Apparatus and system for swing adsorption processes

Information

  • Patent Grant
  • 11033854
  • Patent Number
    11,033,854
  • Date Filed
    Tuesday, August 20, 2019
    5 years ago
  • Date Issued
    Tuesday, June 15, 2021
    3 years ago
Abstract
Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve performing a startup mode process prior to beginning a normal operation mode process to remove contaminants from a gaseous feed stream. The startup mode process may be utilized for swing adsorption processes, such as TSA and/or PSA, which are utilized to remove one or more contaminants from a gaseous feed stream.
Description
FIELD

The present techniques relate to a method and system associated with swing adsorption processes used in conditioning streams for downstream processing. In particular, the method and system involve a startup mode process for a swing adsorption process, which is further utilized for starting downstream process.


BACKGROUND

Gas separation is useful in many industries and can typically be accomplished by flowing a mixture of gases over an adsorbent material that preferentially adsorbs one or more gas components while not adsorbing one or more other gas components. The non-adsorbed components are recovered as a separate product.


One particular type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA), pressure swing adsorption (PSA), partial pressure swing adsorption (PPSA), rapid cycle temperature swing adsorption (RCTSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle partial pressure swing adsorption (RCPPSA), and not limited to but also combinations of the fore mentioned processes, such as pressure and temperature swing adsorption. As an example, PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure. That is, the higher the gas pressure, the greater the amount of readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed from the adsorbent material.


The swing adsorption processes (e.g., PSA and/or TSA) may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent material to different extents. For example, if a gas mixture, such as natural gas, is passed under pressure through a vessel containing an adsorbent material that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent material, and the gas exiting the vessel is enriched in methane. When the adsorbent material reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. Then, the adsorbent material is typically purged and repressurized prior to starting another adsorption cycle.


The swing adsorption processes typically involve adsorbent bed units, which include adsorbent beds disposed within a housing and configured to maintain fluids at various pressures for different steps in a cycle within the unit. These adsorbent bed units utilize different packing material in the bed structures. For example, the adsorbent bed units utilize checker brick, pebble beds or other available packing. As an enhancement, some adsorbent bed units may utilize engineered packing within the bed structure. The engineered packing may include a material provided in a specific configuration, such as a honeycomb, ceramic forms or the like.


Further, various adsorbent bed units may be coupled together with conduits and valves to manage the flow of fluids through the cycle. Orchestrating these adsorbent bed units involves coordinating the steps in the cycle for each of the adsorbent bed units with other adsorbent bed units in the system. A complete cycle can vary from seconds to minutes as it transfers a plurality of gaseous streams through one or more of the adsorbent bed units.


As may be appreciated, the removal of contaminants may result in the process operating in different modes, such as a startup mode and a normal operation mode. The startup mode may be utilized to prepare the equipment (e.g., the adsorbent bed and various stream) for the normal operation mode. The normal operation mode may be utilized when the process is receiving various streams, such as the gaseous feed stream, and removing contaminants from the gaseous feed stream to provide a product stream, which may be referred to as steady state. For example, the conventional processes may operate in normal operation mode to treat hydrocarbon containing streams containing water (H2O) or carbon dioxide (CO2) to prepare the stream for downstream processing, such as natural gas liquid recovery (NGL) or liquefied natural gas (LNG) processing. The normal operation modes may be different for each of the respective downstream processes based on the respective specifications that are involved for normal operational mode. For example, a typical LNG specification requires the CO2 content to be less than 50 parts per million molar (ppm).


During the startup mode, the cycle may be different than the cycle utilized for normal operation mode. Conventional systems may utilize a single heating step to regenerate the adsorbent material with high temperatures to remove any contaminants as the startup mode cycle. For example, a startup process involving a mole sieve unit may include heating the bed to temperatures in excess of 550° F.


Unfortunately, conventional startup mode processes have certain limitations. For example, the process in startup mode may involve merely heating the adsorbent material to high temperatures. The heating of the adsorbent material to high temperatures in the conventional approaches typically rely upon dedicated high-temperature startup heaters. These heaters are expensive, involve large capital expenditure and high operational costs. In addition, these heaters increase the weight and footprint of the facility. Further, the cycle time is typically longer than necessary to remove contaminants to ensure sufficient time is provided for downstream equipment to begin operations. In addition, the temperature that the adsorbent material are exposed to may lessen the operational life of the adsorbent material and may lessen the efficiency of the adsorbent material.


Accordingly, there remains a need in the industry for apparatus, methods, and systems that provided enhancements to the start-up processes associated with hydrocarbon recovery processes. In particular, a need exists for enhancements to startup mode processes for rapid cycle swing adsorption processes.


SUMMARY OF THE INVENTION

In one or more embodiments, the present techniques comprise a process for removing contaminants from a gaseous feed stream with a swing adsorption process. The process comprising: a) performing a purge step, wherein the purge step comprises passing an external gas stream through an adsorbent bed unit to remove one or more contaminants from an adsorbent bed within a housing of the adsorbent bed unit to form a purge product stream; b) performing one or more adsorption steps, wherein each of the one or more adsorption steps comprise passing a gaseous feed stream through an adsorbent bed unit having an adsorbent bed to separate one or more contaminants from the gaseous feed stream to form a product stream; c) determining whether the product stream is within a specification for a contaminant; d) if the product stream is within the specification, passing the product stream to a downstream process; and e) if the product stream is not within the specification, repeating the steps a) to d) for at least one additional cycle.


In yet another embodiment, a cyclical swing adsorption system is described. The system includes a plurality of manifolds; a plurality of adsorbent bed units coupled to the plurality of manifolds, and an external gas bypass valve in fluid communication with purge manifold and configured to provide a flow passage for an external gas stream from an external gas storage vessel to the purge manifold in a startup mode position and configured to block the flow passage of the external gas stream from the external gas storage vessel to the purge manifold in a normal operation mode position. The plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step. Each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps. Each of the adsorbent bed units comprises a housing; an adsorbent material disposed within the housing; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material.


In certain embodiments, the system or method may include certain variations. The plurality of valves may comprise one or more poppet valves; the plurality of manifolds and/or the plurality of adsorbent bed units may be configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara; the system may include a heating unit disposed upstream of the purge manifold and downstream of the external gas storage vessel, wherein the heating unit may be configured to heat the external gas stream to a temperature in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature or in the range between a temperature in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature; the system may include a conditioning unit disposed downstream of the purge product manifold and upstream of the external gas storage vessel, wherein the conditioning unit may be configured to remove one or more contaminants from the purge product stream; wherein the plurality of manifolds further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step; and the system may include a liquefied natural gas process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a flash fuel stream, wherein the flash fuel stream may be passed to the purge manifold. Further, the external gas stream may comprise a nitrogen stream comprising predominately nitrogen with less than 0.1 ppm of water, less than 1 ppm of water or less than 10 ppm of water or at least one of nitrogen, methane, helium, hydrogen or any combination thereof.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments.



FIG. 1 is a three-dimensional diagram of the swing adsorption system with six adsorbent bed units and interconnecting piping in accordance with an embodiment of the present techniques.



FIG. 2 is a diagram of a portion of an adsorbent bed unit having associated valve assemblies and manifolds in accordance with an embodiment of the present techniques.



FIG. 3 is an exemplary flow chart for performing an external startup mode of a swing adsorption process in accordance with an embodiment of the present techniques.



FIG. 4 is an exemplary diagram of a startup mode step in accordance with an embodiment of the present techniques.



FIGS. 5A and 5B are exemplary diagrams associated with another startup mode step in accordance with an embodiment of the present techniques.



FIG. 6 is an exemplary diagram associated with yet another startup mode step in accordance with an embodiment of the present techniques.



FIG. 7 is an exemplary diagram associated with another startup mode step in accordance with an embodiment of the present techniques.



FIG. 8 is an exemplary diagram associated with still another startup mode step in accordance with an embodiment of the present techniques.



FIG. 9 is an exemplary diagram associated with normal operation mode.





DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.


As used herein, “stream” refers to fluid (e.g., solids, liquid and/or gas) being conducted through various equipment. The equipment may include conduits, vessels, manifolds, units or other suitable devices.


As used herein, “conduit” refers to a tubular member forming a channel through which something is conveyed. The conduit may include one or more of a pipe, a manifold, a tube or the like.


The provided processes, apparatus, and systems of the present techniques may be used in swing adsorption processes that remove contaminants (CO2, H2O, and H2S) from feed streams, such as hydrocarbon containing streams. As may be appreciated and as noted above, the hydrocarbon containing feed streams may have different compositions. For example, the gaseous feed stream may be a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream. As another example, the hydrocarbon feed streams may vary widely in amount of acid gas, such as from several parts per million acid gas to 90 volume percent (vol. %) acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves sources include concentrations of approximately: (a) 4 ppm H2S, 2 vol. % CO2, 100 ppm H2O (b) 4 ppm H2S, 0.5 vol. % CO2, 200 ppm H2O (c) 1 vol. % H2S, 2 vol. % CO2, 150 ppm H2O, (d) 4 ppm H2S, 2 vol. % CO2, 500 ppm H2O, and (e) 1 vol. % H2S, 5 vol. % CO2, 500 ppm H2O. Further, in certain applications the hydrocarbon containing stream may include predominately hydrocarbons with specific amounts of CO2 and/or water. For example, the hydrocarbon containing stream may have greater than 0.00005 volume percent CO2 based on the total volume of the gaseous feed stream and less than 2 volume percent CO2 based on the total volume of the gaseous feed stream; or less than 10 volume percent CO2 based on the total volume of the gaseous feed stream. The processing of feed streams may be more problematic when certain specifications have to be satisfied.


The removal of contaminants may be performed by swing adsorption processes during normal operations to prepare the stream for further downstream processing, such as NGL processing and/or LNG processing. For example, natural gas feed streams for liquefied natural gas (LNG) applications have stringent specifications on the CO2 content to ensure against formation of solid CO2 at cryogenic temperatures. The LNG specifications may involve the CO2 content to be less than or equal to 50 ppm. Such specifications are not applied on natural gas streams in pipeline networks, which may involve the CO2 content up to 2 vol. % based on the total volume of the gaseous feed stream. As such, for LNG facilities that use the pipeline gas (e.g., natural gas) as the raw feed, additional treating or processing steps are utilized to further purify the stream. Further, the present techniques may be used to lower the water content of the stream to less than 0.1 ppm. Exemplary swing adsorption processes and configurations may include U.S. Patent Ser. Nos. 62/213,262; 62/213,267; 62/213,270; 62/213,273; 62/246,916; 62/246,920; and 62/246,922, which are each incorporated by reference herein.


The present techniques provide configurations and processes that are utilized to enhance the startup mode for the swing adsorption process and associated downstream processes. While the normal operation mode processes are described based on steady state operation, startup mode procedures involve different cycles until normal operation mode is begun. The present techniques describes different methods that may be utilized to transition the operation from startup mode to normal operation mode. In startup mode, each of the adsorbent beds utilized in the swing adsorption process is assumed to be in equilibrium with contaminants. For dehydration applications, the contaminant is water (H2O), while for carbon dioxide (CO2) applications, the contaminant is either H2O (e.g., in equilibrium with atmosphere) or CO2 (e.g., in case of a shutdown). Accordingly, the startup mode is utilized to remove contaminants to prepare the adsorbent beds for normal operation mode. In particular, the startup mode sequence may be used for swing adsorption processes (e.g., dehydration and low-level CO2 removal) upstream or integrated with NGL and LNG applications.


The startup mode process may involve the use of an external medium to remove one or more contaminants from the adsorbent beds. In the external startup mode, an external medium is used to remove one or more contaminants from the adsorbent beds. The external medium may include the use of an external gas stream that is circulated through the adsorbent beds to remove the one or more contaminants from the adsorbent beds during a regeneration step (e.g., a purge step). The external gas stream may include nitrogen, dry methane or other non-reactive stream under process operating conditions. For example, the external stream may include predominately nitrogen or methane with less than 0.1 ppm of water, less than 1 ppm of water or less than 10 ppm of water. The external gas stream may comprise at least one of nitrogen, methane, helium, hydrogen or any combination thereof.


For example, in dehydration applications, an external gas stream, such as dry nitrogen (e.g., nitrogen stream having less than 0.1 ppm of water, less than 1 ppm of water or less than 10 ppm of water), may be used to remove water from the adsorbent beds during the startup mode. When the dry nitrogen stream is introduced into each of the adsorbent beds, which is at equilibrium with ambient water, some of the water transfers from the adsorbent material in the adsorbent bed to the dry nitrogen stream. The startup mode sequence may involve providing feed to the adsorbent bed during an adsorption step and using the external stream to purge the adsorbent bed during a purge step. The startup mode cycle may continue to use the dry nitrogen until a sufficient amount of water is removed from each of the adsorbent beds and a desired bed profile is achieved for the adsorbent beds. Then, the resulting product stream from the adsorbent beds is within the desired specification (e.g., below the specific contaminant levels for the product stream). In addition, the startup mode may include maintaining the purge step with dry nitrogen to sufficient amounts of moisture, and then start the sequence described above. In such a configuration, the product stream may be within specification from the first cycle.


