The present techniques relate to a method and system associated with swing adsorption processes used in conditioning streams for downstream processing. In particular, the method and system involves performing swing adsorption processes to dampen the temperature swing in the product stream to within acceptable limits for the downstream process.
Gas separation is useful in many industries and can typically be accomplished by flowing a mixture of gases over an adsorbent material that preferentially adsorbs one or more gas components while not adsorbing one or more other gas components. The non-adsorbed components are recovered as a separate product.
One particular type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA), pressure swing adsorption (PSA), partial pressure swing adsorption (PPSA), rapid cycle temperature swing adsorption (RCTSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle partial pressure swing adsorption (RCPPSA), and not limited to but also combinations of the fore mentioned processes, such as pressure and temperature swing adsorption. As an example, PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure. That is, the higher the gas pressure, the greater the amount of readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed from the adsorbent material.
The swing adsorption processes (e.g., PSA and/or TSA) may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent material to different extents. For example, if a gas mixture, such as natural gas, is passed under pressure through a vessel containing an adsorbent material that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent material, and the gas exiting the vessel is enriched in methane. When the adsorbent material reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. Then, the adsorbent material is typically purged and repressurized prior to starting another adsorption cycle.
The swing adsorption processes typically involve adsorbent bed units, which include adsorbent beds disposed within a housing and configured to maintain fluids at various pressures for different steps in a cycle within the unit. These adsorbent bed units utilize different packing material in the bed structures. For example, the adsorbent bed units utilize checker brick, pebble beds or other available packing. As an enhancement, some adsorbent bed units may utilize engineered packing within the bed structure. The engineered packing may include a material provided in a specific configuration, such as a honeycomb, ceramic forms or the like.
Further, various adsorbent bed units may be coupled together with conduits and valves to manage the flow of fluids through the cycle. Orchestrating these adsorbent bed units involves coordinating the steps in the cycle for each of the adsorbent bed units with other adsorbent bed units in the system. A complete cycle can vary from seconds to minutes as it transfers a plurality of gaseous streams through one or more of the adsorbent bed units.
A challenge with rapid cycle processes is the temperature, compositional, and pressure pulse associated with the transition of streams through the adsorbent beds between the various steps in a cycle. For example, swing adsorption processes for deep dehydration used with LNG applications, a temperature swing step may be used to regenerate a spent adsorbent bed after an adsorption step. However, this heating of the adsorbent bed may rely upon the feed stream to cool the adsorbent bed. As a result, the feed steam may cool the adsorbent bed during the initial portion of the adsorption step. As a result, the product stream from the adsorbent bed may involve temperature swings. These temperature fluctuations are problematic for the liquefaction process.
In addition to the temperature fluctuations, compositional variations may also be present from the swing adsorption processes. For example, the composition variation in purge gas leaving an adsorbent bed during regeneration. The concentration of the contaminant initially increases, as the adsorbent bed is being rapidly regenerated, before decreasing. Furthermore, the temperature of this gas stream gradually increases during the step. Certain downstream processes may need to have the composition variations and/or temperature fluctuations within specific levels to operate properly.
Accordingly, there remains a need in the industry for apparatus, methods, and systems that provided enhancements to managing temperature, compositional, and pressure pulses associated with hydrocarbon recovery processes. In particular, a need exists for enhancements to temperature, compositional, and pressure pulses in rapid cycle swing adsorption processes.
In one embodiment, a process for removing contaminants from a gaseous feed stream with a swing adsorption process is described. The process comprising: a) performing an adsorption step, wherein the adsorption step comprises passing a gaseous feed stream through an adsorbent bed unit to remove one or more contaminants and produce a product stream; b) interrupting the flow of the gaseous feed stream; c) performing a heating step, wherein the heating step comprises passing a heating stream through the adsorbent bed unit to remove one or more contaminants from the adsorbent bed unit; d) performing a cooling step, wherein the cooling step comprises lessening the temperature of an adsorbent material in the adsorbent bed unit by passing a cooling stream through the adsorbent bed unit; and e) repeating the steps a) to d) for at least one additional cycle in the swing adsorption process.
In one or more embodiments, the process includes one or more enhancements. The process may include wherein the cycle duration is for a period greater than 1 second and less than 600 seconds; wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream; wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is from about 200 parts per million volume to about 2% volume of the gaseous feed stream; wherein the swing adsorption process is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million; passing the product stream to a downstream process; wherein the downstream process is a liquefied natural gas (LNG) process that comprises an LNG process unit; wherein the downstream process is a cryogenic natural gas liquefaction (NGL) process having a NGL process unit; wherein the cycle duration is greater than 2 seconds and less than 180 seconds; wherein the cooling stream is passed from the adsorbent bed unit to a conditioning unit; and the conditioned stream is passed from the conditioning unit to another adsorbent bed unit as the heating stream; wherein the heating stream is passed in a direction that is counter-current to the direction that the feed stream is passed; and the cooling stream is passed in a direction that is counter-current to the direction that the feed stream is passed; further comprising splitting a purge stream into the heating stream and the cooling stream; wherein the cooling stream is passed in a direction that is co-current to the direction that the feed stream is passed; and the heating stream is passed in a direction that is counter-current to the direction that the feed stream is passed; further comprising determining whether the product stream is within acceptable temperature limits; wherein the acceptable temperature limits include the product stream having temperatures within 50° F. of feed temperature of the gaseous feed stream; wherein the acceptable temperature limits include the product stream having temperatures within 25° F. of feed temperature of the gaseous feed stream; wherein the acceptable temperature limits include the product stream having temperatures within 10° F. of feed temperature of the gaseous feed stream; wherein the swing adsorption process is a rapid cycle temperature swing adsorption process; and/or wherein the swing adsorption process is a rapid cycle temperature swing adsorption process and a rapid cycle temperature swing adsorption process.
In another embodiment, a cyclical swing adsorption system is described. The system may comprise: a plurality of adsorbent bed units coupled to a plurality of manifolds, each of the adsorbent bed units is configured to pass different streams through the adsorbent bed unit between two or more steps in a swing adsorption cycle and each of the adsorbent bed units is configured to remove one or more contaminants from a feed stream to form a product stream and wherein each of the adsorbent bed units comprise: a housing; an adsorbent material disposed within the housing; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material; and wherein the cyclical swing adsorption system is configured to dampen one or more of temperature, compositional, and pressure pulses associated with the transition of different streams through the adsorbent beds between the two or more steps in the swing adsorption cycle.
In one or more embodiments, the system includes one or more enhancements. The cyclical swing adsorption system may include wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step, each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps; wherein the plurality of manifolds comprise a cooling manifold configured to pass a cooling stream to the plurality of adsorbent bed units during a cooling step, a cooling product manifold configured to pass a cooling product stream from the plurality of adsorbent bed units during the cooling step; wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to split the purge stream into a first purge stream configured to pass to the plurality of adsorbent bed units during a heating step and a second purge stream configured to pass to the plurality of adsorbent bed units during a cooling step, a first purge product manifold configured to pass a first purge product stream from the plurality of adsorbent bed units during the heating step, and a second purge product manifold configured to pass a second purge product stream from the plurality of adsorbent bed units during the cooling step; a heating unit disposed upstream of the split in the purge manifold, wherein the heating unit is configured to increase the temperature of the first purge stream prior to passing the plurality of adsorbent bed units during a heating step; wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a cooling stream to the plurality of adsorbent bed units during a cooling step and a cooling purge product manifold configured to pass a cooling purge product stream from the plurality of adsorbent bed units during the cooling step and configured to pass a heating stream to another of the plurality of adsorbent bed units during a heating step, and a second purge product manifold configured to pass a heating purge product stream from the plurality of adsorbent bed units during the heating step; a heating unit associated with the cooling purge product manifold and configured to heat the cooling purge product stream to form the heating stream; a liquefied natural gas (LNG) process that comprises an LNG process unit and is configured to receive the product stream; a cryogenic natural gas liquefaction (NGL) process having a NGL process unit and is configured to receive the product stream; a dampening system in fluid communication with the plurality of adsorbent bed units and configured to lessen one or more of temperature fluctuations, compositional fluctuations, and any combination thereof associated with the transition of the different streams through the adsorbent beds between the two or more steps in the swing adsorption cycle; wherein the dampening system comprises a heat exchanger configured to provide sufficient thermal capacitance to dampen temperature pulses in the product stream; wherein the dampening system comprises an accumulator configured to manage compositions of the product stream; wherein the dampening system comprises a mixing unit configured to manage compositions of the product stream; wherein the plurality of manifolds further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step; wherein the plurality of valves comprise one or more poppet valves; and/or wherein the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara.
The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments.
Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.
As used herein, “stream” refers to fluid (e.g., solids, liquid and/or gas) being conducted through various equipment. The equipment may include conduits, vessels, manifolds, units or other suitable devices.
As used herein, “conduit” refers to a tubular member forming a channel through which something is conveyed. The conduit may include one or more of a pipe, a manifold, a tube or the like.
The provided processes, apparatus, and systems of the present techniques may be used in swing adsorption processes that remove contaminants (CO2, H2O, and H2S) from feed streams, such as hydrocarbon containing streams. As may be appreciated and as noted above, the hydrocarbon containing feed streams may have different compositions. For example, hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 volume percent (vol. %) acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves sources include concentrations of approximately: (a) 4 ppm H2S, 2 vol. % CO2, 100 ppm H2O (b) 4 ppm H2S, 0.5 vol. % CO2, 200 ppm H2O (c) 1 vol. % H2S, 2 vol. % CO2, 150 ppm H2O, (d) 4 ppm H2S, 2 vol. % CO2, 500 ppm H2O, and (e) 1 vol. % H2S, 5 vol. % CO2, 500 ppm H2O. Further, in certain applications the hydrocarbon containing stream may include predominately hydrocarbons with specific amounts of CO2 and/or water. The gaseous feed stream utilized in the processes herein comprises, or consists essentially of, a hydrocarbon containing stream. For example, the gaseous feed stream may have greater than 0.00005 volume percent CO2 based on the total volume of the gaseous feed stream and less than 2 volume percent CO2 based on the total volume of the gaseous feed stream; or less than 10 volume percent CO2 based on the total volume of the gaseous feed stream. In other embodiments, the gaseous feed stream may have a CO2 content from about 200 parts per million volume to about 2% volume based on the gaseous feed stream. The processing of feed streams may be more problematic when certain specifications have to be satisfied.
