. Oct 2010 A1
20100263534 Chuang Oct 2010 A1
20100282593 Speirs et al. Nov 2010 A1
20100288704 Amsden et al. Nov 2010 A1
20110011803 Koros Jan 2011 A1
20110020202 Gadkaree et al. Jan 2011 A1
20110031103 Deckman et al. Feb 2011 A1
20110067440 Van Aken Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110123878 Jangbarwala May 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110217218 Gupta et al. Sep 2011 A1
20110277620 Havran et al. Nov 2011 A1
20110291051 Hershkowitz et al. Dec 2011 A1
20110296871 Van Soest-Vercammen et al. Dec 2011 A1
20110308524 Brey et al. Dec 2011 A1
20120024150 Moniot Feb 2012 A1
20120024152 Yamawaki et al. Feb 2012 A1
20120031144 Northrop et al. Feb 2012 A1
20120067216 Corma-Canos et al. Mar 2012 A1
20120152115 Gerds et al. Jun 2012 A1
20120222551 Deckman Sep 2012 A1
20120222552 Ravikovitch et al. Sep 2012 A1
20120222553 Kamakoti et al. Sep 2012 A1
20120222554 Leta et al. Sep 2012 A1
20120222555 Gupta et al. Sep 2012 A1
20120255377 Kamakoti et al. Oct 2012 A1
20120272823 Halder et al. Nov 2012 A1
20120308456 Leta et al. Dec 2012 A1
20120312163 Leta et al. Dec 2012 A1
20130061755 Frederick et al. Mar 2013 A1
20130095996 Buelow et al. Apr 2013 A1
20130225898 Sundaram et al. Aug 2013 A1
20140013955 Tammera et al. Jan 2014 A1
20140060326 Sundaram et al. Mar 2014 A1
20140157984 Deckman et al. Jun 2014 A1
20140157986 Ravikovitch et al. Jun 2014 A1
20140208797 Kelley et al. Jul 2014 A1
20140216254 Tammera et al. Aug 2014 A1
20150013377 Oelfke Jan 2015 A1
20150068397 Boulet et al. Mar 2015 A1
20150101483 Perry et al. Apr 2015 A1
20150196870 Albright et al. Jul 2015 A1
20150328578 Deckman et al. Nov 2015 A1
20160023155 Ramkumar et al. Jan 2016 A1
20160129433 Tammera et al. May 2016 A1
20160166972 Owens et al. Jun 2016 A1
20160236135 Tammera et al. Aug 2016 A1
20160332105 Tammera et al. Nov 2016 A1
20160332106 Tammera et al. Nov 2016 A1
20170056814 Marshall et al. Mar 2017 A1
20170113173 Fowler et al. Apr 2017 A1
20170113175 Fowler et al. Apr 2017 A1
20170136405 Ravikovitch et al. May 2017 A1
20170266604 Tammera et al. Sep 2017 A1
20170282114 Owens et al. Oct 2017 A1
20170341011 Nagavarapu et al. Nov 2017 A1
20170341012 Nagavarapu et al. Nov 2017 A1
20180001301 Brody et al. Jan 2018 A1
20180056229 Denton et al. Mar 2018 A1
20180056235 Wang et al. Mar 2018 A1
20180169565 Brody et al. Jun 2018 A1
20180169617 Brody et al. Jun 2018 A1
20180339263 Dehaas et al. Nov 2018 A1
Foreign Referenced Citations (27)
Number Date Country
0257493 Feb 1988 EP
0426937 May 1991 EP
0904827 Mar 1999 EP
1674555 Jun 2006 EP
2823872 Jan 2015 EP
2854819 May 2003 FR
2924951 Jun 2009 FR
58-114715 Jul 1983 JP
59-232174 Dec 1984 JP
60-189318 Dec 1985 JP
2002-253818 Oct 1990 JP
04-180978 Jun 1992 JP
06006736 Jun 1992 JP
3477280 Aug 1995 JP
2011-169640 Jun 1999 JP
2011-280921 Oct 1999 JP
2000-024445 Aug 2001 JP
2002-348651 Dec 2002 JP
2006-016470 Jan 2006 JP
2006-036849 Feb 2006 JP
2008-272534 Nov 2008 JP
101349424 Jan 2014 KR
WO2002024309 Mar 2002 WO
WO2002073728 Sep 2002 WO
WO2005090793 Sep 2005 WO
WO2010024643 Mar 2010 WO
WO2011139894 Nov 2011 WO
Non-Patent Literature Citations (58)
Entry
Jain et al. (Heuristic design of pressure swing adsorption: A preliminary study, 2003, Separation and purification technology, vol. 33 , pp. 25-43) (Year: 2003).
Dubbeldam, D., et al., (2013) “On the inner workings of Monte Carlo codes” Molecular Simulation, vol. 39, Nos. 14-15, pp. 1253-1292.
Earl, D. J. et al., (2005) “Parallel tempering: Theory, applications, and new perspectives,” Phys Chem Chem Phys, vol. 7, pp. 3910-3916.
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs.
Fang, H. et al., (2013) “First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites,” Phys Chem Chem Phys, vol. 15, pp. 12882-12894.
Fang, H., et al., (2012) “Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations,” J Phys Chem C, 10692, 116, ACS Publications.
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314.
FlowServe (2005) “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs.
Foster, M.D., et al. “A geometric solution to the largest-free-sphere problem in zeolite frameworks”, Microporous and Mesoporous Materials, vol. 90, pp. 32-38.