Once the product stream is within the desired specification, the product stream may be used in the startup mode process for the downstream processes, such as a demethanizer or a liquefaction train. As the downstream processes and units are being started, the adsorbent beds continue to regenerate using the external gas stream, such as the dry nitrogen stream. Alternatively, a heated slip stream from the product side may also be used to regenerate the spent adsorbent beds. As the downstream process begins producing a purge stream, this purge stream may be combined with the external gas stream and the amount of external gas stream utilized in the purge step may be adjusted. Once the downstream processes begin normal operations, the desired purge stream (e.g., within the desired specifications), such as a residue gas stream or fuel gas stream, is provided to the adsorbent bed as part of the normal operation mode. At this point, the adsorbent bed regeneration stream is transitioned from nitrogen to the purge stream from the downstream process.


To facilitate rapid regeneration and minimize the amount of dry nitrogen being utilized during the external startup mode, the operating conditions may be adjusted to manage the removal of contaminants from the adsorbent bed. For example, the flow rate for the gaseous feed stream may be conducted within a flow rate range below the normal operation mode flow ranges (e.g., flow rate at turndown). For example, the flow rates in startup mode may be at about 25% of the normal operation mode flow rate, at about 50% of the normal operation mode flow rate, at about 75% of the normal operation mode flow rate, in a range between 25% and 90% of the normal operation flow rate, in a range between 50% and 90% of the normal operation flow rate, and in a range between 75% and 90% of the normal operation flow rate. Further, the regeneration of the adsorbent bed may be conducted within a pressure range near atmospheric pressure (e.g., in a pressure range between atmospheric pressure and fifty pounds per square inch gauge (psi) above atmospheric pressure) or may be within a pressure range near normal operation mode pressures (e.g., in a pressure range between 75% of normal operation mode pressure and 125% of normal operation mode pressure or at a pressure between atmospheric pressure and normal operating pressure or a pressure close to feed pressure). As an example, the regeneration of the adsorbent bed may be conducted in a pressure range from 300 pounds per square inch gauge (psi) to 650 psi. Also, the temperature of the external medium stream may be provided within a temperature range from (e.g., in a temperature range between 20° Celsius (C) above atmospheric temperature and 150° Celsius (C) above atmospheric temperature). Also, the temperature of the external stream may be in a range between 350° F. and 550° F., in a range between 350° F. and 550° F. or in a range 450° F. and 550° F. in a range between 100° F. and 550° F., in a range between 150° F. and 450° F. or in a range 250° F. and 350° F.


For a dehydration application, the sequence of the cycle for the startup mode may be configured to lessen flaring of gas or completely eliminate flaring of gas. The external sequence may be initiated at turndown. The purge pressure is selected such that the purge product is at the suction pressure of the residue gas compressor. The residue gas compressor is then operated to compress the purge product and recombine with the feed stream either upstream or downstream of a triethylene glycol (TEG) based dehydration unit. Knockout drums may be necessary to remove the excess water gathered from the purge step.


As a specific example, the startup mode process may be used for a cryogenic NGL recovery facility. The external startup process may include passing wet gas to the absorbent units at turndown. Then, the external startup process is utilized to clean the adsorbent beds. The process is continued until product stream is at specification and the desired water profile in the adsorbent bed is achieved. Next, the flow rate of the gas stream entering the adsorbent beds is increased for subsequent cycles. Then, at least a portion of the dry product stream is introduced to the cryogenic NGL recovery facility. As necessary, the purge inlet temperature may be adjusted to achieve the necessary purge to remove the water in the adsorbent beds. With the product stream from the adsorbent beds, the startup sequence for the cryogenic NGL recovery facility is initiated. This cryogenic NGL facility may perform the startup mode using the residue gas compressor to recycle the demethanizer column overhead product with the external stream. Once the NGL recovery facility is approaching specification, a portion of the demethanizer overhead product is mixed with the purge stream from the adsorbent beds in swing adsorption process to increase the flow rate. The heat from the startup heater may be reduced as necessary. Eventually, the overhead product stream from the demethanizer is introduced to the adsorbent beds as a purge stream for the respective cycles and the portion of the external stream from the adsorbent bed being used as the purge stream is lessened and may be eliminated. The process eventually transitions to normal operation mode, which is a steady state with the adsorbent beds purge product gas being provided for sale.


Similarly, the above sequence may be used for the LNG process. However, a source of gas to compress the purge product to feed pressure may not be available with the LNG process during startup mode. As such, some of the purge stream may have to be flared. For the CO2 removal processes, a similar external startup mode sequence may be used. Additionally, a loop heating step may be used to provide the necessary heat to the adsorbent beds.


One or more variants to the procedure noted above may be used to reduce the startup time of the process. The first variant includes heating adsorbent beds to reduce the amount of water in the adsorbent beds, which may be performed initially. In the heating step, the heated stream at low pressure is used as the purge stream for the absorbent beds and removes a large amount of water already adsorbed in the adsorbent beds. A second variant involves performing one or more blowdown steps in the startup mode process to flare or rapidly decrease the partial pressure and reduce the amount of water adsorbed in the adsorbent beds. A third variant involves performing a purge step with dry nitrogen, which may be heated, if necessary, to dry the adsorbent beds.


The present techniques provide a startup mode process that may be utilized to initiate the normal operation mode process for a swing adsorption process, and specifically a rapid cycle adsorption process. The present techniques may include some additional equipment, such as one or more conduits and/or one or more manifolds that provide a fluid path for the external gas stream, an external gas storage tank, a heating unit (furnace and/or heat exchanger), one or more blowers and/or one or more compressors to fluidly communication with one or more adsorbent beds, and/or depressurizing equipment that may be utilized to facilitate the startup mode cycle. In addition, other components and configurations may be utilized to provide the swing adsorption process, such as rapid cycle enabling hardware components (e.g., parallel channel adsorbent bed designs, rapid actuating valves, adsorbent bed configurations that integrate with other processes). Exemplary swing adsorption processes and configurations may also include U.S. Patent Ser. Nos. 62/213,262; 62/213,267; 62/213,270; 62/213,273; 62/246,916; 62/246,920; and 62/246,922, which are each incorporated by reference herein.


In one or more embodiment, a startup mode process for a swing adsorption process may include using an external startup mode. For the external startup mode, the present techniques comprise a process for removing contaminants from a gaseous feed stream with a swing adsorption process, which may be utilized with one or more downstream processes. The process comprising: a) performing a regeneration step (e.g., purge step), wherein the step comprises passing an external gas stream through an adsorbent bed unit to remove contaminants from an adsorbent bed within a housing of the adsorbent bed unit to form a purge product stream; b) performing one or more adsorption steps, wherein each of the one or more adsorption steps comprise passing a gaseous feed stream through an adsorbent bed unit having an adsorbent bed to separate contaminants from the gaseous feed stream to form a product stream; c) determining whether the product stream is within a specification for at least one contaminant; d) if the product stream is within the specification (e.g., is below a certain threshold), passing the product stream to a downstream process; and e) if the product stream is not within the specification (e.g., above a certain threshold), repeating the steps a) to d) for at least one additional cycle.


As another example for the external startup mode, a cyclical swing adsorption system may include a plurality of manifolds; a plurality of adsorbent bed units coupled to the plurality of manifolds, and an external gas bypass valve in fluid communication with purge manifold and configured to provide a flow passage for an external gas stream from an external gas storage vessel to the purge manifold in a startup mode position and configured to block the flow passage of the external gas stream from the external gas storage vessel to the purge manifold in a normal operation mode position. The plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step. Each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps. Each of the adsorbent bed units comprising a housing; an adsorbent material disposed within the housing; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material.


In addition, the system or method may include certain features to enhance the operation of the system or method. For example, the plurality of valves may comprise one or more poppet valves; the plurality of manifolds and/or the plurality of adsorbent bed units may be configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara; the system may include a heating unit disposed upstream of the purge manifold and downstream of the external gas storage vessel, wherein the heating unit is configured to heat the external gas stream to a temperature in the range between a temperature in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature or in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature; the system may include a conditioning unit disposed downstream of the purge product manifold and upstream of the external gas storage vessel, wherein the conditioning unit is configured to remove one or more contaminants from the purge product stream; the plurality of manifolds may further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step; and the system may include a liquefied natural gas process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a flash fuel stream, wherein the flash fuel stream is passed to the purge manifold. Further, the external gas stream comprises a nitrogen stream comprising predominately nitrogen with less than 0.1 ppm of water, or may comprise a nitrogen stream comprising predominately nitrogen with less than 10 ppm of water. The external gas stream may be a nitrogen containing stream having greater than one volume percent nitrogen based on the total volume of the feed stream. Also, the method may include mixing a slip stream from the downstream process with the external gas stream prior to performing the purge step and/or adjusting the amount of external gas stream utilized in the performing a purge step based on the amount of the slip stream from the downstream process. The slip stream may be an overhead stream, such as overhead stream from NGL or fuel from LNG.


In other certain embodiments, the startup mode for the swing adsorption process may be integrated with downstream equipment and processes. The downstream equipment and processes may include control freeze zone (CFZ) applications, niotrogen removal unit (NRU), cryogenic NGL recovery applications, LNG applications, and other such applications. Each of these different applications may include different specifications for the feed stream in the respective process. For example, the startup process may involve dehydration upstream of a cryogenic NGL process or an LNG process and may be integrated with the respective downstream equipment. As another example, the startup process may involve CO2 removal upstream of a cryogenic NGL process or the LNG process and may be integrated with respective downstream equipment. The startup method may include using an external medium as part of the process, which may be a dry nitrogen stream. Further, the startup mode may be integrated with downstream processes, such as cryogenic NGL processes and/or LNG processes. In addition, the startup mode process may involve performing the startup mode cycle with minimal flaring or no flaring.


In certain embodiments, the system utilizes a combined swing adsorption process, which combines TSA and PSA, for treating of pipeline quality natural gas to remove contaminants for the stream to satisfy LNG specifications. The swing adsorption process, which may be a rapid cycle process, is used to treat natural gas that is at pipeline specifications (e.g., a feed stream of predominately hydrocarbons along with less than or equal to about 2% volume CO2 and/or less than or equal to 4 ppm H2S) to form a stream satisfying the LNG specifications (e.g., less than 50 ppm CO2 and less than about 4 ppm H2S). The product stream, which may be the LNG feed stream, may have greater than 98 volume percent hydrocarbons based on the total volume of the product stream, while the CO2 and water content are below certain thresholds. The LNG specifications and cryogenic NGL specifications may involve the CO2 content to be less than or equal to 50 ppm, while the water content of the stream may be less than 0.1 ppm. Further, the gaseous feed stream may include hydrocarbons and H2O. For example, the gaseous feed stream may be that the H2O is in the range of 0.2 parts per million volume to saturation levels in the gaseous feed stream or the H2O is in the range of 100 parts per million volume to 1500 parts per million volume.


In certain aspects, as described further below, the present techniques may involve using a high temperature stream that is provided to the adsorbent beds as part of the purge step to heat the adsorbent bed. The stream, which may be referred to as the purge stream (e.g., the external stream), may be heated to temperature may be less than 550° F., may be less than 500° F., less than 450° F. or may be less than 350° F., and may be greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the stream used during the purge step of the startup mode cycle may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between 450° F. and the gaseous feed stream temperature, in the range between a temperature in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature. The stream (purge stream or external stream) pressure may be in the range between 0.01 bara and 100 bara, between 1 bara and 80 bara, or between 2 bara and 50 bara.


Further, the present techniques may not remove all of the contaminant (e.g., H2O and CO2) adsorbed in the bed during the purge step of the startup mode process, but remove a portion of the contaminants such that the product end of the adsorbent bed has a contaminant loading sufficiently low to provide a product stream with less than specifications. Accordingly, the product end of the adsorbent bed may be maintained nearly free of contaminants (e.g., the CO2 loading for the region near the product end is less than 1 millimole per gram (mmol/g), less than 0.5 mmol/g or less than 0.1 mmol/g). The loading level of contaminant may be lower on the feed side of the adsorbent bed during the purge step, but the length of adsorbent bed that contains contaminants is reduced during the purge step. For example, a feed region may be a specific portion of the adsorbent bed from the feed end of the adsorbent bed to 10% of the bed length, from the feed end of the adsorbent bed to 25% of the bed length or from the feed end of the adsorbent bed to 40% of the bed length. The product region may be a specific portion of the adsorbent bed from the product end of the adsorbent bed to 10% of the bed length, from the product end of the adsorbent bed to 25% of the bed length or from the product end of the adsorbent bed to 40% of the bed length. The movement of the contaminants front back during purge step and forward during the adsorption step is the basis of the swing capacity of the process. In part, this is achieved by using a limited, cost effective quantity of purge gas in the purge steam along with the heating of the adsorbent bed in this process and configuration.