The removal of contaminants may be performed by swing adsorption processes to prepare the stream for further downstream processing, such as NGL processing and/or LNG processing. For example, natural gas feed streams for liquefied natural gas (LNG) applications have stringent specifications on the CO2 content to ensure against formation of solid CO2 at cryogenic temperatures. The LNG specifications may involve the CO2 content to be less than or equal to 50 ppm. Such specifications are not applied on natural gas streams in pipeline networks, which may involve the CO2 content up to 2 vol. % based on the total volume of the gaseous feed stream. As such, for LNG facilities that use the pipeline gas (e.g., natural gas) as the raw feed, additional treating or processing steps are utilized to further purify the stream. Further, the present techniques may be used to lower the water content of the stream to less than 0.1 ppm. Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. 2017/0056814, 2017/0113175 and 2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992 and 10,040,022, which are each incorporated by reference herein.
The present techniques provide configurations and processes that are utilized to enhance swing adsorption processes. As noted above, rapid cycle pressure and temperature swing adsorption processes may be used to dehydrate streams and/or remove low-level CO2. To manage the temperature, compositional, and pressure pulses associated with the transition of streams within the adsorbent beds between the steps in the cycle, the present techniques may include additional steps or mechanisms. The present techniques provide a method to minimize the temperature and/or compositional fluctuations in a stream being conducted away from the rapid cycle swing adsorption process. In other configurations, a system is used to minimize the temperature and/or compositional fluctuations in one or more streams being conducted away from the rapid cycle swing adsorption process units.
For example, one configuration may include using a dampening system, which is disposed downstream of the swing adsorption bed units and upstream of the downstream processing units, such as a LNG processing unit. The dampening system may be configured to dampen the respective fluctuations. By way of example, the dampening system may include a heat exchanger and/or a piping network that may be used to provide sufficient thermal mass to provide the thermal capacitance to dampen any associated temperature pulses in the product stream.
In yet another example, the dampening system may include an accumulator may be used to manage the composition of the stream being conducted away from the adsorbent bed unit. The accumulator may be disposed downstream of the swing adsorption bed units and upstream of the downstream processing units, such as a LNG processing unit. As a specific example, the purge gas being conducted away from the adsorbent bed that is used in the regeneration step. The concentration of the contaminants in the purge product stream may initially be higher and then decrease during the later portion of the purge step. The accumulator may be used to mix or intermingle the purge product stream to manage the composition into a more uniform distribution of contaminants. Furthermore, the dampening system may include a heat exchanger and an accumulator. The temperature of the purge gas stream may gradually increases during the purge step. If the purge stream is to be provided to a downstream system, such as a gas turbine, the dampening system may manage the pulses to provide that the gas wobbe index is within acceptable limits.
In another configuration, the swing adsorption process may include a cooling step to manage the temperature of the adsorbent bed and resulting product stream. The cooling step may adjust the temperature (e.g., cool) the adsorbent bed down after a regeneration step. As such, the product stream being conducted away from the adsorbent bed unit may be at a temperature within acceptable limits. For example, in an LNG dehydration system, a cooling step may be used after the regeneration step (e.g., a temperature swing step), which may be used to regenerate a spent adsorbent bed. By using the cooling step, the feed stream may not be relied upon to adjust the temperature of the adsorbent bed during the swing adsorption cycle because the cooling step may be used to dampen the temperature fluctuations of the resulting product stream from the adsorbent bed unit. As a result of the cooling step, the product gas temperature of the product stream may be managed within a temperature threshold that may enhance the downstream processing of the product stream. Accordingly, the product stream may be passed to the liquefaction process within acceptable temperature limits. By way of example, the acceptable temperature limits may include product streams for the swing adsorption system having temperatures within 50° F. of feed temperature for the swing adsorption system, within 25° F. of feed temperature for the swing adsorption system, or within 10° F. of feed temperature for the swing adsorption system.
By way of example, conventional processes, such as molecular sieve processes, regenerate a spent molecular sieve bed by heating the bed to remove contaminants followed by cooling the molecular sieve bed to prepare the molecular sieve bed for adsorption. These steps are usually done by the same regeneration gas stream that is initially heated to heat the molecular sieve bed and later not heated to cool the molecular sieve bed. In such a configuration, the heating and cooling steps are not continuous (e.g., at least one bed is being cooled and one bed is being heated simultaneously at any instant).
For LNG applications, the purge gas stream may be sourced from end-flash compression, boil-off-gas compression, directly from the feed gas or a combination thereof. The purge stream may serve as the fuel gas stream and is limited in flow rate. To use the same stream for cooling and heating, two configurations may be utilized. The first configuration may splits the available purge stream into a cool stream and a heating for different adsorbent beds. While no recycling is performed, the cooling and heating are performed continuously (e.g., at least one adsorbent bed is being cooled and one bed is being heated at any instant). If the available flow rate is not sufficient, then the stream may be recycled. However, the stream may be recycled, such that the heating stream remains contaminant free (e.g., during the cooling step contaminants from the adsorbent bed do not move into the purge stream because of the flow direction being co-current to the feed flow direction). These steps are continuous, which is beneficial for RCPSA and/or RCPSTA cycles ensuring steady flows through various streams. The recycling provides a few additional aspects, such as a method to simultaneously control the product temperature and recover heat internally (e.g., reduced overall heat required to regenerate the bed).
In yet another configuration, the present techniques may utilize a cooling step in the swing adsorption process. The purge gas stream, which may be at or near ambient temperatures, may be split into two streams. The first stream may be heated and used to regenerate the adsorbent bed, while the second stream may be used to cool a recently regenerated adsorbent bed. The first and second streams may be introduced in a counter-current direction relative to the feed stream, which may performed to maintain the dryness of the product end of the adsorbent bed throughout the regeneration and cooling steps of the swing adsorption cycle.
Further, in another configuration, the present techniques may utilize a different cooling step in the swing adsorption process. In this configuration, the purge stream, which may be at or near ambient temperatures, is first passed in a co-current direction relative to the direction of the feed stream to cool a recently regenerated adsorbent bed. The cooling step may lessen the temperature of the adsorbent bed, while recovering some of the heat in the adsorbent bed. The resulting gas stream is then heated and introduced to a spent adsorbent bed to regenerate the adsorbent bed. This configuration has the additional benefit of recovering some of the heat from the regeneration step of the swing adsorption cycle.
In still yet another configuration, additional dampening may be achieved by operating multiple adsorbent beds out of sequence on feed. For example, a new adsorbent bed may be introduced on the feed stream, while a different adsorbent bed is already operational and producing product at nearly the feed temperature.
In other configurations, the present techniques may involve temperature swing dampening. The method of managing the temperature fluctuations and/or compositional fluctuations in the purge gas stream may use a combination of heat exchangers and mixing drums. The heat exchangers may provide a method to cool the gas stream to a specific temperature range. As the purge stream may be a small flow rate in comparison the product stream, the size of the heat exchanger may be relatively small. Furthermore, in performing dehydration, the heat exchanger may be used to condense excess water in the purge stream. The mixing drum provides the proper residence time to manage the compositional pulses, such that the gas stream leaving the mixing drum is more uniform in composition.
The present techniques may be a swing adsorption process, and specifically a rapid cycle adsorption process. The present techniques may include some additional equipment, such as one or more conduits and/or one or more manifolds that provide a fluid path for the cooling step and/or dampening system. In addition, other components and configurations may be utilized to provide the swing adsorption process, such as rapid cycle enabling hardware components (e.g., parallel channel adsorbent bed designs, rapid actuating valves, adsorbent bed configurations that integrate with other processes). Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. 2017/0056814, 2017/0113175 and 2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992 and 10,040,022, which are each incorporated by reference herein.
In one or more configurations, a swing adsorption process may include performing various steps. For the example, the present techniques may be used to remove contaminants from a gaseous feed stream with a swing adsorption process, which may be utilized with one or more downstream processes. The process comprising: a) performing a heating step, wherein the heating step comprises passing a heating stream through the adsorbent bed unit to remove one or more contaminants from the adsorbent bed unit (e.g., a heated purge step that comprises passing a heated purge stream through an adsorbent bed unit to remove contaminants from an adsorbent bed within a housing of the adsorbent bed unit to form a purge product stream, which may be a heated purge stream); b) performing a cooling step, wherein the cooling step may comprise passing cooling stream through an adsorbent bed unit to remove lessen the temperature of the adsorbent bed within a housing of the adsorbent bed unit to lessen the temperature of the adsorbent bed prior to the one or more adsorption steps; c) performing one or more adsorption steps, wherein each of the one or more adsorption steps comprise passing a gaseous feed stream through an adsorbent bed unit having an adsorbent bed to separate contaminants from the gaseous feed stream to form a product stream. In addition, the method may include determining whether the product stream and/or purge stream is within a temperature specification and/or composition specification; d) if the product stream and/or purge stream is within the respective specification (e.g., is below a certain threshold), passing the product stream to a downstream process; and e) if the product stream is not within the specification (e.g., above a certain threshold), passing the product stream and/or purge stream through the dampening system.