Frenkel, D. et al., (2002) “Understanding Molecular Simulation: From Algorithms to Applications”, 2nd ed., Academic Press, pp. 292-301.
Garcia, E. J., et al. (2014) “Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity”, Ind. Eng. Chem. Res., vol. 53, pp. 9860-9874.
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs.
Harris, J. G. et al., (1995) “Carbon Dioxide's Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model”, J Phys Chem, vol. 99, p. 12021-12024.
Hill, J. R. et al., (1995) “Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates”, J Phys Chem, vol. 99, pp. 9536-9550.
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95.
Jain, S., et al. (2003) “Heuristic design of pressure swing adsorption: a preliminary study”, Separation and Purification Technology, vol. 33, pp. 25-43.
Kim J. et al. (2012) “Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture”, J. Am. Chem, Soc., vol. 134, pp. 18940-18940.
Kärger, J., et al.(2012) “Diffusion in Nanoporous Materials” , Whiley-VCH publisher, vol. 1, Chapter 16, pp. 483-501.
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262.
Lin, L., et al. (2012) “In silico screening of carbon-capture materials”, Nature Materials, vol. 1, pp. 633-641.
Liu, Q. et al., (2010) “NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2,” Chem Commun, , vol. 46, pp. 4502-4504.
Lowenstein, W., (1954) “The Distribution of Aluminum in the Tetra-Hedra of Silicates and Aluminates” Am Mineral, 92-96.
Neimark, A. V. et al., (1997) “Calibration of Pore Volume in Adsorption Experiments and Theoretical Models”, Langmuir, vol. 13, pp. 5148-5160.
Palomino, M., et al. (2009) “New Insights on CO2-Methane Seapration Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs”, Langmar, vol. 26(3), pp. 1910-1917.
Patcas, F.C. et al.(2007) “CO Oxidation Over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads”, Chem Engineering Science, v. 62, pp. 3984-3990.
Peng, D. Y., et al., (1976) “A New Two-Constant Equation of State”, Ind Eng Chem Fundam, vol. 15, pp. 59-64.
Pham, T. D. et al., (2013) “Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites”, Langmuir, vol. 29, pp. 832-839.
Pophale, R., et al., (2011) “A database of new zeolite-like materials”, Phys Chem Chem Phys, vol. 13(27), pp. 12407-12412.
Potoff, J. J. et al., (2001) “Vapor-Liquid Equilibria of Mixtures Containing Alkanes. Carbon Dioxide, and Nitrogen”, AIChE J, vol. 47(7), pp. 1676-1682.
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons—Brochure, 20 pp.
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622.
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process”, Chem. Engineering Science, v. 64, pp. 5182-5191.
Richardson, J.T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Dop”, Applied Catalysis A: General v. 204, pp. 19-32.
Robinson, D. B., et al., (1985) “The development of the Peng-Robinson Equation and its Application to Phase Equilibrium in a System Containing Methanol,” Fluid Phase Equilibria, vol. 24, pp. 25-41.
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73.
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages.
Santos, M. S (2011) “New Cycle configuration to enhance performance of kinetic PSA processes” Chemical Engineering Science 66, pp. 1590-1599.
Snurr, R. Q. et al., (1993) “Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions”, J Phys Chem, vol. 97, pp. 13742-13752.
Stemmet, C.P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer”, Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141.
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73.
Talu, O. et al., (2001), “Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 83-93, pp. 83-93.
Walton, K. S. et al., (2006) “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange,” Microporous and Mesoporous Mat, vol. 91, pp. 78-84.
Willems, T. F. et al., (2012) “Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials” Microporous Mesoporous Mat, vol. 149, pp. 134-141.
Zukal, A., et al., (2009) “Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations”, Adsorption, vol. 15, pp. 264-270.
U.S. Appl. No. 16/252,975, filed Jan. 21, 2019, Krishna Nagavarapu et al.
U.S. Appl. No. 16/258,266, filed Jan. 25, 2019, Barnes et al.
U.S. Appl. No. 16/263,940, filed Jan. 31, 2019, Johnson.
U.S. Appl. No. 62/783,766, filed Dec. 21, 2019, Fulton et al.
Allen, M. P. et al., (1987) “Computer Simulation of Liquids” Clarendon Press, pp. 156-160.
Asgari, M. et al., (2014) “Designing A Commercial Scale Pressure Swing Adsorber For Hydrogen Purification” Petroleum & Coal, vol. 56(5), pp. 552-561.
Baerlocher, C. et al., (2017) International Zeolite Association's “Database of Zeolite Structures,” available at http://www.iza-structure.org/databases/, downloaded Jun. 15, 2018, 1 page.
Burtch, N.C. et al., (2015) “Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks,” J Am Chem Soc, 135, pp. 7172-7180.
Beauvais, C. et al., (2004) “Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study,” J Phys Chem B, 108, pp. 399-404.
Cheung, O. et al., (2013) “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA,” Appl Energ, 112, pp. 1326-1336.
Cygan, R. T. et al., (2004) “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, J Phys Chem B, vol. 108, pp. 1255-1266.
Deem, M. W. et al., (2009) “Computational Discovery of New Zeolite-Like Materials”, J Phys Chem C, 113, pp. 21353-21360.
Demiralp, E., et al., (1999) “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass”, Physical Review Letters, vol. 82(8), pp. 1708-1711.
Dubbeldam, D. et al. (2016) “RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials” Molecular Simulation, (published online Feb. 26, 2015), vol. 42(2), pp. 81-101.
Related Publications (1)
Number Date Country
20190262764 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62636452 Feb 2018 US