The present techniques may involve using two or more adsorbent beds, which are operated on similar cycle that are performing different steps of the cycles (e.g., not synchronized with each other) to maintain a steady flow of fluids for the various streams (e.g., feed stream, product stream, heating stream, and purge stream).


Further, in other embodiments, the pressure of the different streams may be varied. For example, the feed stream may involve a feed pressure that is within the in the range between 0.01 bara and 100 bara, between 1 bara and 80 bara, or between 2 bara and 50 bara, but is not necessarily limited to this range. The feed temperature may be in the range between 0° F. and 200° F., in the range between 20° F. and 175° F. or in the range between 40° F. and 150° F. The blowdown pressure, heating pressure, and purge pressure may be adjusted depending on the cycle, may depend upon the adsorbent material being utilized and/or may range from vacuum to feed pressure. For example, if the adsorbent material is zeolite 4A, the blowdown pressure range may be between 0.01 bara to 50 bara, or more preferably in a range between 1 bara and 15 bara. This example may depend on the feed concentration of CO2. Also, in other embodiments, the depressurization steps may be adjusted such that the pressure swing is achieved in stages to vary the amount of methane desorbing during each step, if any. Additionally, a heating loop may be introduced and the heating pressure in the heating loop may be operated at a pressure different from the purge pressure or blowdown pressure in the respective steps. Also, certain embodiments may include no pressure swing, but may rely upon temperature swing for the regeneration step. Similarly, in the other embodiments, no temperature swing may be performed and the regeneration step may be performed by pressure swing.


Furthermore, the above process may be used for startup mode processes that separate two or more contaminants from the feed stream (e.g., two swing adsorption processes operated in series with each other). For example, the feed stream may subjected to a dehydration swing adsorption process, then a CO2 removal swing adsorption process, and the resulting product may be subjected to a downstream process, such as cryogenic NGL or LNG recovery. The startup mode for the dehydration and the CO2 removal processes may involve external startup processes. As one example, the dehydration process may involve the external startup process. Then, once the product stream satisfies the desired specification for water removal, the product stream may be used by the CO2 removal as part of the external startup stream. Alternatively, the dehydration process may involve the external startup process and the CO2 removal process may perform another external startup mode process and may mix the purge stream with the feed stream to the dehydration process.


In certain configurations, an integrated rapid cycle adsorption system may be utilized to remove multiple contaminants (e.g., water and CO2). Suitable adsorbent material or adsorbent layers may be utilized to provide the dehydration, which may be the same or different from the adsorbent material used to in the removal of other contaminants, such as CO2.


Moreover, the present techniques may include a specific process flow during normal operation mode to remove contaminants, such as CO2 and/or water. For example, the process may include an adsorbent step and a regeneration step, which form the cycle. The adsorbent step may include passing a gaseous feed stream at a feed pressure and feed temperature through an adsorbent bed unit to separate one or more contaminants from the gaseous feed stream to form a product stream. The feed stream may be passed through the adsorbent bed in a forward direction (e.g., from the feed end of the adsorbent bed to the product end of the adsorbent bed). Then, the flow of the gaseous feed stream may be interrupted for a regeneration step. The regeneration step may include one or more depressurization steps, one or more heating steps, and/or one or more purge steps. The depressurization steps, which may be or include a blowdown step, may include reducing the pressure of the adsorbent bed unit by a predetermined amount for each successive depressurization step, which may be a single step and/or multiple steps. The depressurization step may be provided in a forward direction or may preferably be provided in a countercurrent direction (e.g., from the product end of the adsorbent bed to the feed end of the adsorbent bed). The heating step may include passing a heating stream into the adsorbent bed unit, which may be a recycled stream through the heating loop and is used to heat the adsorbent material. The purge step may include passing a purge stream into the adsorbent bed unit, which may be a once through purge step and the purge stream may be provided in countercurrent flow relative to the feed stream. The purge stream may be provided at a purge temperature and purge pressure, which may include the purge temperature and purge pressure being similar to the heating temperature and heating pressure used in the heating step. Then, the cycle may be repeated for additional streams. Additionally, the process may include one or more re-pressurization steps after the purge step and prior to the adsorption step. The one or more re-pressurization steps may be performed, wherein the pressure within the adsorbent bed unit is increased with each re-pressurization step by a predetermined amount with each successive re-pressurization step. The cycle duration for normal operation mode may be for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 300 seconds, for a period greater than 2 second and less than 180 seconds, for a period greater than 5 second and less than 150 seconds or for a period greater than 5 second and less than 90 seconds.


In other configurations, the startup mode may involve lower flow rates and longer cycles. For example, the initial flow rate may be 25% of the normal flow rate utilized during normal operations, which may have a startup mode cycle time of four times the normal operation model cycle time. This initial flow rate may be increased in a stready manner or in various increments until the normal operation mode is reached. By way of example, the startup mode cycle duration may be for a period greater than 1 second and less than 2400 seconds, for a period greater than 1 second and less than 1500 seconds, for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 800 seconds, for a period greater than 2 second and less than 400 seconds, for a period greater than 5 second and less than 150 seconds or for a period greater than 5 second and less than 90 seconds.


In yet other configurations, the startup mode may involve installation of adsorbent beds that are partially or completely devoid of the contaminant being removed. By way of example, if the swing adsorption process is primarily configured to remove water, then a partially or totally dehydrated adsorbent bed may be installed in the system. During the start mode, a feed stream is passed to the adsorbent bed, which may be as a wet gas, and a product stream, which may be a dry stream, is conducted away and may be used as a purge stream to a different adsorbent bed. Alternatively, another method may involve installation of an adsorbent bed in the swing adsorption process that is treated or conditioned such that the contaminant replaces a different molecule that is already adsorbed on the adsorbent bed. By way of example, if the swing adsorption process is primarily configured to remove CO2, then the adsorbent bed may include adsorbed particles, such as water, which may be installed in the system. During the start mode, a feed stream is passed to the adsorbent bed, which may include the CO2 contaminants, and a product stream may be conducted away and may be used as a purge stream to a different adsorbent bed.


In certain configurations, a process for removing contaminants from a gaseous feed stream with a swing adsorption process is described. The process comprising: a) performing a purge step, wherein the purge step comprises passing an external gas stream through an adsorbent bed unit to remove one or more contaminants from an adsorbent bed within a housing of the adsorbent bed unit to form a purge product stream; b) performing one or more adsorption steps, wherein each of the one or more adsorption steps comprise passing a gaseous feed stream through an adsorbent bed unit having an adsorbent bed to separate one or more contaminants from the gaseous feed stream to form a product stream; c) determining whether the product stream is within a specification for a contaminant; d) if the product stream is within the specification, passing the product stream to a downstream process; and e) if the product stream is not within the specification, repeating the steps a) to d) for at least one additional cycle.


The process may include various configuration changes to enhance the operations. For example, the process may further comprising mixing a slip stream from the downstream process with the external gas stream prior to performing the purge step; adjusting the amount of external gas stream utilized in the performing a purge step based on the amount of the slip stream from the downstream process; heating the external gas stream prior to passing the external gas stream through an adsorbent bed unit; wherein the external gas stream is heated to a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature or to a temperature in the range between 450° F. and the gaseous feed stream temperature; heating the purge product stream, wherein the purge product stream is heated to a temperature 10° F. greater than the dew point of the purge product stream; separating one or more contaminants from the purge product stream to form conditioned purge product stream and mixing the conditioned purge product stream with external gas source stream to form the external gas stream; wherein the purge stream is passed in a countercurrent direction relative to the direction of the feed stream and wherein a temperature differential exists at the end of the purge step in a range between 100° F. and 400° F., wherein the temperature differential is the difference in temperatures between a feed end of the adsorbent bed and a product end of the adsorbent bed; wherein the cycle duration is for a period greater than 1 second and less than 2400 seconds or is greater than 2 seconds and less than 800 seconds; wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream; wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is in the range of two hundred parts per million volume and less than or equal to about 2% volume of the gaseous feed stream; wherein the adsorbent bed unit is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million; wherein the gaseous feed stream comprises hydrocarbons and H2O, wherein the H2O is in the range of 0.2 parts per million volume to saturation levels in the gaseous feed stream; wherein the gaseous feed stream comprises hydrocarbons and H2O, wherein the H2O is in the range of 100 parts per million volume to 1500 parts per million volume; passing the product stream from the adsorbent bed unit to a liquefied natural gas (LNG) process unit and separating a flash fuel stream from the LNG process unit to be utilized as at least a portion of the purge stream; passing the product stream from the adsorbent bed unit to a cryogenic natural gas liquid recovery (NGL) process unit and separating an overhead stream from the NGL process unit to be utilized as at least a portion of the purge stream; wherein the external gas stream is a nitrogen containing stream having greater than one volume percent nitrogen based on the total volume of the feed stream; wherein the external gas stream comprises a predominately nitrogen stream comprising less than 0.1 ppm of water or less than 10 ppm of water; and/or wherein the external gas stream comprises at least one of nitrogen, methane, helium, hydrogen or any combination thereof.


In yet other configurations, a cyclical swing adsorption system is described. The system may include: a plurality of manifolds, wherein the plurality of manifolds comprise a feed manifold configured to pass a feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step, each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps; a plurality of adsorbent bed units coupled to the plurality of manifolds, each of the adsorbent bed units comprising: a housing; an adsorbent material disposed within the housing; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material; an external gas bypass valve in fluid communication with purge manifold and configured to provide a flow passage for an external gas stream from an external gas storage vessel to the purge manifold in a startup mode position and configured to block the flow passage of the external gas stream from the external gas storage vessel to the purge manifold in a normal operation mode position.


The system may include various configuration changes to enhance the operations. For example, the cyclical swing adsorption system may include that the plurality of valves comprise one or more poppet valves; may include that the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara; may further include a heating unit disposed upstream of the purge manifold and downstream of the external gas storage vessel, wherein the heating unit is configured to heat the external gas stream to a temperature in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature; may further include a conditioning unit disposed downstream of the purge product manifold and upstream of the external gas storage vessel, wherein the conditioning unit is configured to remove one or more contaminants from the purge product stream; may include that the plurality of manifolds further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step; may further include a liquefied natural gas process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a flash fuel stream, wherein the flash fuel stream is passed to the purge manifold; may further comprising a cryogenic natural gas liquid recovery (NGL) process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a residue gas stream, wherein the residue gas stream is passed to the purge manifold; and/or may further include a heating jacket disposed adjacent to the adsorbent bed unit and configured to heat the adsorbent bed.


In one or more embodiments, the present techniques can be used for any type of swing adsorption process. Non-limiting swing adsorption processes for which the present techniques may be used include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes. For example, the preferred swing adsorption process may include a combined pressure swing adsorption and temperature swing adsorption, which may be performed as a rapid cycle process. Exemplary swing adsorption processes are further described in U.S. Patent Ser. Nos. 62/213,262; 62/213,267; 62/213,270; 62/213,273; 62/246,916; 62/246,920; and 62/246,922 and U.S. Patent Application Publication Nos. 2008/0282892, 2008/0282887, 2008/0282886, 2008/0282885, 2008/0282884 and 20140013955, which are each herein incorporated by reference in their entirety.


Further still, in one or more embodiments, a variety of adsorbent materials may be used to provide the mechanism for the separations. Examples include zeolite 3A, 4A, 5A, ZK4 and MOF-74. However, the process is not limited to these adsorbent materials, and others may be used as well. The present techniques may be further understood with reference to the FIGS. 1 to 9 below.



FIG. 1 is a three-dimensional diagram of the swing adsorption system 100 having six adsorbent bed units and interconnecting piping. While this configuration is a specific example, the present techniques broadly relate to adsorbent bed units that can be deployed in a symmetrical orientation, or non-symmetrical orientation and/or combination of a plurality of hardware skids. Further, this specific configuration is for exemplary purposes as other configurations may include different numbers of adsorbent bed units.