In other certain embodiments, the swing adsorption process may be integrated with downstream equipment and processes. The downstream equipment and processes may include control freeze zone (CFZ) applications, niotrogen removal unit (NRU), cryogenic NGL recovery applications, LNG applications, and other such applications. Each of these different applications may include different specifications for the feed stream in the respective process. For example, a cryogenic NGL process or an LNG process and may be integrated with the respective downstream equipment. As another example, the process may involve H2O and/or CO2 removal upstream of a cryogenic NGL process or the LNG process and may be integrated with respective downstream equipment.
In certain configurations, the system utilizes a combined swing adsorption process, which combines TSA and PSA, for treating of pipeline quality natural gas to remove contaminants for the stream to satisfy LNG specifications. The swing adsorption process, which may be a rapid cycle process, is used to treat natural gas that is at pipeline specifications (e.g., a feed stream of predominately hydrocarbons along with less than or equal to about 2% volume CO2 and/or less than or equal to 4 ppm H2S) to form a stream satisfying the LNG specifications (e.g., less than 50 ppm CO2 and less than about 4 ppm H2S). The product stream, which may be the LNG feed stream, may have greater than 98 volume percent hydrocarbons based on the total volume of the product stream, while the CO2 and water content are below certain thresholds. The LNG specifications and cryogenic NGL specifications may involve the CO2 content to be less than or equal to 50 ppm, while the water content of the stream may be less than 0.1 ppm.
Moreover, the present techniques may include a specific process flow to remove contaminants, such as CO2 and/or water. For example, the process may include an adsorbent step and a regeneration step, which form the cycle. The adsorbent step may include passing a gaseous feed stream at a feed pressure and feed temperature through an adsorbent bed unit to separate one or more contaminants from the gaseous feed stream to form a product stream. The feed stream may be passed through the adsorbent bed in a forward direction (e.g., from the feed end of the adsorbent bed to the product end of the adsorbent bed). Then, the flow of the gaseous feed stream may be interrupted for a regeneration step. The regeneration step may include one or more depressurization steps, one or more heating steps, and/or one or more purge steps. The depressurization steps, which may be or include a blowdown step, may include reducing the pressure of the adsorbent bed unit by a predetermined amount for each successive depressurization step, which may be a single step and/or multiple steps. The depressurization step may be provided in a forward direction or may preferably be provided in a countercurrent direction (e.g., from the product end of the adsorbent bed to the feed end of the adsorbent bed). The heating step may include passing a heating stream into the adsorbent bed unit, which may be a recycled stream through the heating loop and is used to heat the adsorbent material. The purge step may include passing a purge stream into the adsorbent bed unit, which may be a once through purge step and the purge stream may be provided in countercurrent flow relative to the feed stream. The purge stream may be provided at a purge temperature and purge pressure, which may include the purge temperature and purge pressure being similar to the heating temperature and heating pressure used in the heating step. Then, the cycle may be repeated for additional streams. Additionally, the process may include one or more re-pressurization steps after the purge step and prior to the adsorption step. The one or more re-pressurization steps may be performed, wherein the pressure within the adsorbent bed unit is increased with each re-pressurization step by a predetermined amount with each successive re-pressurization step. The cycle duration may be for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 300 seconds, for a period greater than 2 second and less than 180 seconds, for a period greater than 5 second and less than 150 seconds or for a period greater than 5 second and less than 90 seconds.
In one or more embodiments, the present techniques can be used for any type of swing adsorption process. Non-limiting swing adsorption processes for which the present techniques may be used include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes. For example, the preferred swing adsorption process may include a combined pressure swing adsorption and temperature swing adsorption, which may be performed as a rapid cycle process. Exemplary swing adsorption processes and configurations may include U.S. Patent Application Publication Nos. 2017/0056814, 2017/0113175 and 2017/0113173, and U.S. Pat. Nos. 10,080,991, 10,124,286, 10,080,992, 10,040,022, 7,959,720, 8,545,602, 8,529,663, 8,444,750, 8,529,662 and 9,358,493, which are each herein incorporated by reference in their entirety.
Further still, in one or more configurations, a variety of adsorbent materials may be used to provide the mechanism for the separations. Examples include zeolite 3A, 4A, 5A, ZK4 and MOF-74. However, the process is not limited to these adsorbent materials, and others may be used as well.
In one configuration, a process for removing contaminants from a gaseous feed stream with a swing adsorption process is described. The process may comprise: a) performing an adsorption step, wherein the adsorption step comprises passing a gaseous feed stream through an adsorbent bed unit to remove one or more contaminants and produce a product stream; b) interrupting the flow of the gaseous feed stream; c) performing a heating step, wherein the heating step comprises passing a heating stream through the adsorbent bed unit to remove one or more contaminants from the adsorbent bed unit; d) performing a cooling step, wherein the cooling step comprises lessening the temperature of an adsorbent material in the adsorbent bed unit by passing a cooling stream through the adsorbent bed unit; and e) repeating the steps a) to d) for at least one additional cycle in the swing adsorption process.
In one or more configurations, the process may include one or more enhancements. The process may include wherein the cycle duration is for a period greater than 1 second and less than 600 seconds; wherein the gaseous feed stream is a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream; wherein the gaseous feed stream comprises hydrocarbons and CO2, wherein the CO2 content is in the range of two hundred parts per million volume and less than or equal to about 2% volume of the gaseous feed stream; wherein the swing adsorption process is configured to lower the carbon dioxide (CO2) level to less than 50 parts per million; passing the product stream to a downstream process; wherein the downstream process is a liquefied natural gas (LNG) process that comprises an LNG process unit; wherein the downstream process is a cryogenic natural gas liquefaction (NGL) process having a NGL process unit; wherein the cycle duration is greater than 2 seconds and less than 180 seconds; wherein the cooling stream is passed from the adsorbent bed unit to a conditioning unit; and the conditioned stream is passed from the conditioning unit to another adsorbent bed unit as the heating stream; wherein the heating stream is passed in a direction that is counter-current to the direction that the feed stream is passed; and the cooling stream is passed in a direction that is counter-current to the direction that the feed stream is passed; further comprising splitting a purge stream into the heating stream and the cooling stream; wherein the cooling stream is passed in a direction that is co-current to the direction that the feed stream is passed; and the heating stream is passed in a direction that is counter-current to the direction that the feed stream is passed; further comprising determining whether the product stream is within acceptable temperature limits; wherein the acceptable temperature limits include the product stream having temperatures within 50° F. of feed temperature of the gaseous feed stream; wherein the acceptable temperature limits include the product stream having temperatures within 25° F. of feed temperature of the gaseous feed stream; wherein the acceptable temperature limits include the product stream having temperatures within 10° F. of feed temperature of the gaseous feed stream; wherein the swing adsorption process is a rapid cycle temperature swing adsorption process; and/or wherein the swing adsorption process is a rapid cycle temperature swing adsorption process and a rapid cycle temperature swing adsorption process.
In another configuration, a cyclical swing adsorption system is described. The system may comprise: a plurality of adsorbent bed units coupled to a plurality of manifolds, each of the adsorbent bed units is configured to pass different streams through the adsorbent bed unit between two or more steps in a swing adsorption cycle and each of the adsorbent bed units is configured to remove one or more contaminants from a feed stream to form a product stream and wherein each of the adsorbent bed units comprise: a housing; an adsorbent material disposed within the housing; a plurality of valves, wherein at least one of the plurality of valves is associated with one of the plurality of manifolds and is configured to manage fluid flow along a flow path extending between the respective manifold and the adsorbent material; and wherein the cyclical swing adsorption system is configured to dampen one or more of temperature, compositional, and pressure pulses associated with the transition of different streams through the adsorbent beds between the two or more steps in the swing adsorption cycle.
In one or more configurations, the system may include one or more enhancements. The cyclical swing adsorption system may include wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a purge stream to the plurality of adsorbent bed units during a regeneration step, a purge product manifold configured to pass a purge product stream from the plurality of adsorbent bed units during the regeneration step, each manifold of the plurality of manifolds is associated with one swing adsorption process step of a plurality of swing adsorption process steps; wherein the plurality of manifolds comprise a cooling manifold configured to pass a cooling stream to the plurality of adsorbent bed units during a cooling step, a cooling product manifold configured to pass a cooling product stream from the plurality of adsorbent bed units during the cooling step; wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to split the purge stream into a first purge stream configured to pass to the plurality of adsorbent bed units during a heating step and a second purge stream configured to pass to the plurality of adsorbent bed units during a cooling step, a first purge product manifold configured to pass a first purge product stream from the plurality of adsorbent bed units during the heating step, and a second purge product manifold configured to pass a second purge product stream from the plurality of adsorbent bed units during the cooling step; a heating unit disposed upstream of the split in the purge manifold, wherein the heating unit is configured to increase the temperature of the first purge stream prior to passing the plurality of adsorbent bed units during a heating step; wherein the plurality of manifolds comprise a feed manifold configured to pass the feed stream to the plurality of adsorbent bed units during an adsorption step, a product manifold configured to pass the product stream from the plurality of adsorbent bed units during the adsorption step, a purge manifold configured to pass a cooling stream to the plurality of adsorbent bed units during a cooling step and a cooling purge product manifold configured to pass a cooling purge product stream from the plurality of adsorbent bed units during the cooling step and configured to pass a heating stream to another of the plurality of adsorbent bed units during a heating step, and a second purge product manifold configured to pass a heating purge product stream from the plurality of adsorbent bed units during the heating step; a heating unit associated with the cooling purge product manifold and configured to heat the cooling purge product stream to form the heating stream; a liquefied natural gas (LNG) process that comprises an LNG process unit and is configured to receive the product stream; a cryogenic natural gas liquefaction (NGL) process having a NGL process unit and is configured to receive the product stream; a dampening system in fluid communication with the plurality of adsorbent bed units and configured to lessen one or more of temperature fluctuations, compositional fluctuations, and any combination thereof associated with the transition of the different streams through the adsorbent beds between the two or more steps in the swing adsorption cycle; wherein the dampening system comprises a heat exchanger configured to provide sufficient thermal capacitance to dampen temperature pulses in the product stream; wherein the dampening system comprises an accumulator configured to manage compositions of the product stream; wherein the dampening system comprises a mixing unit configured to manage compositions of the product stream; wherein the plurality of manifolds further comprise a blowdown manifold configured to pass a blowdown stream from the plurality of adsorbent bed units during a blowdown step; wherein the plurality of valves comprise one or more poppet valves; and/or wherein the plurality of adsorbent bed units are configured to operate at pressures between 0.1 bar absolute (bara) and 100 bara. The present techniques may be further understood with reference to the
In this system, the adsorbent bed units, such as adsorbent bed unit 102, may be configured for a cyclical swing adsorption process for removing contaminants from feed streams (e.g., fluids, gaseous or liquids). For example, the adsorbent bed unit 102 may include various conduits (e.g., conduit 104) for managing the flow of fluids through, to or from the adsorbent bed within the adsorbent bed unit 102. These conduits from the adsorbent bed units 102 may be coupled to a manifold (e.g., manifold 106) to distribute the flow to, from or between components. The adsorbent bed within an adsorbent bed unit may separate one or more contaminants from the feed stream to form a product stream. As may be appreciated, the adsorbent bed units may include other conduits to control other fluid steams as part of the process, such as purge streams, depressurizations streams, and the like. In particular, the adsorbent bed units may include startup mode equipment, such as one or more heating units (not shown), one or more external gas source manifolds, which may be one of the manifolds 106) and one or more expanders, as noted further below, which is used as part of the startup mode for the adsorbent beds. Further, the adsorbent bed unit may also include one or more equalization vessels, such as equalization vessel 108, which are dedicated to the adsorbent bed unit and may be dedicated to one or more step in the swing adsorption process. The equalization vessel 108 may be used to store the external stream, such as nitrogen for use in the startup mode cycle.
As an example, which is discussed further below in
The adsorbent bed comprises a solid adsorbent material capable of adsorbing one or more components from the feed stream. Such solid adsorbent materials are selected to be durable against the physical and chemical conditions within the adsorbent bed unit 102 and can include metallic, ceramic, or other materials, depending on the adsorption process. Further examples of adsorbent materials are noted further below.
The upper head 218 and lower head 220 contain openings in which valve structures can be inserted, such as valve assemblies 222 to 240, respectively (e.g., poppet valves). The upper or lower open flow path volume between the respective head 218 or 220 and adsorbent bed 210 can also contain distribution lines (not shown) which directly introduce fluids into the adsorbent bed 210. The upper head 218 contains various openings (not show) to provide flow passages through the inlet manifolds 242 and 244 and the outlet manifolds 248, 250 and 252, while the lower head 220 contains various openings (not shown) to provide flow passages through the inlet manifold 254 and the outlet manifolds 256, 258 and 260. Disposed in fluid communication with the respective manifolds 242 to 260 are the valve assemblies 222 to 240. If the valve assemblies 222 to 240 are poppet valves, each may include a disk element connected to a stem element which can be positioned within a bushing or valve guide. The stem element may be connected to an actuating means, such as actuating means (not shown), which is configured to have the respective valve impart linear motion to the respective stem. As may be appreciated, the actuating means may be operated independently for different steps in the process to activate a single valve or a single actuating means may be utilized to control two or more valves. Further, while the openings may be substantially similar in size, the openings and inlet valves for inlet manifolds may have a smaller diameter than those for outlet manifolds, given that the gas volumes passing through the inlets may tend to be lower than product volumes passing through the outlets.
In swing adsorption processes, the cycle involves two or more steps that each has a certain time interval, which are summed together to be the cycle time or cycle duration. These steps include regeneration of the adsorbent bed following the adsorption step using a variety of methods including pressure swing, vacuum swing, temperature swing, purging (via any suitable type of purge fluid for the process), and combinations thereof. As an example, a PSA cycle may include the steps of adsorption, depressurization, purging, and re-pressurization. When performing the separation at high pressure, depressurization and re-pressurization (which may be referred to as equalization) may be performed in multiple steps to reduce the pressure change for each step and enhance efficiency. In some swing adsorption processes, such as rapid cycle swing adsorption processes, a substantial portion of the total cycle time is involved in the regeneration of the adsorbent bed. Accordingly, any reductions in the amount of time for regeneration results in a reduction of the total cycle time. This reduction may also reduce the overall size of the swing adsorption system.
Further, one or more of the manifolds and associated valves may be utilized as a dedicated flow path for one or more streams. For example, during the adsorption or feed step, the manifold 242 and valve assembly 222 may be utilized to pass the feed gas stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the product stream from the adsorbent bed 210. During the regeneration or purge step, the manifold 244 and valve assembly 224 may be utilized to pass the purge or heating stream to the adsorbent bed 210, while the valve assembly 236 and manifold 256 may be used to conduct away the purge product stream from the adsorbent bed 210. Further, the manifold 254 and valve assembly 232 may be utilized for a cooling stream, while the valve assembly 230 and manifold 252 may be used to conduct away the cooling product stream from the adsorbent bed 210. As may be appreciated, the purge stream and/or cooling stream may be configured to flow counter current to the feed stream in certain embodiments.
Alternatively, the swing adsorption process may involve sharing one or more of the manifolds and associated valves. Beneficially, this configuration may be utilized to lessen any additional valves or connections for startup mode for adsorbent bed unit configurations that are subject to space limitations on the respective heads.
As noted above, the present techniques include various procedures that may be utilized for the swing adsorption process. The present techniques may include additional steps or mechanisms to manage the temperature, compositional, and pressure pulses associated with the transition of streams within the adsorbent beds between the steps in the cycle. The present techniques may include including a cooling step to minimize the temperature fluctuations in a stream being conducted away from the rapid cycle swing adsorption process. In other configurations, a system may include a dampening system that may be used to minimize the temperature fluctuations and/or compositional fluctuations in one or more streams being conducted away from the rapid cycle swing adsorption process units.
As an example,
The process begins by performing the swing adsorption process for the adsorbent bed units, as shown in blocks 302 to 306. At block 302, an adsorption step is performed for the adsorbent bed. The adsorption step may include passing a gaseous feed stream through the adsorbent bed to remove one or more contaminants from the gaseous feed stream and to create a product stream that is conducted away from the adsorbent bed unit. At block 304, a heating step is performed for the adsorbent bed. The heating step, which may be one or more purge steps may include passing the purge stream through the adsorbent bed to create a purge product stream that is conducted away from the adsorbent bed unit. The product purge stream may include the external stream and a portion of the contaminants within the adsorbent bed. The product purge stream may be intermingled with a fuel gas stream and may be used in a turbine. Further, the purge stream may be subjected to a heating step prior to being passed to the adsorbent bed. The heating step may heat the external stream to a temperature less than 550° F., less than 500° F., less than 450° F. or less than 350° F., and may be greater than 50° F. of the gaseous feed stream temperature, greater than 100° F. of the gaseous feed stream temperature or greater than 250° F. of the gaseous feed stream temperature. For example, the purge stream used during the purge step may be a temperature in the range between 500° F. and greater than 50° F. of the gaseous feed stream temperature, in the range between 450° F. and greater than 100° F. of the gaseous feed stream temperature or 400° F. and greater than 200° F. of the gaseous feed stream temperature. The heating of the purge stream may include passing the purge stream through a heat exchanger or similar heating unit to increase the temperature of the purge stream. At block 306, the cooling step may optionally be performed with the adsorbent bed. The cooling step may include passing a stream of gas to cool the adsorbent bed. The cooling step may include which may be a recycled stream that passes through heat exchangers or a refrigeration system to conduct away heat from the recycled stream. The process may repeat the step 302 to 306 for another swing adsorption cycle.
After being processed, the streams from the adsorbent bed units may be used with the downstream equipment, as shown in blocks 308 to 314. At block 308, the product stream may optionally be measured. The product stream may be measured by a temperature sensor and/or a gas chromatograph or using another gas component analysis equipment. The product stream may also be measured by taking samples, using a moisture analyzer. Then, at block 310, a determination may be made whether the product stream is within the respective specification. The determination may include analyzing the product stream to determine the level of one or more of the temperature, pressure, composition and any combination thereof. If the product stream is within specification (e.g., contaminants are at or below a specific threshold), the product stream may be passed to downstream process, as shown in block 314. However, if the product stream is not within specifications, the product stream may be passed to the dampening system, as shown in block 312. The dampening system may include a heat exchanger, conduits, an accumulator and/or a mixing unit. The downstream processes may include a CFZ process, a cryogenic NGL recovery process, or an LNG process, with the associated equipment for each.
By way of example, the present techniques may include additional steps or mechanisms to manage the temperature, compositional, and pressure pulses associated with the transition of streams within the adsorbent beds between the steps in the swing adsorption cycle. In particular, the method may be used to minimize the temperature and/or compositional fluctuations in a stream through the use of cooling steps in the rapid cycle swing adsorption process, which is shown in
In this configuration, the purge stream (which may near the ambient temperatures) is split into two different streams. The first stream is heated in the heating unit 414 and used to regenerate a spent third adsorbent bed 416, while the second stream is used to cool a recently regenerated adsorbent bed 410. These streams may be introduced in a counter-current direction to the feed stream which maintains the dryness of the product end of the adsorbent bed throughout the regeneration step and cooling step. In this configuration, the cooling stream may not be recycled back to the swing adsorbent system be used as a purge stream. To regenerate an adsorption bed, the purge stream is largely devoid of the contaminant being removed. The cooling stream may contain a significant amount contaminant. As such, it cannot be recycled as a purge stream. The cooling step may be part of the overall regeneration process, such that a larger amount of contaminant is removed, while purging in this regeneration step and a smaller (but not insignificant) amount of contaminant is removed, while purging in the cooling step.