In this system, the adsorbent bed units, such as adsorbent bed unit 102, may be configured for a cyclical swing adsorption process for removing contaminants from feed streams (e.g., fluids, gaseous or liquids). For example, the adsorbent bed unit 102 may include various conduits (e.g., conduit 104) for managing the flow of fluids through, to or from the adsorbent bed within the adsorbent bed unit 102. These conduits from the adsorbent bed units 102 may be coupled to a manifold (e.g., manifold 106) to distribute the flow to, from or between components. The adsorbent bed within an adsorbent bed unit may separate one or more contaminants from the feed stream to form a product stream. As may be appreciated, the adsorbent bed units may include other conduits to control other fluid steams as part of the process, such as purge streams, depressurizations streams, and the like. In particular, the adsorbent bed units may include startup mode equipment, such as one or more heating units (not shown), one or more external gas source manifolds, which may be one of the manifolds 106) and one or more expanders, as noted further below, which is used as part of the startup mode for the adsorbent beds. Further, the adsorbent bed unit may also include one or more equalization vessels, such as equalization vessel 108, which are dedicated to the adsorbent bed unit and may be dedicated to one or more step in the swing adsorption process. The equalization vessel 108 may be used to store the external stream, such as nitrogen for use in the startup mode cycle.


As an example, which is discussed further below in FIG. 2, the adsorbent bed unit 102 may include a housing, which may include a head portion and other body portions, that forms a substantially gas impermeable partition, an adsorbent bed disposed within the housing and a plurality of valves (e.g., poppet valves) providing fluid flow passages through openings in the housing between the interior region of the housing and locations external to the interior region of the housing. Each of the poppet valves may include a disk element that is seatable within the head or a disk element that is seatable within a separate valve seat inserted within the head (not shown). The configuration of the poppet valves may be any variety of valve patterns or configuration of types of poppet valves. As an example, the adsorbent bed unit may include one or more poppet valves, each in flow communication with a different conduit associated with different streams. The poppet valves may provide fluid communication between the adsorbent bed and one of the respective conduits, manifolds or headers. The term “in direct flow communication” or “in direct fluid communication” means in direct flow communication without intervening valves or other closure means for obstructing flow. As may be appreciated, other variations may also be envisioned within the scope of the present techniques.


The adsorbent bed comprises a solid adsorbent material capable of adsorbing one or more components from the feed stream. Such solid adsorbent materials are selected to be durable against the physical and chemical conditions within the adsorbent bed unit 102 and can include metallic, ceramic, or other materials, depending on the adsorption process. Further examples of adsorbent materials are noted further below.



FIG. 2 is a diagram of a portion of an adsorbent bed unit 200 having valve assemblies and manifolds in accordance with an embodiment of the present techniques. The portion of the adsorbent bed unit 200, which may be a portion of the adsorbent bed unit 102 of FIG. 1, includes a housing or body, which may include a cylindrical wall 214 and cylindrical insulation layer 216 along with an upper head 218 and a lower head 220. An adsorbent bed 210 is disposed between an upper head 218 and a lower head 220 and the insulation layer 216, resulting in an upper open zone, and lower open zone, which open zones are comprised substantially of open flow path volume. Such open flow path volume in adsorbent bed unit contains gas that has to be managed for the various steps. The housing may be configured to maintain a pressure from 0 bara (bar absolute) to 150 bara within the interior region.


The upper head 218 and lower head 220 contain openings in which valve structures can be inserted, such as valve assemblies 222 to 240, respectively (e.g., poppet valves). The upper or lower open flow path volume between the respective head 218 or 220 and adsorbent bed 210 can also contain distribution lines (not shown) which directly introduce fluids into the adsorbent bed 210. The upper head 218 contains various openings (not show) to provide flow passages through the inlet manifolds 242 and 244 and the outlet manifolds 248, 250 and 252, while the lower head 220 contains various openings (not shown) to provide flow passages through the inlet manifold 254 and the outlet manifolds 256, 258 and 260. Disposed in fluid communication with the respective manifolds 242 to 260 are the valve assemblies 222 to 240. If the valve assemblies 222 to 240 are poppet valves, each may include a disk element connected to a stem element which can be positioned within a bushing or valve guide. The stem element may be connected to an actuating means, such as actuating means (not shown), which is configured to have the respective valve impart linear motion to the respective stem. As may be appreciated, the actuating means may be operated independently for different steps in the process to activate a single valve or a single actuating means may be utilized to control two or more valves. Further, while the openings may be substantially similar in size, the openings and inlet valves for inlet manifolds may have a smaller diameter than those for outlet manifolds, given that the gas volumes passing through the inlets may tend to be lower than product volumes passing through the outlets.


In swing adsorption processes, the cycle involves two or more steps that each has a certain time interval, which are summed together to be the cycle time or cycle duration. These steps include regeneration of the adsorbent bed following the adsorption step using a variety of methods including pressure swing, vacuum swing, temperature swing, purging (via any suitable type of purge fluid for the process), and combinations thereof. As an example, a PSA cycle may include the steps of adsorption, depressurization, purging, and re-pressurization. When performing the separation at high pressure, depressurization and re-pressurization (which may be referred to as equalization) may be performed in multiple steps to reduce the pressure change for each step and enhance efficiency. In some swing adsorption processes, such as rapid cycle swing adsorption processes, a substantial portion of the total cycle time is involved in the regeneration of the adsorbent bed. Accordingly, any reductions in the amount of time for regeneration results in a reduction of the total cycle time. This reduction may also reduce the overall size of the swing adsorption system.


Further, in startup mode for the swing adsorption process, one or more of the manifolds and associated valves may be utilized as a dedicated flow path for one or more startup streams. For example, during the adsorption or feed step, the manifold 242 and valve assembly 222 may be utilized to pass the feed gas stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the product stream from the adsorbent bed 210. During the regeneration or purge step, the manifold 244 and valve assembly 224 may be utilized to pass the external gas stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the purge product stream from the adsorbent bed 210. Accordingly, the manifold 244 and valve assembly 224 may be utilized for startup mode processes, but remain inactive during normal operation mode. As may be appreciated, the purge stream may be configured to flow counter current to the feed stream in other embodiments.


Alternatively, the startup mode for the swing adsorption process may involve sharing one or more of the manifolds and associated valves during the normal operation mode and during startup mode. For example, the manifold 242 and valve assembly 222 may be utilized to feed the gaseous feed stream to the adsorbent bed 210 during startup mode and during normal operations, while the valve assembly 236 and manifold 256 may be used to conduct away the product stream from the adsorbent bed 210 may be used to conduct away the product stream during startup mode and during normal operation mode. During the regeneration or purge step, the manifold 254 and valve assembly 232 may be utilized to pass the external gas stream to the adsorbent bed 210 for startup mode and to pass the purge stream to the adsorbent bed 210 for normal operation mode, while the valve assembly 226 and manifold 248 may be used to conduct away the purge product stream from the adsorbent bed 210 during startup mode and normal operation mode. Beneficially, this configuration may be utilized to lessen any additional valves or connections for startup mode for adsorbent bed unit configurations that are subject to space limitations on the respective heads.


During normal operation mode, a gaseous feed stream may be subject to various processes to form a NGL stream or a LNG stream. For example, the process may include a mercury removal unit to remove mercury from an input stream; a filter to remove both particular and liquid droplets; a swing adsorption unit to remove one or more contaminants, such as H2O, CO2 and sulfur containing species; a LNG process unit or NGL process unit to process the resulting stream into a final product that may be used for sales, shipment or storage. In addition, the configuration may include one or more of a heating loop, a compressor, a heating unit and/or a storage vessel.


As noted above, the present techniques include various procedures that may be utilized for the startup mode of the swing adsorption process. The startup mode may include an external startup mode. The external startup mode may include performing an adsorption step and then a regeneration step for each of the adsorbent beds. The adsorption step may include passing a gaseous feed stream through the adsorbent bed to adsorb one or more contaminants from the gaseous feed stream and conducting away the resulting product stream from the adsorbent bed unit. The resulting product stream may be passed to downstream processing equipment. The regeneration step may include passing an external stream through the adsorbent bed to remove one or more contaminants from the adsorbent bed unit (e.g., a portion of the contaminants within the adsorbent bed unit or within the voids of the adsorbent bed) and conduct away the purge product stream from the adsorbent bed unit. The purge product stream may be set to flare or may be combined with fuel gas.


As an example, FIG. 3 is an exemplary flow chart for performing an external startup mode of a swing adsorption process in accordance with an embodiment of the present techniques. In this flow chart 300, the startup mode process may involve the use of an external gas stream to remove one or more contaminants from the adsorbent beds as part of the startup mode cycle. Further, the startup mode process may include operating two or more adsorbent bed units, which may each be performing different steps in the startup mode cycle. For each of the adsorbent bed units, the swing adsorption process involves a startup mode process using an external stream, as shown in blocks 302 to 308, which is described as being performed for a single adsorbent bed unit for simplicity. Then, the adsorbent bed units may be used with the downstream equipment, as shown in blocks 310 to 316, and normal operations mode are begun, as shown in block 318. The external gas stream may include nitrogen and/or methane, as noted above. The external stream may comprise predominately nitrogen and/or methane with less than 0.1 ppm of water, or less than 10 ppm of water. The external gas stream may be a nitrogen containing stream having greater than one volume percent nitrogen based on the total volume of the feed stream.


The process begins by performing the startup mode process for the adsorbent bed units of the swing adsorption process, as shown in blocks 302 to 308. At block 302, a regeneration step is performed for the adsorbent bed with an external stream. The external stream may include nitrogen or methane and may be a dry stream (e.g., less than 10 ppm of water, less than 1 ppm of water, or less than 0.1 ppm of water). The regeneration step, which may be one or more purge steps may include passing the external stream through the adsorbent bed to create a purge product stream that is conducted away from the adsorbent bed unit. The product purge stream may include the external stream and a portion of the contaminants within the adsorbent bed. This product purge stream may be intermingled with a fuel gas stream or may be flared. Further, the external stream may be subjected to a heating step prior to being passed to the adsorbent bed. The heating step may heat the external stream to a temperature less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the external stream used during the purge step may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between a temperature in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature, in the range between 450° F. and the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature. The heating of the external stream may include passing the stream through a heat exchanger or similar heating unit to increase the temperature of the external stream. At block 304, an adsorption step is performed for the adsorbent bed. The adsorption step may include passing a gaseous feed stream through the adsorbent bed to remove one or more contaminants from the gaseous feed stream and to create a product stream that is conducted away from the adsorbent bed unit. At block 306, the product stream may be measured. The product stream may be measured by taking samples, using a moisture analyzer, using a gas chromatograph or using another gas component analysis equipment. Then, at block 308, a determination may be made whether the product stream is within specification. This determination may include analyzing the product stream to determine the level of one or more of the contaminants within the product stream. If the product stream is within specification (e.g., contaminants are at or below a specific threshold), the product stream may be passed to downstream processes. However, if the product stream is not within specifications (e.g., contaminants are above a specific threshold), the product stream may be recycled to be intermingled with the gaseous feed stream and utilized as part of the adsorption step, as shown in block 304.


Once the adsorbent bed units are passing the product stream to the downstream process, the product stream may be used with the downstream equipment, as shown in blocks 310 to 316. At block 310, the startup mode for the downstream equipment may begin. The startup mode for the downstream equipment may involve various steps prior to the passing of product stream to the downstream equipment or may begin once the product stream is passed to the downstream equipment. The downstream processes may include a CFZ process, a cryogenic NGL recovery process, or an LNG process, with the associated equipment for each. Further, during the downstream startup mode sequence, the adsorbent bed units may continue to utilize the external stream for the purge step. At block 312, a purge stream may be passed to the adsorbent bed units from the downstream process. The purge stream may include an overhead stream or a slip stream from the downstream process. By way of example, the purge stream from an NGL facility may be the demethanizer overhead, or the purge stream may be a fuel gas stream for an LNG facility. Then, at block 314, the amount of external stream utilized in the purge step may be adjusted. The adjustment may be based on the amount of the purge stream being provided to the adsorbent bed units. For example, the flow rate of the external stream may be lowered by 10%, 50%, or 90% based on the amount of purge stream from the downstream processes and the desired flow rate. At block 316, the flow of the external stream may be interrupted. The flow of the external stream may be interrupted once the downstream process is producing a sufficient amount of purge stream at conditions close to steady operating conditions.


Once the startup mode process is complete, the normal operation mode may begin, as shown in block 318. At block 318, normal operation mode is begun. The normal operation mode may include passing the gaseous feed stream is passed to the adsorbent bed units for the swing adsorption process to remove contaminants and pass the product stream to the downstream process. Then, the downstream process may pass the product stream through the various downstream equipment to produce a final product stream. The downstream process may also pass a purge stream to the swing adsorption process, which may be utilized during the regeneration step to remove contaminants from the adsorbent beds within the adsorbent bed units.


As a specific example, the feed stream may be a natural gas stream that predominately contains hydrocarbons, the external stream may be a nitrogen stream and the contaminants within the adsorbent bed may be water. During the purge step for the respective adsorbent bed, the nitrogen stream is passed through the adsorbent bed and water interacts with the nitrogen stream to form the purge product stream, which includes the nitrogen and the portion of the water removed from the adsorbent bed.


In addition, the product stream from the adsorbent bed units may be utilized in the startup mode process for one or more downstream units, such as a demethanizer or a liquefaction train. As the downstream processes and units are being started, the spent adsorbent beds may be regenerated using the dry nitrogen stream as the purge stream. The dry nitrogen stream may be heated. Alternatively, a heated slip stream from the product side may also be used to regenerate the adsorbent beds during the purge step. Once the downstream processes begin normal operation mode, the purge stream may be adjusted to be provided from a residue gas stream, a fuel gas stream or other suitable stream from one of the downstream processes.


In certain embodiments, the purge product stream may be subjected to processes to remove the contaminants from the external stream, such that the cleaned purge product stream may be recycled to the adsorbent bed units as the external stream or intermingled with the external stream. For example, if the external stream is a nitrogen stream and the contaminant is water, the purge product stream may be heated and then may be subjected to a pressure drop to separate the water from the nitrogen in the purge product stream. In this manner, the nitrogen may be regenerated and recycled to the adsorbent beds to remove additional water from the adsorbent beds during a subsequent purge step.


As further enhancements, the operating conditions may be adjusted during the external startup mode to manage the removal of contaminants from the adsorbent beds. By way of example, flow rate may be in a range between 25 and 1000 million standard cubic feet per day (MSCFD) during normal operation mode, while the flow rate may be in the range between 6.25 and 500 MSCFD for startup mode. The flow rate may be increased during subsequent purge steps until normal operation mode flow rates are reached. Also, the pressure range of the external stream may be in a pressure range between atmospheric pressure and fifty psi above atmospheric pressure. In addition, the temperature of the external stream may be within a temperature range between 20° Celsius (C) above atmospheric temperature and 150° C. above atmospheric temperature. Further, the temperature of the external stream may be less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be the gaseous feed stream temperature, greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the external stream used during the purge step may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature; in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature.


To support the external startup mode process, a configuration of the swing adsorption process may include additional bypass conduits and manifold to pass the external stream to the adsorbent bed units during the purge step. The external stream may be provided from an external source vessel through an external source conduit that is in fluid communication with purge manifold. In addition, the configuration may include one or more heating units that are upstream of the purge manifold and configured to heat the external stream prior to passing through the adsorbent bed units and/or that are downstream of the purge product manifold and configured to heat the purge product stream. The heating unit may include a heat exchanger, a furnace, or the like. The configuration may also include one or more separation units configured to separate one or more contaminants from the purge product stream. The separation units may be a flash separation vessel that is configured to lower the pressure of the stream to separate the contaminants from the remaining portion of the purge product stream or may be an adsorption unit that interacts with the contaminants to separates the contaminants from the remaining portion of the purge product stream. The contaminants may be conducted away from the process, while the remaining portion of the purge product stream may be passed to one or more regeneration units. The regeneration units may be utilized to further purify the remaining portion of the purge product stream and/or compress the remaining portion of the purge product stream to form the external stream that is passed to the adsorbent beds.


In certain embodiments, the external stream may be further conditioned prior to being provided to a subsequent adsorbent bed unit during its regeneration step, as the purge stream. The heating step may heat the external stream to a temperature less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the external stream used during the purge step may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature; in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature. The heating of the external stream may include passing the stream through a heat exchanger or similar heating unit to increase the temperature of the external stream. Further, the external stream may be subjected to a depressurization step prior to being passed to the adsorbent bed unit performing its regeneration step. The depressurization step, which may be prior to the heating step or following the heating step, may lower the pressure of the external stream to a pressure in the range from between 0.1 bar absolute (bara) and 100 bara, which is lower than the pressure of the external stream prior to the depressurization step. The pressure may be lowered by at least 10%, by at least 20% or at least 30% relative to the pressure of the product stream exiting the adsorbent bed. The depressurizing of the external stream may include passing the stream through an expander or flash separation vessel to lower the pressure of the external stream.


As further enhancements, the operating conditions may be adjusted during the startup mode to manage the removal of contaminants from the adsorbent bed units. By way of example, the flow rate may be in a range between 25 and 1000 million standard cubic feet per day (MSCFD) during normal operation mode, while the flow rate may be in the range between 6.25 and 500 MSCFD for startup mode. The flow rate may be increased during subsequent purge steps until normal operation mode flow rates are reached. Also, the pressure range of the external stream may be in a pressure range between atmospheric pressure and fifty psi above atmospheric pressure. In addition, the temperature of the external stream may be within a temperature range between 20° Celsius (C) above atmospheric temperature and 100° Celsius (C) above atmospheric temperature.


In addition, the purge product may be subject to conditioning steps, such as for recovering hydrocarbons from the regeneration step. For example, the purge product stream may be cooled or compressed to remove contaminants and may be recycled to be at least a portion of the feed stream or to be at least a portion of the product stream. By way of example, a flash separation may be utilized to remove contaminants. In other configurations, the purge product stream is heated to a temperature 5° F. greater than the dew point of the purge product stream; 10° F. greater than the dew point of the purge product stream; or 20° F. greater than the dew point of the purge product stream. By heating the purge product stream above the dew point, the heated purge product stream may be used in a subsequent process, such as a gas turbine.


To support the startup mode process, a configuration of the swing adsorption process may include additional bypass conduits and manifold to pass the external stream or a portion of the external stream to adsorbent bed units during their regeneration step. The configuration may also include one or more heating units that are upstream of the purge manifold and configured to heat the external stream prior to passing through the adsorbent bed units and/or that are downstream of the purge product manifold and configured to heat the purge product stream. The heating unit may include a heat exchanger, a furnace, or the like. The configuration may also include one or more depressurization units configured to lower the pressure of the external stream. The depressurization units may include one or more expanders and/or one or more separation units. The separation units, which may be a flash separation vessel, may be configured to separate one or more contaminants from the external stream. Further, the configuration may include one or more regeneration units that are configured to purify the purge product stream to remove contaminants from the purge product stream. By way of example, the configuration may include an external gas bypass valve in fluid communication with purge manifold and configured to provide a flow passage for an external gas stream from an external gas storage vessel to the purge manifold in a startup mode position and configured to block the flow passage of the external gas stream from the external gas storage vessel to the purge manifold in a normal operation mode position.


Exemplary embodiments of steps that may be performed in the startup mode process are shown in FIGS. 4 to FIG. 9. FIG. 4 is an exemplary diagram 400 of a startup mode step in accordance with an embodiment of the present techniques. In this diagram 400, an adsorbent bed heating step is shown during the adsorption step of the startup mode cycle. In this heating step, a feed stream, which may be a wet gas stream or the external stream, may be passed via conduit 402 to a heating unit 404. The heating unit 404 may be configured to heat the feed stream to a temperature less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be the gaseous feed stream temperature, greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the stream used during the purge step may be a temperature in the range between 500° F. and 50° F., in the range between 450° F. and 100° F. or 400° F. and 200° F. (e.g., at a temperature higher than the feed stream temperature). Then, the heated stream may be passed to a depressurization unit 406. The depressurization unit 406 may be configured to lower the pressure of the heated stream to a pressure in the range of 0.1 bar absolute (bara) and 100 bara, which is lower than the pressure within the stream prior to the depressurization unit 406 or which may lower the pressure by at least 10%, by at least 20% or at least 30% relative to the pressure of the stream prior to the depressurization unit 406. Then, the resulting stream is passed from the depressurization unit 406 to be flared or recycled into the process.



FIGS. 5A and 5B are exemplary diagrams 500 and 520 associated with another startup mode step in accordance with an embodiment of the present techniques. In the diagram 500 of FIG. 5A, a blowdown step is shown. In this blowdown step, a blowdown stream, which may be a portion of the gas within the adsorbent bed unit 502, may be passed via conduit 504 to a flare (not shown). The blowdown step may be utilized to remove a large amount of contaminants, such as water, from the adsorbent bed unit 502.


In FIG. 5B, a diagram 520 of a pressure response 526 is shown along a adsorption axis 522 in moles per kilogram (mol/kg) with respect to a pressure axis 522 in bars. In this diagram 520, the response 526 shows equilibrium loading as a function of the partial pressure. As pressure in the adsorbent bed is reduced, the partial pressure lowers resulting in a lower loading on the adsorbent material. This results in desorption of contaminant from the adsorbent bed which may be conducted away to flare.



FIG. 6 is an exemplary diagram 600 associated with yet another startup mode step in accordance with an embodiment of the present techniques. In this diagram 600, an external gas purge step is shown. In this external gas purge step, an external gaseous stream, which may be a predominately nitrogen stream, may be passed via conduit 602 to a heating unit 604. The heating unit 604 may be configured to heat the external gas stream to a temperature less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be the gaseous feed stream temperature, greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the external stream used during the purge step may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between a temperature in the range between 450° F. and the gaseous feed stream temperature, in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature. Then, the heated external gas stream may be passed to the adsorbent bed unit 606 as a heated purge stream. The heated purge stream may be passed through the adsorbent bed unit 606 to remove one or more contaminants from the adsorbent bed unit 606 and conducted away via conduit 608 as a purge product stream. The purge product stream may be subjected to conditioning and/or flared.



FIG. 7 is an exemplary diagram 700 associated with another startup mode step in accordance with an embodiment of the present techniques. In this diagram 700, two adsorbent bed units 702 and 704 are shown performing different steps in the respective startup mode sequence after the product stream has reached a level that satisfies the predetermined threshold. This step may be performed in one or more cycles following performance of the cycles and may be used to startup the downstream processes, such as an NGL system. The first adsorbent bed unit 702 may be performing an adsorption step, while the second adsorbent bed unit 704 may be performing a regeneration step (e.g., a purge step). In the adsorption step, a feed stream may be passed via conduit 706 to first adsorbent bed unit 702. The feed stream may interact with the adsorbent bed within the first adsorbent bed unit 702 to remove one or more contaminants from the feed stream and the resulting stream may be conducted away to a downstream process via conduit 710. The external stream may pass to a heating unit 712 via conduit 714 for the regeneration step for the adsorbent bed unit 704. The heating unit 712 may be configured to heat external stream to a temperature, as noted above. Then, the heated stream may be passed to a depressurization unit 716. The depressurization unit 716 may be configured to lower the pressure of the heated stream to a pressure in the range between 0.1 bar absolute (bara) and 100 bara, which is lower than the pressure within the stream prior to the depressurization unit 716 or which may lower the pressure by at least 10%, by at least 20% or at least 30% relative to the pressure of the stream prior to the depressurization unit 716. Then, the resulting stream is passed from the depressurization unit 716 to the second adsorbent bed unit 704 as a purge stream during the regeneration step for the second adsorbent bed unit 704. The purge stream may be passed through the second adsorbent bed unit 704 to remove one or more contaminants from the adsorbent bed within the second adsorbent bed unit 704 and conducted away via conduit 718 as a purge product stream. The purge product stream may be intermingled with a fuel stream, subject to additional conditioning and/or flared.



FIG. 8 is an exemplary diagram 800 associated with still another startup mode step in accordance with an embodiment of the present techniques. In this diagram 800, two adsorbent bed units 702 and 704 are shown performing different steps in the respective external startup mode sequence after the product stream has reached a level that satisfies the predetermined threshold and after the downstream process is providing a purge stream to the adsorbent bed units 702 and 704. This step may be performed in one or more cycles following performance of the cycles in FIG. 7, which may include similar reference numbers to FIG. 7, and may be used to transition to normal operation for the swing adsorption process and/or the downstream processes. In this configuration, the flow rate to the conduit 714 or a valve may be adjusted to decrease the amount of external gas being provided to the heating unit 712 via conduit 714 and the depressurization unit 716. The adjustment may be based on the volume of overhead stream being provided from the downstream process via conduit 802. The adjustment may include using a valve and/or control system in a cascaded configuration, adjusting the flow rate with a valve or blocking flow with one or more valves. This process may be utilized to transition the swing adsorption process from a RCTSA process to a RCPSA process. Also, this process may be used for the startup of an NGL process and/or LNG process.