In this configuration, the purge stream (which may be at or near ambient temperatures) is first passed in a co-current direction to the feed direction of the feed stream to cool a recently regenerated second adsorbent bed 510. The cooling step lessens the temperature of the second adsorbent bed 510, while recovering some of the heat in the second adsorbent bed 510. The resulting gas stream is then heated and introduced to a spent third adsorbent bed 514 to regenerate the third adsorbent bed 514. This configuration has the additional advantage of recovering some of the heat from the regeneration process. In certain configurations, the purge gas exiting the adsorbent bed after the cooling step is largely devoid of contaminant as the purge gas is flowing along the feed direction. In other configurations, the purge gas stream may be in fluid communication (e.g., tied to) with an LNG dehydration process. In such configurations, the source of the purge gas stream may be adjusted to provide enhancements. Additionally, the cooling process may be continuous (e.g., at least one adsorbent bed that is being cooled at any instant of time).
In one or more embodiments, the material may include an adsorbent material supported on a non-adsorbent support. The adsorbent materials may include alumina, microporous zeolites, carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, aluminum phosphorous and oxygen (ALPO) materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), silicon aluminum phosphorous and oxygen (SAPO) materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), metal organic framework (MOF) materials (microporous and mesoporous materials comprised of a metal organic framework) and zeolitic imidazolate frameworks (ZIF) materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary amines and other non protogenic basic groups such as amidines, guanidines and biguanides.
In one or more embodiments, the adsorbent bed unit may be utilized to separate contaminants from a feed stream during normal operation mode. The method may include a) passing a gaseous feed stream at a feed pressure through an adsorbent bed unit having an adsorbent contactor to separate one or more contaminants from the gaseous feed stream to form a product stream, wherein the adsorbent contactor has a first portion and a second portion; b) interrupting the flow of the gaseous feed stream; performing a depressurization step, wherein the depressurization step reduces the pressure within the adsorbent bed unit; c) performing an optional heating step, wherein the heating step increases the temperature of the adsorbent bed unit to form a temperature differential between the feed end of the adsorbent bed and the product end of the adsorbent bed; and d) performing a cooling step, wherein the cooling step reduces the temperature within the adsorbent bed unit; e) performing a re-pressurization step, wherein the re-pressurization step increases the pressure within the adsorbent bed unit; and repeating the steps a) to e) for at least one additional cycle.
In one or more embodiments, when using RCTSA or an integrated RCPSA and RCTSA process, the total cycle times are typically less than 600 seconds, preferably less than 400 seconds, preferably less than 300 seconds, preferably less than 250 seconds, preferably less than 180 seconds, more preferably less than 90 seconds, and even more preferably less than 60 seconds. In other embodiment, the rapid cycle configuration may be operated at lower flow rates during startup mode as compared to normal operation mode, which may result in the cycle durations being longer than the cycle durations during normal operation mode. For example, the cycle duration may be extended to 1,000 seconds for some cycles.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application 62/621,246 filed Jan. 24 2018 entitled APPARATUS AND SYSTEM FOR SWING ADSORPTION PROCESSES, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1868138 | Fisk | Jul 1932 | A |
3103425 | Meyer | Sep 1963 | A |
3124152 | Payne | Mar 1964 | A |
3142547 | Marsh et al. | Jul 1964 | A |
3508758 | Strub | Apr 1970 | A |
3594983 | Yearout | Jul 1971 | A |
3602247 | Bunn et al. | Aug 1971 | A |
3788036 | Lee et al. | Jan 1974 | A |
3967464 | Cormier et al. | Jul 1976 | A |
4187092 | Woolley | Feb 1980 | A |
4261815 | Kelland | Apr 1981 | A |
4324565 | Benkmann | Apr 1982 | A |
4325565 | Winchell | Apr 1982 | A |
4329162 | Pitcher | May 1982 | A |
4340398 | Doshi et al. | Jul 1982 | A |
4386947 | Mizuno et al. | Jun 1983 | A |
4421531 | Dalton, Jr. et al. | Dec 1983 | A |
4445441 | Tanca | May 1984 | A |
4461630 | Cassidy et al. | Jul 1984 | A |
4496376 | Hradek | Jan 1985 | A |
4631073 | Null et al. | Dec 1986 | A |
4693730 | Miller et al. | Sep 1987 | A |
4705627 | Miwa et al. | Nov 1987 | A |
4711968 | Oswald et al. | Dec 1987 | A |
4737170 | Searle | Apr 1988 | A |
4770676 | Sircar | Sep 1988 | A |
4783205 | Searle | Nov 1988 | A |
4784672 | Sircar | Nov 1988 | A |
4790272 | Weber | Dec 1988 | A |
4814146 | Brand et al. | Mar 1989 | A |
4816039 | Krishnamurthy et al. | Mar 1989 | A |
4877429 | Hunter | Oct 1989 | A |
4977745 | Heichberger | Dec 1990 | A |
5110328 | Yokota et al. | May 1992 | A |
5125934 | Krishnamurthy et al. | Jun 1992 | A |
5169006 | Stelzer | Dec 1992 | A |
5174796 | Davis et al. | Dec 1992 | A |
5224350 | Mehra | Jul 1993 | A |
5234472 | Krishnamurthy et al. | Aug 1993 | A |
5292990 | Kantner et al. | Mar 1994 | A |
5306331 | Auvil et al. | Apr 1994 | A |
5354346 | Kumar | Oct 1994 | A |
5365011 | Ramachandran et al. | Nov 1994 | A |
5370728 | LaSala et al. | Dec 1994 | A |
5486227 | Kumar et al. | Jan 1996 | A |
5547641 | Smith et al. | Aug 1996 | A |
5565018 | Baksh et al. | Oct 1996 | A |
5672196 | Acharya et al. | Sep 1997 | A |
5700310 | Bowman et al. | Dec 1997 | A |
5733451 | Coellner et al. | Mar 1998 | A |
5735938 | Baksh et al. | Apr 1998 | A |
5750026 | Gadkaree et al. | May 1998 | A |
5769928 | Leavitt | Jun 1998 | A |
5779768 | Anand et al. | Jul 1998 | A |
5792239 | Reinhold, III et al. | Aug 1998 | A |
5807423 | Lemcoff et al. | Sep 1998 | A |
5811616 | Holub et al. | Sep 1998 | A |
5827358 | Kulish et al. | Oct 1998 | A |
5882380 | Sircar | Mar 1999 | A |
5906673 | Reinhold, III et al. | May 1999 | A |
5912426 | Smolarek. et al. | Jun 1999 | A |
5914294 | Park et al. | Jun 1999 | A |
5924307 | Nenov | Jul 1999 | A |
5935444 | Johnson et al. | Aug 1999 | A |
5968234 | Midgett, II et al. | Oct 1999 | A |
5976221 | Bowman et al. | Nov 1999 | A |
5997617 | Czabala et al. | Dec 1999 | A |
6007606 | Baksh et al. | Dec 1999 | A |
6011192 | Baker et al. | Jan 2000 | A |
6023942 | Thomas et al. | Feb 2000 | A |
6053966 | Moreau et al. | Apr 2000 | A |
6063161 | Keefer et al. | May 2000 | A |
6096115 | Kleinberg | Aug 2000 | A |
6099621 | Ho | Aug 2000 | A |
6102985 | Naheiri et al. | Aug 2000 | A |
6129780 | Millet et al. | Oct 2000 | A |
6136222 | Friesen et al. | Oct 2000 | A |
6147126 | DeGeorge et al. | Nov 2000 | A |
6152991 | Ackley | Nov 2000 | A |
6156101 | Naheiri | Dec 2000 | A |
6171371 | Derive et al. | Jan 2001 | B1 |
6176897 | Keefer | Jan 2001 | B1 |
6179900 | Behling et al. | Jan 2001 | B1 |
6183538 | Naheiri | Feb 2001 | B1 |
6194079 | Hekal | Feb 2001 | B1 |
6210466 | Whysall et al. | Apr 2001 | B1 |
6231302 | Bonardi | May 2001 | B1 |
6245127 | Kane et al. | Jun 2001 | B1 |
6284021 | Lu et al. | Sep 2001 | B1 |
6311719 | Hill et al. | Nov 2001 | B1 |
6345954 | Al-Himyary et al. | Feb 2002 | B1 |
6398853 | Keefer et al. | Jun 2002 | B1 |
6402813 | Monereau et al. | Jun 2002 | B2 |
6406523 | Connor et al. | Jun 2002 | B1 |
6425938 | Xu et al. | Jul 2002 | B1 |
6432379 | Heung | Aug 2002 | B1 |
6436171 | Wang et al. | Aug 2002 | B1 |