FIG. 9 is an exemplary diagram 900 associated with normal operation mode. In this diagram 900, two adsorbent bed units 902 and 904 are shown performing different steps in the respective normal operation mode sequence after the startup mode is complete. The first adsorbent bed unit 902 may be performing an adsorption step, while the second adsorbent bed unit 904 may be performing a regeneration step (e.g., a purge step). In the adsorption step, a feed stream may be passed via conduit 906 to first adsorbent bed unit 902. The feed stream may interact with the adsorbent bed within the first adsorbent bed unit 902 to remove one or more contaminants from the feed stream and the resulting stream may be conducted away via a conduit 908 to a downstream process. For the regeneration step, the purge stream is passed via conduit 910 from the downstream process to the second adsorbent bed unit 904. The purge stream may be passed through the second adsorbent bed unit 904 to remove one or more contaminants from the adsorbent bed within the second adsorbent bed unit 904 and conducted away via conduit 912 as a purge product stream. The purge product stream may be intermingled with a fuel stream, provided to a residue gas compressor or other additional conditioning process.


As may be appreciated, the startup mode process may include various combination of steps to perform the startup mode process. The startup modes may use these different step to manage the startup mode sequence. For example, the blowdown step may be performed after the purge step for the respective adsorbent bed units.


In addition, as another enhancement, the present techniques may include other enhancements. For example, a heating jacket or blanket may be used to provide additional heat to the adsorbent bed unit. The additional heat may be used during startup mode to further provide heat to the adsorbent bed. Specifically, the heating jacket may be disposed adjacent to the adsorbent bed unit and/or manifolds and conduits fluidly coupled to the adsorbent bed unit and configured to heat the adsorbent bed, which may be an electric heating configuration.


In one or more embodiments, the material may include an adsorbent material supported on a non-adsorbent support. The adsorbent materials may include alumina, microporous zeolites, carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, aluminum phosphorous and oxygen (ALPO) materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), silicon aluminum phosphorous and oxygen (SAPO) materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), metal organic framework (MOF) materials (microporous and mesoporous materials comprised of a metal organic framework) and zeolitic imidazolate frameworks (ZIF) materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary amines and other non protogenic basic groups such as amidines, guanidines and biguanides.


In one or more embodiments, the adsorbent bed unit may be utilized to separate contaminants from a feed stream during normal operation mode. The method may include passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion; interrupting the flow of the gaseous feed stream; performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit; performing an optional heating step, wherein the heating step increases the temperature of the adsorbent bed unit to form a temperature differential between the feed end of the adsorbent bed and the product end of the adsorbent bed; and performing a purge step, wherein the purge step reduces the pressure within the adsorbent bed unit; performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; and repeating the steps a) to e) for at least one additional cycle.


Further, in one or more embodiments, the adsorbent bed unit may include an adsorbent bed that can be used for the separation of a target gas form a gaseous mixture. The adsorbent is usually comprised of an adsorbent material supported on a non-adsorbent support, or contactor. Such contactors contain substantially parallel flow channels wherein 20 volume percent, preferably 15 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in pores greater than about 20 angstroms. A flow channel is taken to be that portion of the contactor in which gas flows, if a steady state pressure difference is applied between the point or place at which a feed stream enters the contactor and the point or place at which a product stream leaves the contactor. In the contactor, the adsorbent is incorporated into the wall of the flow channel.


In one or more embodiments, when using RCTSA or an integrated RCPSA and RCTSA process, the total cycle times are typically less than 600 seconds, preferably less than 400 seconds, preferably less than 300 seconds, preferably less than 250 seconds, preferably less than 180 seconds, more preferably less than 90 seconds, and even more preferably less than 60 seconds. In other embodiment, the rapid cycle configuration may be operated at lower flow rates during startup mode as compared to normal operation mode, which may result in the cycle durations being longer than the cycle durations during normal operation mode. For example, the startup mode cycle duration may be for a period greater than 1 second and less than 2400 seconds, for a period greater than 1 second and less than 1500 seconds, for a period greater than 1 second and less than 1000 seconds, for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 800 seconds, for a period greater than 2 second and less than 400 seconds, for a period greater than 5 second and less than 150 seconds or for a period greater than 5 second and less than 90 seconds.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.

Claims
  • 1. A cyclical swing adsorption system comprising: a plurality of manifolds, wherein the plurality of manifolds comprise a feed manifold configured to pass a gaseous feed stream to a plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass a product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step,each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps;the plurality of adsorbent bed units coupled to the plurality of manifolds, each of the adsorbent bed units comprising: a housing;an adsorbent material disposed within the housing;a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material;an external gas bypass valve in fluid communication with the purge manifold and configured to provide a flow passage for an external gas stream from an external gas storage vessel to the purge manifold in a startup mode position and configured to block the flow passage of the external gas stream from the external gas storage vessel to the purge manifold in a normal operation mode position.
  • 2. The cyclical swing adsorption system of claim 1, wherein the plurality of valves comprise one or more poppet valves.
  • 3. The cyclical swing adsorption system of claim 1, wherein the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara.
  • 4. The cyclical swing adsorption system of claim 1, further comprising a heating unit disposed upstream of the purge manifold and downstream of the external gas storage vessel, wherein the heating unit is configured to heat the external gas stream to a temperature in the range between a temperature in the range between 450° F. and the temperature of the gaseous feed stream.
  • 5. The cyclical swing adsorption system of claim 1, further comprising a heating unit disposed upstream of the purge manifold and downstream of the external gas storage vessel, wherein the heating unit is configured to heat the external gas stream to a temperature in the range between a temperature in the range between 500° F. and greater than 50° F. of the temperature of the gaseous feed stream.
  • 6. The cyclical swing adsorption system of claim 1, further comprising a conditioning unit disposed downstream of the purge product manifold and upstream of the external gas storage vessel, wherein the conditioning unit is configured to remove one or more contaminants from the purge product stream.
  • 7. The cyclical swing adsorption system of claim 1, wherein the plurality of manifolds further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step.
  • 8. The cyclical swing adsorption system of claim 1, further comprising a liquefied natural gas process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a flash fuel stream, wherein the flash fuel stream is passed to the purge manifold.
  • 9. The cyclical swing adsorption system of claim 1, further comprising a cryogenic natural gas liquid recovery (NGL) process unit in fluid communication with the adsorbent bed unit and configured to receive the product stream and separate the product stream into a final product stream and a residue gas stream, wherein the residue gas stream is passed to the purge manifold.
  • 10. The cyclical swing adsorption system of claim 9, configured to recycle a demethanizer column overhead product with the residue gas stream.
  • 11. The cyclical swing adsorption system of claim 1, further comprising a heating jacket disposed adjacent to the adsorbent bed unit and configured to heat the adsorbent bed.
  • 12. The cyclical swing adsorption system of claim 1, configured to pass the purge product stream to a suction of a residue gas compressor and combine the purge product stream with the feed stream either upstream or downstream of a triethylene glycol (TEG) based dehydration unit before passing the feed stream to the feed manifold.
  • 13. The cyclical swing adsorption system of claim 1, configured to adjust the amount of external gas stream to the purge manifold.
  • 14. The cyclical swing adsorption system of claim 1, configured to pass the purge stream to the plurality of adsorbent bed units in a countercurrent direction relative to the direction of the gaseous feed stream and to obtain a temperature differential at the end of a purge step in a range between 100° F. and 400° F., wherein the temperature differential is the difference in temperatures between a feed end of the adsorbent bed and a product end of the adsorbent bed.
  • 15. The cyclical swing adsorption system of claim 1, configured to operate on a cycle duration of greater than 2 seconds and less than 800 seconds.
CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional of U.S. patent application Ser. No. 15/496,576, filed Apr. 25, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/343,426, filed May 31, 2016, entitled APPARATUS AND SYSTEM FOR SWING ADSORPTION PROCESSES, the entirety of which is incorporated by reference herein.

US Referenced Citations (462)
Number Name Date Kind
1868138 Fisk Jul 1932 A
3103425 Meyer Sep 1963 A
3124152 Payne Mar 1964 A
3142547 Marsh et al. Jul 1964 A
3405507 Spencer Oct 1968 A
3508758 Strub Apr 1970 A
3594983 Yearout Jul 1971 A
3602247 Bunn et al. Aug 1971 A
3788036 Lee et al. Jan 1974 A
3967464 Cormier et al. Jul 1976 A
4187092 Woolley Feb 1980 A
4261815 Kelland Apr 1981 A
4324565 Benkmann Apr 1982 A
4325565 Winchell Apr 1982 A
4329162 Pitcher May 1982 A
4340398 Doshi et al. Jul 1982 A
4386947 Mizuno et al. Jun 1983 A
4421531 Dalton, Jr. et al. Dec 1983 A
4445441 Tanca May 1984 A
4461630 Cassidy et al. Jul 1984 A
4496376 Hradek Jan 1985 A
4512779 Hay Apr 1985 A
4631073 Null et al. Dec 1986 A
4693730 Miller et al. Sep 1987 A
4705627 Miwa et al. Nov 1987 A
4711968 Oswald et al. Dec 1987 A
4737170 Searle Apr 1988 A
4770676 Sircar et al. Sep 1988 A
4783205 Searle Nov 1988 A
4784672 Sircar Nov 1988 A
4790272 Woolenweber Dec 1988 A
4814146 Brand et al. Mar 1989 A
4816039 Krishnamurthy et al. Mar 1989 A
4877429 Hunter Oct 1989 A
4977745 Heichberger Dec 1990 A
5110328 Yokota et al. May 1992 A
5125934 Krishnamurthy et al. Jun 1992 A
5169006 Stelzer Dec 1992 A
5174796 Davis et al. Dec 1992 A
5224350 Mehra Jul 1993 A
5234472 Krishnamurthy et al. Aug 1993 A
5292990 Kantner et al. Mar 1994 A
5306331 Auvil et al. Apr 1994 A
5354346 Kumar Oct 1994 A
5365011 Ramachandran et al. Nov 1994 A
5370728 LaSala et al. Dec 1994 A
5486227 Kumar et al. Jan 1996 A
5547641 Smith et al. Aug 1996 A
5565018 Baksh et al. Oct 1996 A
5672196 Acharya et al. Sep 1997 A
5700310 Bowman et al. Dec 1997 A
5733451 Coellner et al. Mar 1998 A
5735938 Baksh et al. Apr 1998 A
5750026 Gadkaree et al. May 1998 A
5769928 Leavitt Jun 1998 A
5779768 Anand et al. Jul 1998 A
5792239 Reinhold, III et al. Aug 1998 A
5807423 Lemcoff et al. Sep 1998 A
5811616 Holub et al. Sep 1998 A
5827358 Kulish et al. Oct 1998 A
5882380 Sircar Mar 1999 A
5906673 Reinhold, III et al. May 1999 A
5912426 Smolarek et al. Jun 1999 A
5914294 Park et al. Jun 1999 A
5924307 Nenov Jul 1999 A
5935444 Johnson et al. Aug 1999 A
5968234 Midgett, II et al. Oct 1999 A
5976221 Bowman et al. Nov 1999 A
5997617 Czabala et al. Dec 1999 A
6007606 Baksh et al. Dec 1999 A
6011192 Baker et al. Jan 2000 A
6023942 Thomas et al. Feb 2000 A
6053966 Moreau et al. Apr 2000 A
6063161 Keefer et al. May 2000 A
6096115 Kleinberg Aug 2000 A
6099621 Ho Aug 2000 A
6102985 Naheiri et al. Aug 2000 A
6129780 Millet et al. Oct 2000 A
6136222 Friesen et al. Oct 2000 A
6147126 DeGeorge et al. Nov 2000 A
6152991 Ackley Nov 2000 A
6156101 Naheiri Dec 2000 A
6171371 Derive et al. Jan 2001 B1
6176897 Keefer Jan 2001 B1
6179900 Behling et al. Jan 2001 B1
6183538 Naheiri Feb 2001 B1
6194079 Hekal Feb 2001 B1
6210466 Whysall et al. Apr 2001 B1
6231302 Bonardi May 2001 B1
6245127 Kane et al. Jun 2001 B1
6284021 Lu et al. Sep 2001 B1
6311719 Hill et al. Nov 2001 B1
6345954 Al-Himyary et al. Feb 2002 B1
6398853 Keefer et al. Jun 2002 B1
6402813 Monereau et al. Jun 2002 B2
6406523 Connor et al. Jun 2002 B1
6425938 Xu et al. Jul 2002 B1
6432379 Heung Aug 2002 B1
6436171 Wang et al. Aug 2002 B1
6444012 Dolan et al. Sep 2002 B1
6444014 Mullhaupt et al. Sep 2002 B1
6444523 Fan et al. Sep 2002 B1
6444610 Yamamoto Sep 2002 B1
6451095 Keefer et al. Sep 2002 B1
6457485 Hill et al. Oct 2002 B2
6458187 Fritz et al. Oct 2002 B1
6464761 Bugli Oct 2002 B1
6471749 Kawai et al. Oct 2002 B1
6471939 Boix et al. Oct 2002 B1
6488747 Keefer Dec 2002 B1
6497750 Butwell et al. Dec 2002 B2
6500234 Ackley et al. Dec 2002 B1
6500241 Reddy Dec 2002 B2
6500404 Camblor Fernandez et al. Dec 2002 B1
6503299 Baksh et al. Jan 2003 B2
6506351 Jain et al. Jan 2003 B1
6514318 Keefer Feb 2003 B2
6514319 Keefer et al. Feb 2003 B2
6517609 Monereau et al. Feb 2003 B1
6531516 Davis et al. Mar 2003 B2
6533846 Keefer et al. Mar 2003 B1
6565627 Golden et al. May 2003 B1
6565635 Keefer et al. May 2003 B2
6565825 Ohji et al. May 2003 B2
6572678 Wijmans et al. Jun 2003 B1
6579341 Baker et al. Jun 2003 B2
6593541 Herren Jul 2003 B1
6595233 Pulli Jul 2003 B2
6605136 Graham et al. Aug 2003 B1
6607584 Moreau et al. Aug 2003 B2
6630012 Wegeng et al. Oct 2003 B2
6631626 Hahn Oct 2003 B1
6641645 Lee et al. Nov 2003 B1
6651645 Nunez-Suarez Nov 2003 B1
6660064 Golden et al. Dec 2003 B2
6660065 Byrd et al. Dec 2003 B2
6692626 Keefer et al. Feb 2004 B2
6712087 Hill et al. Mar 2004 B2
6742507 Keefer et al. Jun 2004 B2
6746515 Wegeng et al. Jun 2004 B2
6752852 Jacksier et al. Jun 2004 B1
6770120 Neu et al. Aug 2004 B2
6773225 Yuri et al. Aug 2004 B2
6802889 Graham et al. Oct 2004 B2
6814771 Scardino et al. Nov 2004 B2
6835354 Woods et al. Dec 2004 B2
6840985 Keefer Jan 2005 B2
6866950 Connor et al. Mar 2005 B2
6889710 Wagner May 2005 B2
6890376 Arquin et al. May 2005 B2
6893483 Golden et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6916358 Nakamura et al. Jul 2005 B2
6918953 Lomax, Jr. et al. Jul 2005 B2
6921597 Keefer et al. Jul 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7025801 Monereau Apr 2006 B2
7027929 Wang Apr 2006 B2
7029521 Johansson Apr 2006 B2
7074323 Ghijsen Jul 2006 B2
7077891 Jaffe et al. Jul 2006 B2
7087331 Keefer et al. Aug 2006 B2
7094275 Keefer et al. Aug 2006 B2
7097925 Keefer et al. Aug 2006 B2
7112239 Kimbara et al. Sep 2006 B2
7117669 Kaboord et al. Oct 2006 B2
7122073 Notaro et al. Oct 2006 B1
7128775 Celik et al. Oct 2006 B2
7144016 Gozdawa Dec 2006 B2
7160356 Koros et al. Jan 2007 B2
7160367 Babicki et al. Jan 2007 B2
7166149 Dunne et al. Jan 2007 B2
7172645 Pfister et al. Feb 2007 B1
7189280 Alizadeh-Khiavi et al. Mar 2007 B2
7243679 Thelen Jul 2007 B2
7250073 Keefer et al. Jul 2007 B2
7250074 Tonkovich et al. Jul 2007 B2
7255727 Monereau et al. Aug 2007 B2
7258725 Ohmi et al. Aug 2007 B2
7276107 Baksh et al. Oct 2007 B2
7279029 Occhialini et al. Oct 2007 B2
7285350 Keefer et al. Oct 2007 B2
7297279 Johnson et al. Nov 2007 B2
7311763 Neary Dec 2007 B2
RE40006 Keefer et al. Jan 2008 E
7314503 Landrum et al. Jan 2008 B2
7354562 Ying et al. Apr 2008 B2
7387849 Keefer et al. Jun 2008 B2
7390350 Weist, Jr. et al. Jun 2008 B2
7404846 Golden et al. Jul 2008 B2
7438079 Cohen et al. Oct 2008 B2
7449049 Thomas et al. Nov 2008 B2
7456131 Klett et al. Nov 2008 B2
7510601 Whitley et al. Mar 2009 B2
7527670 Ackley et al. May 2009 B2
7553568 Keefer Jun 2009 B2
7578864 Watanabe et al. Aug 2009 B2
7604682 Seaton Oct 2009 B2
7637989 Bong Dec 2009 B2
7641716 Lomax, Jr. et al. Jan 2010 B2
7645324 Rode et al. Jan 2010 B2
7651549 Whitley Jan 2010 B2
7674319 Lomax, Jr. et al. Mar 2010 B2
7674539 Keefer et al. Mar 2010 B2
7687044 Keefer et al. Mar 2010 B2
7713333 Rege et al. May 2010 B2
7717981 LaBuda et al. May 2010 B2
7722700 Sprinkle May 2010 B2
7731782 Kelley et al. Jun 2010 B2
7740687 Reinhold, III Jun 2010 B2
7744676 Leitmayr et al. Jun 2010 B2
7744677 Barclay et al. Jun 2010 B2
7758051 Roberts-Haritonov et al. Jul 2010 B2
7758988 Keefer et al. Jul 2010 B2
7763098 Alizadeh-Khiavi et al. Jul 2010 B2
7763099 Verma et al. Jul 2010 B2
7792983 Mishra et al. Sep 2010 B2
7793675 Cohen et al. Sep 2010 B2
7806965 Stinson Oct 2010 B2
7819948 Wagner Oct 2010 B2
7828877 Sawada et al. Nov 2010 B2
7828880 Moriya et al. Nov 2010 B2
7854793 Rarig et al. Dec 2010 B2
7858169 Yamashita Dec 2010 B2
7862645 Whitley et al. Jan 2011 B2
7867320 Baksh et al. Jan 2011 B2
7902114 Bowie et al. Mar 2011 B2
7938886 Hershkowitz et al. May 2011 B2
7947118 Rarig et al. May 2011 B2
7947120 Deckman et al. May 2011 B2
7959720 Deckman et al. Jun 2011 B2
8016918 LaBuda et al. Sep 2011 B2
8034164 Lomax, Jr. et al. Oct 2011 B2
8071063 Reyes et al. Dec 2011 B2
8128734 Song Mar 2012 B2
8142745 Reyes et al. Mar 2012 B2
8142746 Reyes et al. Mar 2012 B2
8192709 Reyes et al. Jun 2012 B2
8210772 Gillecriosd Jul 2012 B2
8227121 Adams et al. Jul 2012 B2
8262773 Northrop et al. Sep 2012 B2
8262783 Stoner et al. Sep 2012 B2
8268043 Celik et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8272401 McLean Sep 2012 B2
8287629 Fujita et al. Oct 2012 B2
8319090 Kitamura Nov 2012 B2
8337594 Corma Canos et al. Dec 2012 B2
8361200 Sayari et al. Jan 2013 B2
8361205 Desai et al. Jan 2013 B2
8377173 Chuang Feb 2013 B2
8444750 Deckman et al. May 2013 B2
8449649 Greenough May 2013 B2
8470395 Khiavi et al. Jun 2013 B2
8480795 Siskin et al. Jul 2013 B2
8512569 Eaton et al. Aug 2013 B2
8518356 Schaffer et al. Aug 2013 B2
8529662 Kelley et al. Sep 2013 B2
8529663 Reyes et al. Sep 2013 B2
8529664 Deckman et al. Sep 2013 B2
8529665 Manning et al. Sep 2013 B2
8535414 Johnson et al. Sep 2013 B2
8545602 Chance et al. Oct 2013 B2
8551444 Agnihotri et al. Oct 2013 B2
8573124 Havran et al. Nov 2013 B2
8591627 Jain Nov 2013 B2
8591634 Winchester et al. Nov 2013 B2
8616233 McLean et al. Dec 2013 B2
8657922 Yamawaki et al. Feb 2014 B2
8673059 Leta et al. Mar 2014 B2
8680344 Weston et al. Mar 2014 B2
8715617 Genkin et al. May 2014 B2
8752390 Wright et al. Jun 2014 B2
8753428 Lomax, Jr. et al. Jun 2014 B2
8778051 Weist, Jr. et al. Jul 2014 B2
8784533 Leta et al. Jul 2014 B2
8784534 Kamakoti et al. Jul 2014 B2
8784535 Ravikovitch et al. Jul 2014 B2
8790618 Adams et al. Jul 2014 B2
8795411 Hufton et al. Aug 2014 B2
8808425 Genkin et al. Aug 2014 B2
8808426 Sundaram Aug 2014 B2
8814985 Gerds et al. Aug 2014 B2
8852322 Gupta et al. Oct 2014 B2
8858683 Deckman Oct 2014 B2
8875483 Wettstein Nov 2014 B2
8906138 Rasmussen et al. Dec 2014 B2
8921637 Sundaram et al. Dec 2014 B2
8939014 Kamakoti et al. Jan 2015 B2
9005561 Leta Apr 2015 B2
9017457 Tammera Apr 2015 B2
9028595 Sundaram et al. May 2015 B2
9034078 Wanni et al. May 2015 B2
9034079 Deckman et al. May 2015 B2
9050553 Alizadeh-Khiavi et al. Jun 2015 B2
9067168 Frederick et al. Jun 2015 B2
9067169 Patel Jun 2015 B2
9095809 Deckman et al. Aug 2015 B2
9108145 Kalbassi et al. Aug 2015 B2
9120049 Sundaram et al. Sep 2015 B2
9126138 Deckman et al. Sep 2015 B2
9162175 Sundaram Oct 2015 B2
9168483 Ravikovitch et al. Oct 2015 B2
9168485 Deckman et al. Oct 2015 B2
9272264 Coupland Mar 2016 B2
9278338 Coupland Mar 2016 B2
9358493 Tammera et al. Jun 2016 B2
9573116 Johnson et al. Feb 2017 B2
9597655 Beeckman Mar 2017 B2
9737846 Carstensen et al. Aug 2017 B2
9744521 Brody et al. Aug 2017 B2
10040022 Fowler et al. Aug 2018 B2
10080991 Johnson et al. Sep 2018 B2
10080992 Nagavarapu et al. Sep 2018 B2
10124286 McMahon et al. Nov 2018 B2
20010047824 Hill et al. Dec 2001 A1
20020053547 Schlegel et al. May 2002 A1
20020124885 Hill et al. Sep 2002 A1
20020162452 Butwell et al. Nov 2002 A1
20030075485 Ghijsen Apr 2003 A1
20030129101 Zettel Jul 2003 A1
20030131728 Kanazirev et al. Jul 2003 A1
20030145726 Gueret et al. Aug 2003 A1
20030170527 Finn et al. Sep 2003 A1
20030188635 Lomax, Jr. et al. Oct 2003 A1
20030202918 Ashida et al. Oct 2003 A1
20030205130 Neu et al. Nov 2003 A1
20030223856 Yuri et al. Dec 2003 A1
20040099142 Arquin et al. May 2004 A1
20040118277 Kim Jun 2004 A1
20040118747 Cutler et al. Jun 2004 A1
20040197596 Connor et al. Oct 2004 A1
20040232622 Gozdawa Nov 2004 A1
20050014511 Spain Jan 2005 A1
20050045041 Hechinger et al. Mar 2005 A1
20050109419 Ohmi et al. May 2005 A1
20050114032 Wang May 2005 A1
20050129952 Sawada et al. Jun 2005 A1
20050145111 Keefer et al. Jul 2005 A1
20050150378 Dunne et al. Jul 2005 A1
20050229782 Monereau et al. Oct 2005 A1
20050252378 Celik et al. Nov 2005 A1
20060017940 Takayama Jan 2006 A1
20060048648 Gibbs et al. Mar 2006 A1
20060049102 Miller et al. Mar 2006 A1
20060076270 Poshusta et al. Apr 2006 A1
20060099096 Shaffer et al. May 2006 A1
20060105158 Fritz et al. May 2006 A1
20060116430 Wentink et al. Jun 2006 A1
20060116460 Georget et al. Jun 2006 A1