6444012 | Dolan et al. | Sep 2002 | B1 |
6444014 | Mullhaupt et al. | Sep 2002 | B1 |
6444523 | Fan et al. | Sep 2002 | B1 |
6444610 | Yamamoto | Sep 2002 | B1 |
6451095 | Keefer et al. | Sep 2002 | B1 |
6457485 | Hill et al. | Oct 2002 | B2 |
6458187 | Fritz et al. | Oct 2002 | B1 |
6464761 | Bugli | Oct 2002 | B1 |
6471749 | Kawai et al. | Oct 2002 | B1 |
6471939 | Boix et al. | Oct 2002 | B1 |
6488747 | Keefer | Dec 2002 | B1 |
6497750 | Butwell et al. | Dec 2002 | B2 |
6500234 | Ackley et al. | Dec 2002 | B1 |
6500241 | Reddy | Dec 2002 | B2 |
6500404 | Camblor Fernandez et al. | Dec 2002 | B1 |
6503299 | Baksh et al. | Jan 2003 | B2 |
6506351 | Jain et al. | Jan 2003 | B1 |
6514318 | Keefer | Feb 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6517609 | Monereau et al. | Feb 2003 | B1 |
6531516 | Davis et al. | Mar 2003 | B2 |
6533846 | Keefer et al. | Mar 2003 | B1 |
6565627 | Golden et al. | May 2003 | B1 |
6565635 | Keefer et al. | May 2003 | B2 |
6565825 | Ohji et al. | May 2003 | B2 |
6572678 | Wijmans et al. | Jun 2003 | B1 |
6579341 | Baker et al. | Jun 2003 | B2 |
6593541 | Herren | Jul 2003 | B1 |
6595233 | Pulli | Jul 2003 | B2 |
6605136 | Graham et al. | Aug 2003 | B1 |
6607584 | Moreau et al. | Aug 2003 | B2 |
6630012 | Wegeng et al. | Oct 2003 | B2 |
6631626 | Hahn | Oct 2003 | B1 |
6641645 | Lee et al. | Nov 2003 | B1 |
6651645 | Nunez-Suarez | Nov 2003 | B1 |
6660064 | Golden et al. | Dec 2003 | B2 |
6660065 | Byrd et al. | Dec 2003 | B2 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6712087 | Hill et al. | Mar 2004 | B2 |
6742507 | Keefer et al. | Jun 2004 | B2 |
6746515 | Wegeng et al. | Jun 2004 | B2 |
6752852 | Jacksier et al. | Jun 2004 | B1 |
6770120 | Neu et al. | Aug 2004 | B2 |
6773225 | Yuri et al. | Aug 2004 | B2 |
6802889 | Graham et al. | Oct 2004 | B2 |
6814771 | Scardino et al. | Nov 2004 | B2 |
6835354 | Woods et al. | Dec 2004 | B2 |
6840985 | Keefer | Jan 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6889710 | Wagner | May 2005 | B2 |
6890376 | Arquin et al. | May 2005 | B2 |
6893483 | Golden et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6916358 | Nakamura et al. | Jul 2005 | B2 |
6918953 | Lomax, Jr. et al. | Jul 2005 | B2 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
7025801 | Monereau | Apr 2006 | B2 |
7027929 | Wang | Apr 2006 | B2 |
7029521 | Johansson | Apr 2006 | B2 |
7074323 | Ghijsen | Jul 2006 | B2 |
7077891 | Jaffe et al. | Jul 2006 | B2 |
7087331 | Keefer et al. | Aug 2006 | B2 |
7094275 | Keefer et al. | Aug 2006 | B2 |
7097925 | Keefer et al. | Aug 2006 | B2 |
7112239 | Kimbara et al. | Sep 2006 | B2 |
7117669 | Kaboord et al. | Oct 2006 | B2 |
7122073 | Notaro et al. | Oct 2006 | B1 |
7128775 | Celik et al. | Oct 2006 | B2 |
7144016 | Gozdawa | Dec 2006 | B2 |
7160356 | Koros et al. | Jan 2007 | B2 |
7160367 | Babicki et al. | Jan 2007 | B2 |
7166149 | Dunne et al. | Jan 2007 | B2 |
7172645 | Pfister et al. | Feb 2007 | B1 |
7189280 | Alizadeh-Khiavi et al. | Mar 2007 | B2 |
7243679 | Thelen | Jul 2007 | B2 |
7250073 | Keefer et al. | Jul 2007 | B2 |
7250074 | Tonkovich et al. | Jul 2007 | B2 |
7255727 | Monereau et al. | Aug 2007 | B2 |
7258725 | Ohmi et al. | Aug 2007 | B2 |
7276107 | Baksh et al. | Oct 2007 | B2 |
7279029 | Occhialini et al. | Oct 2007 | B2 |
7285350 | Keefer et al. | Oct 2007 | B2 |
7297279 | Johnson et al. | Nov 2007 | B2 |
7311763 | Neary | Dec 2007 | B2 |
RE40006 | Keefer et al. | Jan 2008 | E |
7314503 | Landrum et al. | Jan 2008 | B2 |
7354562 | Ying et al. | Apr 2008 | B2 |
7387849 | Keefer et al. | Jun 2008 | B2 |
7390350 | Weist, Jr. et al. | Jun 2008 | B2 |
7404846 | Golden et al. | Jul 2008 | B2 |
7438079 | Cohen et al. | Oct 2008 | B2 |
7449049 | Thomas et al. | Nov 2008 | B2 |
7456131 | Klett et al. | Nov 2008 | B2 |
7510601 | Whitley et al. | Mar 2009 | B2 |
7527670 | Ackley et al. | May 2009 | B2 |
7553568 | Keefer | Jun 2009 | B2 |
7578864 | Watanabe et al. | Aug 2009 | B2 |
7604682 | Seaton | Oct 2009 | B2 |
7637989 | Bong | Dec 2009 | B2 |
7641716 | Lomax, Jr. et al. | Jan 2010 | B2 |
7645324 | Rode et al. | Jan 2010 | B2 |
7651549 | Whitley | Jan 2010 | B2 |
7674319 | Lomax, Jr. et al. | Mar 2010 | B2 |
7674539 | Keefer et al. | Mar 2010 | B2 |
7687044 | Keefer et al. | Mar 2010 | B2 |
7713333 | Rege et al. | May 2010 | B2 |
7717981 | LaBuda et al. | May 2010 | B2 |
7722700 | Sprinkle | May 2010 | B2 |
7731782 | Kelley et al. | Jun 2010 | B2 |
7740687 | Reinhold, III | Jun 2010 | B2 |
7744676 | Leitmayr et al. | Jun 2010 | B2 |
7744677 | Barclay et al. | Jun 2010 | B2 |
7758051 | Roberts-Haritonov et al. | Jul 2010 | B2 |
7758988 | Keefer et al. | Jul 2010 | B2 |
7763098 | Alizadeh-Khiavi et al. | Jul 2010 | B2 |
7763099 | Verma et al. | Jul 2010 | B2 |
7792983 | Mishra et al. | Sep 2010 | B2 |
7793675 | Cohen et al. | Sep 2010 | B2 |
7806965 | Stinson | Oct 2010 | B2 |
7819948 | Wagner | Oct 2010 | B2 |
7828877 | Sawada et al. | Nov 2010 | B2 |
7828880 | Moriya et al. | Nov 2010 | B2 |
7854793 | Rarig et al. | Dec 2010 | B2 |
7858169 | Yamashita | Dec 2010 | B2 |
7862645 | Whitley et al. | Jan 2011 | B2 |
7867320 | Baksh et al. | Jan 2011 | B2 |
7902114 | Bowie et al. | Mar 2011 | B2 |
7938886 | Hershkowitz et al. | May 2011 | B2 |
7947118 | Rarig et al. | May 2011 | B2 |
7947120 | Deckman et al. | May 2011 | B2 |
7959720 | Deckman et al. | Jun 2011 | B2 |
8016918 | LaBuda et al. | Sep 2011 | B2 |
8034164 | Lomax, Jr. et al. | Oct 2011 | B2 |
8071063 | Reyes et al. | Dec 2011 | B2 |
8128734 | Song | Mar 2012 | B2 |
8142745 | Reyes et al. | Mar 2012 | B2 |
8142746 | Reyes et al. | Mar 2012 | B2 |
8192709 | Reyes et al. | Jun 2012 | B2 |
8210772 | Gillecriosd | Jul 2012 | B2 |
8227121 | Adams et al. | Jul 2012 | B2 |
8262773 | Northrop et al. | Sep 2012 | B2 |
8262783 | Stoner et al. | Sep 2012 | B2 |
8268043 | Celik et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8272401 | McLean | Sep 2012 | B2 |
8287629 | Fujita et al. | Oct 2012 | B2 |
8319090 | Kitamura | Nov 2012 | B2 |
8337594 | Corma Canos et al. | Dec 2012 | B2 |
8361200 | Sayari et al. | Jan 2013 | B2 |
8361205 | Desai et al. | Jan 2013 | B2 |
8377173 | Chuang | Feb 2013 | B2 |
8444750 | Deckman et al. | May 2013 | B2 |
8449649 | Greenough | May 2013 | B2 |
8470395 | Khiavi et al. | Jun 2013 | B2 |
8480795 | Siskin et al. | Jul 2013 | B2 |
8512569 | Eaton et al. | Aug 2013 | B2 |
8518356 | Schaffer et al. | Aug 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
8529663 | Reyes et al. | Sep 2013 | B2 |
8529664 | Deckman et al. | Sep 2013 | B2 |
8529665 | Manning et al. | Sep 2013 | B2 |
8535414 | Johnson et al. | Sep 2013 | B2 |
8545602 | Chance et al. | Oct 2013 | B2 |
8551444 | Agnihotri et al. | Oct 2013 | B2 |
8573124 | Havran et al. | Nov 2013 | B2 |
8591627 | Jain | Nov 2013 | B2 |
8591634 | Winchester et al. | Nov 2013 | B2 |
8616233 | McLean et al. | Dec 2013 | B2 |
8657922 | Yamawaki et al. | Feb 2014 | B2 |
8673059 | Leta et al. | Mar 2014 | B2 |
8680344 | Weston et al. | Mar 2014 | B2 |
8715617 | Genkin et al. | May 2014 | B2 |
8752390 | Wright et al. | Jun 2014 | B2 |
8753428 | Lomax, Jr. et al. | Jun 2014 | B2 |
8778051 | Weist, Jr. et al. | Jul 2014 | B2 |
8784533 | Leta et al. | Jul 2014 | B2 |
8784534 | Kamakoti et al. | Jul 2014 | B2 |
8784535 | Ravikovitch et al. | Jul 2014 | B2 |
8790618 | Adams et al. | Jul 2014 | B2 |
8795411 | Hufton et al. | Aug 2014 | B2 |
8808425 | Genkin et al. | Aug 2014 | B2 |
8808426 | Sundaram | Aug 2014 | B2 |
8814985 | Gerds et al. | Aug 2014 | B2 |
8852322 | Gupta et al. | Oct 2014 | B2 |
8858683 | Deckman | Oct 2014 | B2 |
8875483 | Wettstein | Nov 2014 | B2 |
8906138 | Rasmussen et al. | Dec 2014 | B2 |
8921637 | Sundaram et al. | Dec 2014 | B2 |
8936669 | Doong et al. | Jan 2015 | B2 |