20060162556 Ackley et al. Jul 2006 A1
20060165574 Sayari Jul 2006 A1
20060169142 Rode et al. Aug 2006 A1
20060236862 Golden et al. Oct 2006 A1
20070084241 Kretchmer et al. Apr 2007 A1
20070084344 Moriya et al. Apr 2007 A1
20070222160 Roberts-Haritonov et al. Sep 2007 A1
20070253872 Keefer et al. Nov 2007 A1
20070261550 Ota Nov 2007 A1
20070261557 Gadkaree et al. Nov 2007 A1
20070283807 Whitley Dec 2007 A1
20080051279 Klett et al. Feb 2008 A1
20080072822 White Mar 2008 A1
20080128655 Garg et al. Jun 2008 A1
20080202336 Hofer et al. Aug 2008 A1
20080282883 Rarig et al. Nov 2008 A1
20080282884 Kelley et al. Nov 2008 A1
20080282885 Deckman et al. Nov 2008 A1
20080282886 Reyes et al. Nov 2008 A1
20080282887 Chance Nov 2008 A1
20080282892 Deckman et al. Nov 2008 A1
20080289497 Barclay et al. Nov 2008 A1
20080307966 Stinson Dec 2008 A1
20080314550 Greco Dec 2008 A1
20090004073 Gleize et al. Jan 2009 A1
20090014902 Koivunen et al. Jan 2009 A1
20090025553 Keefer et al. Jan 2009 A1
20090025555 Lively et al. Jan 2009 A1
20090037550 Mishra et al. Feb 2009 A1
20090071333 LaBuda et al. Mar 2009 A1
20090079870 Matsui Mar 2009 A1
20090107332 Wagner Apr 2009 A1
20090151559 Verma et al. Jun 2009 A1
20090162268 Hufton et al. Jun 2009 A1
20090180423 Kroener Jul 2009 A1
20090241771 Manning et al. Oct 2009 A1
20090284013 Anand et al. Nov 2009 A1
20090294366 Wright et al. Dec 2009 A1
20090308248 Siskin et al. Dec 2009 A1
20090314159 Haggerty Dec 2009 A1
20100059701 McLean Mar 2010 A1
20100077920 Baksh et al. Apr 2010 A1
20100089241 Stoner et al. Apr 2010 A1
20100186445 Minta et al. Jul 2010 A1
20100212493 Rasmussen et al. Aug 2010 A1
20100251887 Jain Oct 2010 A1
20100252497 Ellison et al. Oct 2010 A1
20100263534 Chuang Oct 2010 A1
20100282593 Speirs et al. Nov 2010 A1
20100288704 Amsden et al. Nov 2010 A1
20110011803 Koros Jan 2011 A1
20110020202 Gadkaree et al. Jan 2011 A1
20110031103 Deckman et al. Feb 2011 A1
20110067440 Van Aken Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110123878 Jangbarwala May 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110217218 Gupta et al. Sep 2011 A1
20110277620 Havran et al. Nov 2011 A1
20110291051 Hershkowitz et al. Dec 2011 A1
20110296871 Van Soest-Vercammen et al. Dec 2011 A1
20110308524 Brey et al. Dec 2011 A1
20120024150 Moniot Feb 2012 A1
20120024152 Yamawaki et al. Feb 2012 A1
20120031144 Northrop et al. Feb 2012 A1
20120067216 Corma-Canos et al. Mar 2012 A1
20120152115 Gerds et al. Jun 2012 A1
20120222551 Deckman Sep 2012 A1
20120222552 Ravikovitch et al. Sep 2012 A1
20120222553 Kamakoti et al. Sep 2012 A1
20120222554 Leta et al. Sep 2012 A1
20120222555 Gupta et al. Sep 2012 A1
20120255377 Kamakoti et al. Oct 2012 A1
20120272823 Halder et al. Nov 2012 A1
20120308456 Leta et al. Dec 2012 A1
20120312163 Leta et al. Dec 2012 A1
20130061755 Frederick et al. Mar 2013 A1
20130095996 Buelow et al. Apr 2013 A1
20130225898 Sundaram et al. Aug 2013 A1
20140013955 Tammera et al. Jan 2014 A1
20140060326 Sundaram et al. Mar 2014 A1
20140157984 Deckman et al. Jun 2014 A1
20140157986 Ravikovitch et al. Jun 2014 A1
20140208797 Kelley et al. Jul 2014 A1
20140216254 Tammera et al. Aug 2014 A1
20150013377 Oelfke Jan 2015 A1
20150068397 Boulet et al. Mar 2015 A1
20150101483 Perry et al. Apr 2015 A1
20150196870 Albright et al. Jul 2015 A1
20150328578 Deckman et al. Nov 2015 A1
20160023155 Ramkumar et al. Jan 2016 A1
20160129433 Tammera et al. May 2016 A1
20160166972 Owens et al. Jun 2016 A1
20160236135 Tammera et al. Aug 2016 A1
20160332105 Tammera et al. Nov 2016 A1
20160332106 Tammera et al. Nov 2016 A1
20170056814 Marshall et al. Mar 2017 A1
20170113173 Fowler et al. Apr 2017 A1
20170113175 Fowler et al. Apr 2017 A1
20170136405 Ravikovitch et al. May 2017 A1
20170266604 Tammera et al. Sep 2017 A1
20170282114 Owens et al. Oct 2017 A1
20170341011 Nagavarapu et al. Nov 2017 A1
20170341012 Nagavarapu et al. Nov 2017 A1
20180001301 Brody et al. Jan 2018 A1
20180056229 Denton et al. Mar 2018 A1
20180056235 Wang et al. Mar 2018 A1
20180126299 Doong May 2018 A1
20180169565 Brody et al. Jun 2018 A1
20180169617 Brody et al. Jun 2018 A1
20180339263 Dehaas et al. Nov 2018 A1
20190217244 Fisel Jul 2019 A1
Foreign Referenced Citations (27)
Number Date Country
0257493 Feb 1988 EP
0426937 May 1991 EP
0904827 Mar 1999 EP
1674555 Jun 2006 EP
2823872 Jan 2015 EP
2854819 May 2003 FR
2924951 Jun 2009 FR
58-114715 Jul 1983 JP
59-232174 Dec 1984 JP
60-189318 Dec 1985 JP
2002-253818 Oct 1990 JP
04-180978 Jun 1992 JP
06006736 Jun 1992 JP
3477280 Aug 1995 JP
2011-169640 Jun 1999 JP
2011-280921 Oct 1999 JP
2000-024445 Aug 2001 JP
2002-348651 Dec 2002 JP
2006-016470 Jan 2006 JP
2006-036849 Feb 2006 JP
2008-272534 Nov 2008 JP
101349424 Jan 2014 KR
WO2002024309 Mar 2002 WO
WO2002073728 Sep 2002 WO
WO2005090793 Sep 2005 WO
WO2010024643 Mar 2010 WO
WO2011139894 Nov 2011 WO
Non-Patent Literature Citations (57)
Entry
U.S. Appl. No. 16/252,975, filed Jan. 21, 2019, Krishna Nagavarapu et al.
U.S. Appl. No. 16/258,266, filed Jan. 25, 2019, Barnes et al.
U.S. Appl. No. 16/263,940, filed Jan. 31, 2019, Johnson.
U.S. Appl. No. 62/783,766, filed Dec. 21, 2019, Fulton et al.
Allen, M. P. et al., (1987) “Computer Simulation of Liquids” Clarendon Press, pp. 156-160.
Asgari, M. et al., (2014) “Designing A Commercial Scale Pressure Swing Adsorber For Hydrogen Purification” Petroleum & Coal, vol. 56(5), pp. 552-561.
Baerlocher, C. et al., (2017) International Zeolite Association's “Database of Zeolite Structures,” available at http://www.iza-structure.org/databases/, downloaded Jun. 15, 2018, 1 page.
Burtch, N.C. et al., (2015) “Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks,” J Am Chem Soc, 135, pp. 7172-7180.
Beauvais, C. et al., (2004) “Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study,” J Phys Chem B, 108, pp. 399-404.
Cheung, O. et al., (2013) “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA,” Appl Energ, 112, pp. 1326-1336.
Cygan, R. T. et al., (2004) “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, J Phys Chem B, vol. 108, pp. 1255-1266.
Deem, M. W. et al., (2009) “Computational Discovery of New Zeolite-Like Materials”, J Phys Chem C, 113, pp. 21353-21360.
Demiralp, E., et al., (1999) “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass”, Physical Review Letters, vol. 82(8), pp. 1708-1711.
Dubbeldam, D. et al. (2016) “RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials” Molecular Simulation, (published online Feb. 26, 2015), vol. 42(2), pp. 81-101.
Dubbeldam, D., et al., (2013) “On the inner workings of Monte Carlo codes” Molecular Simulation, vol. 39, Nos. 14-15, pp. 1253-1292.
Earl, D. J. et al., (2005) “Parallel tempering: Theory, applications, and new perspectives,” Phys Chem Chem Phys, vol. 7, pp. 3910-3916.
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs.
Fang, H. et al., (2013) “First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites,” Phys Chem Chem Phys, vol. 15, pp. 12882-12894.
Fang, H., et al., (2012) “Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations,” J Phys Chem C, 10692, 116, ACS Publications.
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314.
FlowServe (2005) “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs.
Foster, M.D., et al. “A geometric solution to the largest-free-sphere problem in zeolite frameworks”, Microporous and Mesoporous Materials, vol. 90, pp. 32-38.
Frenkel, D. et al., (2002) “Understanding Molecular Simulation: From Algorithms to Applications”, 2nd ed., Academic Press, pp. 292-301.
Garcia, E. J., et al. (2014) “Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity”, Ind. Eng. Chem. Res., vol. 53, pp. 9860-9874.
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs.
Harris, J. G. et al., (1995) “Carbon Dioxide's Liquid—Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model”, J Phys Chem, vol. 99, pp. 12021-12024.
Hill, J. R. et al., (1995) “Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates”, J Phys Chem, vol. 99, pp. 9536-9550.
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95.
Jain, S., et al. (2003) “Heuristic design of pressure swing adsorption: a preliminary study”, Separation and Purification Technology, vol. 33, pp. 25-43.
Kim J. et al. (2012) “Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture”, J. Am. Chem, Soc., vol. 134, pp. 18940-18940.
Kärger, J., et al.(2012) “Diffusion in Nanoporous Materials” , Whiley-VCH publisher, vol. 1, Chapter 16, pp. 483-501.
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262.
Lin, L., et al. (2012) “In silico screening of carbon-capture materials”, Nature Materials, vol. 1, pp. 633-641.
Liu, Q. et al., (2010) “NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2,” Chem Commun, , vol. 46, pp. 4502-4504.
Lowenstein, W., (1954) “The Distribution of Aluminum in the Tetra-Hedra of Silicates and Aluminates” Am Mineral, 92-96.
Neimark, A. V. et al., (1997) “Calibration of Pore Volume in Adsorption Experiments and Theoretical Models”, Langmuir, vol. 13, pp. 5148-5160.
Palomino, M., et al. (2009) “New Insights on CO2-Methane Seapration Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs”, Langmar, vol. 26(3), pp. 1910-1917.
Patcas, F.C. et al.(2007) “CO Oxidation Over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads”, Chem Engineering Science, v. 62, pp. 3984-3990.
Peng, D. Y., et al., (1976) “A New Two-Constant Equation of State”, Ind Eng Chem Fundam, vol. 15, pp. 59-64.
Pham, T. D. et al., (2013) “Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites”, Langmuir, vol. 29, pp. 832-839.
Pophale, R., et al., (2011) “A database of new zeolite-like materials”, Phys Chem Chem Phys, vol. 13(27), pp. 12407-12412.
Potoff, J. J. et al., (2001) “Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen”, AIChE 2, vol. 47(7), pp. 1676-1682.
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pp.
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622.
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process”, Chem. Engineering Science, v. 64, pp. 5182-5191.
Richardson, J.T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Dop”, Applied Catalysis A: General v. 204, pp. 19-32.
Robinson, D. B., et al., (1985) “The development of the Peng—Robinson Equation and its Application to Phase Equilibrium in a System Containing Methanol,” Fluid Phase Equilibria, vol. 24, pp. 25-41.
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73.
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages.
Santos, M. S (2011) “New Cycle configuration to enhance performance of kinetic PSA processes” Chemical Engineering Science 66, pp. 1590-1599.
Snurr, R. Q. et al., (1993) “Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions”, J Phys Chem, vol. 97, pp. 13742-13752.
Stemmet, C.P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer”, Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141.
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73.
Talu, O. et al., (2001), “Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 83-93, pp. 83-93.
Walton, K. S. et al., (2006) “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange,” Microporous and Mesoporous Mat, vol. 91, pp. 78-84.
Willems, T. F. et al., (2012) “Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials” Microporous Mesoporous Mat, vol. 149, pp. 134-141.
Zukal, A., et al., (2009) “Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations”, Adsorption, vol. 15, pp. 264-270.
Related Publications (1)
Number Date Country
20190381444 A1 Dec 2019 US
Provisional Applications (1)
Number Date Country
62343426 May 2016 US
Divisions (1)
Number Date Country
Parent 15496576 Apr 2017 US
Child 16545681 US