8939014 | Kamakoti et al. | Jan 2015 | B2 |
9005561 | Leta | Apr 2015 | B2 |
9017457 | Tammera | Apr 2015 | B2 |
9028595 | Sundaram et al. | May 2015 | B2 |
9034078 | Wanni et al. | May 2015 | B2 |
9034079 | Deckman et al. | May 2015 | B2 |
9050553 | Alizadeh-Khiavi et al. | Jun 2015 | B2 |
9067168 | Frederick et al. | Jun 2015 | B2 |
9067169 | Patel | Jun 2015 | B2 |
9095809 | Deckman et al. | Aug 2015 | B2 |
9108145 | Kalbassi et al. | Aug 2015 | B2 |
9120049 | Sundaram et al. | Sep 2015 | B2 |
9126138 | Deckman et al. | Sep 2015 | B2 |
9162175 | Sundaram | Oct 2015 | B2 |
9168483 | Ravikovitch et al. | Oct 2015 | B2 |
9168485 | Deckman et al. | Oct 2015 | B2 |
9272264 | Coupland | Mar 2016 | B2 |
9278338 | Coupland | Mar 2016 | B2 |
9358493 | Tammera et al. | Jun 2016 | B2 |
9573116 | Johnson et al. | Feb 2017 | B2 |
9597655 | Beeckman | Mar 2017 | B2 |
9737846 | Carstensen et al. | Aug 2017 | B2 |
9744521 | Brody et al. | Aug 2017 | B2 |
10040022 | Fowler et al. | Aug 2018 | B2 |
10080991 | Johnson et al. | Sep 2018 | B2 |
10080992 | Nagavarapu et al. | Sep 2018 | B2 |
10124286 | McMahon et al. | Nov 2018 | B2 |
20010047824 | Hill et al. | Dec 2001 | A1 |
20020053547 | Schlegel et al. | May 2002 | A1 |
20020124885 | Hill et al. | Sep 2002 | A1 |
20020162452 | Butwell et al. | Nov 2002 | A1 |
20030075485 | Ghijsen | Apr 2003 | A1 |
20030129101 | Zettel | Jul 2003 | A1 |
20030131728 | Kanazirev et al. | Jul 2003 | A1 |
20030145726 | Gueret et al. | Aug 2003 | A1 |
20030170527 | Finn et al. | Sep 2003 | A1 |
20030188635 | Lomax, Jr. et al. | Oct 2003 | A1 |
20030202918 | Ashida et al. | Oct 2003 | A1 |
20030205130 | Neu et al. | Nov 2003 | A1 |
20030223856 | Yuri et al. | Dec 2003 | A1 |
20040099142 | Arquin et al. | May 2004 | A1 |
20040118277 | Kim | Jun 2004 | A1 |
20040118747 | Cutler et al. | Jun 2004 | A1 |
20040197596 | Connor et al. | Oct 2004 | A1 |
20040232622 | Gozdawa | Nov 2004 | A1 |
20050045041 | Hechinger et al. | Mar 2005 | A1 |
20050109419 | Ohmi et al. | May 2005 | A1 |
20050114032 | Wang | May 2005 | A1 |
20050129952 | Sawada et al. | Jun 2005 | A1 |
20050014511 | Keefer et al. | Jul 2005 | A1 |
20050145111 | Keefer et al. | Jul 2005 | A1 |
20050150378 | Dunne et al. | Jul 2005 | A1 |
20050229782 | Monereau et al. | Oct 2005 | A1 |
20050252378 | Celik et al. | Nov 2005 | A1 |
20060017940 | Takayama | Jan 2006 | A1 |
20060048648 | Gibbs et al. | Mar 2006 | A1 |
20060049102 | Miller et al. | Mar 2006 | A1 |
20060076270 | Poshusta et al. | Apr 2006 | A1 |
20060099096 | Shaffer et al. | May 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060116430 | Wentink et al. | Jun 2006 | A1 |
20060116460 | Georget et al. | Jun 2006 | A1 |
20060162556 | Ackley et al. | Jul 2006 | A1 |
20060165574 | Sayari | Jul 2006 | A1 |
20060169142 | Rode et al. | Aug 2006 | A1 |
20060236862 | Golden et al. | Oct 2006 | A1 |
20070084241 | Kretchmer et al. | Apr 2007 | A1 |
20070084344 | Moriya et al. | Apr 2007 | A1 |
20070222160 | Roberts-Haritonov et al. | Sep 2007 | A1 |
20070253872 | Keefer et al. | Nov 2007 | A1 |
20070261550 | Ota | Nov 2007 | A1 |
20070261557 | Gadkaree et al. | Nov 2007 | A1 |
20070283807 | Whitley | Dec 2007 | A1 |
20080051279 | Klett et al. | Feb 2008 | A1 |
20080072822 | White | Mar 2008 | A1 |
20080128655 | Garg et al. | Jun 2008 | A1 |
20080202336 | Hofer et al. | Aug 2008 | A1 |
20080282883 | Rarig et al. | Nov 2008 | A1 |
20080282884 | Kelley et al. | Nov 2008 | A1 |
20080282885 | Deckman et al. | Nov 2008 | A1 |
20080282886 | Reyes et al. | Nov 2008 | A1 |
20080282887 | Chance | Nov 2008 | A1 |
20080282892 | Deckman et al. | Nov 2008 | A1 |
20080289497 | Barclay et al. | Nov 2008 | A1 |
20080307966 | Stinson | Dec 2008 | A1 |
20080314550 | Greco | Dec 2008 | A1 |
20090004073 | Gleize et al. | Jan 2009 | A1 |
20090014902 | Koivunen et al. | Jan 2009 | A1 |
20090025553 | Keefer et al. | Jan 2009 | A1 |
20090025555 | Lively et al. | Jan 2009 | A1 |
20090037550 | Mishra et al. | Feb 2009 | A1 |
20090071333 | LaBuda et al. | Mar 2009 | A1 |
20090079870 | Matsui | Mar 2009 | A1 |
20090107332 | Wagner | Apr 2009 | A1 |
20090151559 | Verma et al. | Jun 2009 | A1 |
20090162268 | Hufton et al. | Jun 2009 | A1 |
20090180423 | Kroener | Jul 2009 | A1 |
20090241771 | Manning et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090294366 | Wright et al. | Dec 2009 | A1 |
20090308248 | Siskin et al. | Dec 2009 | A1 |
20090314159 | Haggerty | Dec 2009 | A1 |
20100059701 | McLean | Mar 2010 | A1 |
20100077920 | Baksh et al. | Apr 2010 | A1 |
20100089241 | Stoner et al. | Apr 2010 | A1 |
20100186445 | Minta et al. | Jul 2010 | A1 |
20100212493 | Rasmussen et al. | Aug 2010 | A1 |
20100251887 | Jain | Oct 2010 | A1 |
20100252497 | Ellison et al. | Oct 2010 | A1 |
20100263534 | Chuang | Oct 2010 | A1 |
20100282593 | Speirs et al. | Nov 2010 | A1 |
20100288704 | Amsden et al. | Nov 2010 | A1 |
20110011803 | Koros | Jan 2011 | A1 |
20110020202 | Gadkaree et al. | Jan 2011 | A1 |
20110031103 | Deckman et al. | Feb 2011 | A1 |
20110067440 | Van Aken | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110123878 | Jangbarwala | May 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110217218 | Gupta et al. | Sep 2011 | A1 |
20110277620 | Havran et al. | Nov 2011 | A1 |
20110291051 | Hershkowitz et al. | Dec 2011 | A1 |
20110296871 | Van Soest-Vercammen et al. | Dec 2011 | A1 |
20110308524 | Brey et al. | Dec 2011 | A1 |
20120024150 | Moniot | Feb 2012 | A1 |
20120024152 | Yamawaki et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120067216 | Corma-Canos et al. | Mar 2012 | A1 |
20120152115 | Gerds et al. | Jun 2012 | A1 |
20120222551 | Deckman | Sep 2012 | A1 |
20120222552 | Ravikovitch et al. | Sep 2012 | A1 |
20120222553 | Kamakoti et al. | Sep 2012 | A1 |
20120222554 | Leta et al. | Sep 2012 | A1 |
20120222555 | Gupta et al. | Sep 2012 | A1 |
20120255377 | Kamakoti et al. | Oct 2012 | A1 |
20120272823 | Halder et al. | Nov 2012 | A1 |
20120308456 | Leta et al. | Dec 2012 | A1 |
20120312163 | Leta | Dec 2012 | A1 |
20130061755 | Frederick et al. | Mar 2013 | A1 |
20130095996 | Buelow et al. | Apr 2013 | A1 |
20130225898 | Sundaram et al. | Aug 2013 | A1 |
20140013955 | Tammera et al. | Jan 2014 | A1 |
20140060326 | Sundaram et al. | Mar 2014 | A1 |
20140157984 | Deckman et al. | Jun 2014 | A1 |
20140157986 | Ravikovitch et al. | Jun 2014 | A1 |
20140208797 | Kelley et al. | Jul 2014 | A1 |
20140216254 | Tammera et al. | Aug 2014 | A1 |
20140326136 | Doong | Nov 2014 | A1 |
20150013377 | Oelfke | Jan 2015 | A1 |
20150068397 | Boulet et al. | Mar 2015 | A1 |
20150101483 | Perry et al. | Apr 2015 | A1 |
20150196870 | Albright et al. | Jul 2015 | A1 |
20150328578 | Deckman et al. | Nov 2015 | A1 |
20160023155 | Ramkumar et al. | Jan 2016 | A1 |
20160129433 | Tammera et al. | May 2016 | A1 |
20160166972 | Owens et al. | Jun 2016 | A1 |
20160236135 | Tammera et al. | Aug 2016 | A1 |
20160332105 | Tammera et al. | Nov 2016 | A1 |
20160332106 | Tammera et al. | Nov 2016 | A1 |
20170056810 | Johnson | Mar 2017 | A1 |
20170056814 | Marshall et al. | Mar 2017 | A1 |
20170113173 | Fowler et al. | Apr 2017 | A1 |
20170113175 | Fowler et al. | Apr 2017 | A1 |
20170136405 | Ravikovitch et al. | May 2017 | A1 |
20170266604 | Tammera et al. | Sep 2017 | A1 |
20170282114 | Owens et al. | Oct 2017 | A1 |
20170341011 | Nagavarapu et al. | Nov 2017 | A1 |
20170341012 | Nagavarapu et al. | Nov 2017 | A1 |
20180001301 | Brody et al. | Jan 2018 | A1 |
20180056229 | Denton et al. | Mar 2018 | A1 |
20180056235 | Wang et al. | Mar 2018 | A1 |
20180169565 | Brody et al. | Jun 2018 | A1 |
20180169617 | Brody et al. | Jun 2018 | A1 |
20180339263 | Dehaas et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0257493 | Feb 1988 | EP |
0426937 | May 1991 | EP |
0904827 | Mar 1999 | EP |
1674555 | Jun 2006 | EP |
2823872 | Jan 2015 | EP |
2854819 | May 2003 | FR |
2924951 | Jun 2009 | FR |
58-114715 | Jul 1983 | JP |
59-232174 | Dec 1984 | JP |
60-189318 | Dec 1985 | JP |
2002-253818 | Oct 1990 | JP |
04-180978 | Jun 1992 | JP |
06006736 | Jun 1992 | JP |
3477280 | Aug 1995 | JP |
2011-169640 | Jun 1999 | JP |
2011-280921 | Oct 1999 | JP |
2000-024445 | Aug 2001 | JP |
2002-348651 | Dec 2002 | JP |
2006-016470 | Jan 2006 | JP |
2006-036849 | Feb 2006 | JP |
2008-272534 | Nov 2008 | JP |
101349424 | Jan 2014 | KR |
WO2002024309 | Mar 2002 | WO |
WO2002073728 | Sep 2002 | WO |
WO2005090793 | Sep 2005 | WO |
WO2010024643 | Mar 2010 | WO |
WO2011139894 | Nov 2011 | WO |
Entry |
---|
Dubbeldam, D., et al., (2013) “On the inner workings of Monte Carlo codes” Molecular Simulation, vol. 39, Nos. 14-15, pp. 1253-1292. |
Earl, D. J. et al., (2005) “Parallel tempering: Theory, applications, and new perspectives,” Phys Chem Chem Phys, vol. 7, pp. 3910-3916. |
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 Pgs. |
Fang, H. et al., (2013) “First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites,” Phys Chem Chem Phys, vol. 15, p. 12882-12894. |
Fang, H., et al., (2012) “Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations,” J Phys Chem C, 10692, 116, ACS Publications. |
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,” AlChE J., v36 (2) p. 310-314. |
FlowServe (2005) “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs. |
Foster, M.D., et al. “A geometric solution to the largest-free-sphere problem in zeolite frameworks”, Microporous and Mesoporous Materials, vol. 90, pp. 32-38. |
Frenkel, D. et al., (2002) “Understanding Molecular Simulation: From Algorithms to Applications”, 2nd ed., Academic Press, pp. 292-301. |
Garcia, E. J., et al. (2014) “Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity”, Ind. Eng. Chem. Res., vol. 53, pp. 9860-9874. |
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs. |
Harris, J. G. et al., (1995) “Carbon Dioxide's Liquid—Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model”, J Phys Chem, vol. 99, pp. 12021-12024. |
Hill, J. R. et al., (1995) “Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates”, J Phys Chem, vol. 99, pp. 9536-9550. |
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95. |
Jain, S., et al. (2003) “Heuristic design of pressure swing adsorption: a preliminary study”, Separation and Purification Technology, vol. 33, pp. 25-43. |
Kim J. et al. (2012) “Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture”, J. Am. Chem, Soc., vol. 134, pp. 18940-18940. |
Kärger, J., et al.(2012) “Diffusion in Nanoporous Materials” , Whiley-VCH publisher, vol. 1, Chapter 16, pp. 483-501. |
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262. |
Lin, L., et al. (2012) “In silica screening of carbon-capture materials”, Nature Materials, vol. 1, pp. 633-641. |
Liu, Q. et al., (2010) “NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2,” Chem Commun,, vol. 46, pp. 4502-4504. |
Lowenstein, W., (1954) “The Distribution of Aluminum in the Tetra-Hedra of Silicates and Aluminates” Am Mineral, 92-96. |
Neimark, A. V. et al., (1997) “Calibration of Pore Volume in Adsorption Experiments and Theoretical Models”, Langmuir, vol. 13, pp. 5148-5160. |
Palomino, M., et al. (2009) “New Insights on CO2-Methane Seapration Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs”, Langmar, vol. 26(3), pp. 1910-1917. |
Patcas, F.C. et al.(2007) “CO Oxidation Over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads”, Chem Engineering Science, v. 62, pp. 3984-3990. |
Peng, D. Y., et al., (1976) “A New Two-Constant Equation of State”, Ind Eng Chem Fundam, vol. 15, pp. 59-64. |
Pham, T. D. et al., (2013) “Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites”, Langmuir, vol. 29, pp. 832-839. |
Pophale, R., et al., (2011) “A database of new zeolite-like materials”, Phys Chem Chem Phys, vol. 13(27), pp. 12407-12412. |
Potoff, J. J. et al., (2001) “Vapor-Liquid Equilibria of Mixtures Containing Alkanes. Carbon Dioxide, and Nitrogen”, AIChE J, vol. 47(7), pp. 1676-1682. |
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pp. |
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622. |
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process”, Chem. Engineering Science, v. 64, pp. 5182-5191. |
Richardson, J.T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Dop”, Applied Catalysis A: General v. 204, pp. 19-32. |
Robinson, D. B., et al., (1985) “The development of the Peng—Robinson Equation and its Application to Phase Equilibrium in a System Containing Methanol,” Fluid Phase Equilibria, vol. 24, pp. 25-41. |
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif, vol. 10, No. 1, pp. 63-73. |
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages. |
Santos, M. S (2011) “New Cycle configuration to enhance performance of kinetic PSA processes” Chemical Engineering Science 66, pp. 1590-1599. |
Snurr, R. Q. et al., (1993) “Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions”, J Phys Chem, vol. 97, pp. 13742-13752. |
Stemmet, C.P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer”, Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141. |
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73. |
Talu, O. et al., (2001), “Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 83-93, pp. 83-93. |
Walton, K. S. et al., (2006) “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange,” Microporous and Mesoporous Mat, vol. 91, pp. 78-84. |
Willems, T. F. et al., (2012) “Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials” Microporous Mesoporous Mat, vol. 149, pp. 134-141. |
Zukal, A., et al., (2009) “Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations”, Adsorption, vol. 15, pp. 264-270. |
U.S. Appl. No. 16/252,975, filed Jan. 21, 2019, Krishna Nagavarapu et al. |
U.S. Appl. No. 16/258,266, filed Jan. 25, 2019, Barnes et al. |
U.S. Appl. No. 16/263,940, filed Jan. 31, 2019, Johnson. |
U.S. Appl. No. 62/783,766, filed Dec. 21, 2019, Fulton et al. |
Allen, M. P. et al., (1987) “Computer Simulation of Liquids” Clarendon Press, pp. 156-160. |
Asgari, M. et al., (2014) “Designing A Commercial Scale Pressure Swing Adsorber For Hydrogen Purification” Petroleum & Coal, vol. 56(5), pp. 552-561. |
Baerlocher, C. et al., (2017) International Zeolite Association's “Database of Zeolite Structures,” available at http://www.iza-stucture.org/databases/, downloaded Jun. 15, 2018, 1 page. |
Burtch, N.C. et al., (2015) “Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks,” J Am Chem Soc, 135, pp. 7172-7180. |
Beauvais, C. et al., (2004) “Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study,” J Phys Chem B, 108, pp. 399-404. |
Cheung, O. et al., (2013) “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA,” Appl Energ, 112, pp. 1326-1336. |
Cygan, R. T. et al., (2004) “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, J Phys Chem B, vol. 108, pp. 1255-1266. |
Deem, M. W et al., (2009) “Computational Discovery of New Zeolite-Like Materials”, J Phys Chem C, 113, pp. 21353-21360. |
Demiralp, E., et al., (1999) “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass”, Physical Review Letters, vol. 82(8), pp. 1708-1711. |
Dubbeldam, D. et al. (2016) “RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials” Molecular Simulation, (published online Feb. 26, 2015), vol. 42(2), pp. 81-101. |
Rezaei, F. et al. (2014) “Modeling of Rapid Temperature Swing Adsorption Using Hollow Fiber Sorbents”, Chem. Engineering Science, v. 113, pp. 62-76. |
Number | Date | Country | |
---|---|---|---|
20190224613 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62621246 | Jan 2018 | US |