This application is related to U.S. Patent Application No. 61/448,117 entitled APPARATUS AND SYSTEMS HAVING AN ENCASED ADSORBENT CONTACTOR AND SWING ADSORPTION PROCESSES RELATED THERETO, filed Mar. 1, 2011; U.S. Patent Application No. 61/448,121 entitled METHODS OF REMOVING CONTAMINANTS FROM A HYDROCARBON STREAM BY SWING ADSORPTION AND RELATED APPARATUS AND SYSTEMS, filed Mar. 1, 2011; U.S. Patent Application No. 61/448,123 entitled APPARATUS AND SYSTEMS HAVING A ROTARY VALVE ASSEMBLY AND SWING ADSORPTION PROCESSES RELATED THERETO, filed Mar. 1, 2011; and U.S. Patent Application No. 61/448,125 entitled APPARATUS AND SYSTEMS HAVING COMPACT CONFIGURATION MULTIPLE SWING ADSORPTION BEDS AND METHODS RELATED THERETO, filed Mar. 1, 2011, and U.S. Patent Application No. 61/594,824 entitled METHODS OF REMOVING CONTAMINANTS FROM A HYDROCARBON STREAM BY SWING ADSORPTION AND RELATED APPARATUS AND SYSTEMS, filed Feb. 3, 2012, each of which is herein incorporated by reference in its entirety.
The present application provides apparatus and systems having poppet valve assemblies and swing adsorption separation techniques related thereto. More particularly, the present application provides comprising poppet valve assemblies having one or more static poppet valves and corresponding one or more static ports integral to a single dynamic poppet valve.
Conventional poppet valve assemblies have been incorporated into many forms of industrial machinery, engines, compressors, etc. and have been used for regulating the flow of gaseous vapor or liquids in processes that require fast acting on-to-off flow regimes. A simple poppet valve assembly consists of a hole, usually round or oval, in the valve body and a valve head, usually a disk shape on the end of a shaft, which is called the valve stem. Flow occurs through the area between the valve head and the valve body. The flow area is varied as the stem guides the valve head by sliding through a valve guide. In some applications a pressure differential helps to seal or open the valve.
While conventional poppet valves have been in commercial use for years, there has been a continuous effort to improve the overall technology. While conventional approaches have worked to varying degrees, there is still a need in the art for further improvement to poppet valve technology.
Provided are apparatus and systems having a poppet valve assembly and swing adsorption separation techniques related thereto. The present apparatus and systems include a poppet valve assembly comprising: a valve body; a plurality of static valves fixedly secured to the valve body; a single dynamic poppet valve having a plurality of openings, wherein the plurality of static valves align and mate with the plurality of openings, the single dynamic poppet valve reciprocates to selectively open and close the plurality of static valves.
Also provided are swing adsorption vessels comprising: a plurality of adsorbent beds; a plurality of poppet valves, each of the plurality of adsorbent beds being in fluid communication with only one of the plurality of poppet valves, each poppet valve comprising: a valve body; a plurality of static valves fixedly secured to the valve body; a single dynamic poppet valve having a plurality of openings, wherein the plurality of static valves align and mate with the plurality of openings, the single dynamic poppet valve reciprocates to selectively open and close the plurality of static valves.
Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, will control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.
The present apparatus, methods, and systems provide for the reduction of the number of poppet valves needed for a given poppet valve assembly compared to conventional poppet valve assemblies for the same use. The mechanized drive train system that is used to drive the poppet valves in the poppet valve assemblies of the present invention directionally decreases overall engineering, fabrication, and long-term operational costs, while improving unit reliability by employing fewer poppet valve assemblies.
Other applications in the technical area include U.S. Patent Application Nos. 61/447,806, 61/447,812, 61/447,824, 61/447,848, 61/447,869, 61/447,835, and 61/447,877, each of which is herein incorporated by reference in its entirety.
Poppet valve assemblies may be configured as either a two-way normally closed valve or a two-way normally open valve. In the first, a stem impels the poppet valve from its seat to open up the amount of allowable flow area. In the latter, the flow area is constricted as a stem pushes the poppet back into its seat. The stem of a poppet valve is typically powered by one of any number of actuators that vary with different types of poppet valves. Some are automatic, while others require manual activation. Certain types of poppet valves involve the use of a piston chamber, which applies pressure to the stem, in turn applying pressure to the poppet. Still other designs utilize a solenoid coil—known as a poppet solenoid valve—which employs a tightly-wound spiral to exert force onto the stem.
Poppet valve assemblies may be used in a wide variety of applications requiring frequent changes to the fluid flow rate. The most common application is internal combustion engines, in which flow to the engine cylinders is stopped and started many hundreds of times per minute. Poppet valve assemblies can also be used in a variety of industrial processes such as compressors, turbines, reactors, and separation devices. For example, poppet valve assemblies are useful in reverse flow reactors as described in Intl. Patent App. Pub. No. 2011/149640, which is incorporated by reference herein.
In another exemplary application, poppet valve assemblies may be used in gas separation apparatus wherein a target gas is separated from a gaseous mixture by adsorption of the target gas onto an adsorbent material. Such apparatus are comprised of a plurality of swing adsorption vessels, each of which contain adsorbent beds. Each swing adsorption vessel experiences a different step of an adsorption cycle at any given point in time. A complete cycle, comprised of an adsorption step and subsequent regeneration steps, can be from less than a minute to many minutes, and as such very fast on/off flows of gas need to occur during each cycle. It is important for gas separation equipment to be compact, especially at some locations, such as offshore, where space is a premium.
In one or more embodiments it is desirable to increase the available flow area through a poppet valve assembly by several methods which may include (a) having a large valve head diameter, (b) adjusting the valve lift, (c) adjusting the valve cycle duration, (d) increasing the number of poppet valve locations, and (e) combinations thereof.
To increase the available flow area through a poppet valve assembly, a plurality of openings within a single poppet valve assembly may be utilized. The present invention is better understood with reference to the figures.
The design of the dynamic poppet valve in the present invention embodied in
A further benefit is reduction in the stagnant area below the valve head. In conventional poppet valve assemblies, an unavoidable disadvantage of increasing the valve diameter to increase the flow area is that the stagnant area below the valve head increases proportionally to the surface area. In most cases, it is not preferred to have an undesirable stagnant zone below each poppet valve. The undesirable stagnant zone below the dynamic poppet valve head of the present invention is reduced because flow occurs through the plurality of valve ports in the dynamic poppet valve, thus utilizing more of the area of the valve head than in conventional poppet valves. The advantage of having an increased and well-distributed flow pattern is that it directionally reduces the stagnant zone below the valve head.
Further, the poppet valve assembly of the present invention improves upon conventional poppet valves by filling the currently unused valve head surface with usable valve ports. That is, by distributing additional openings within the valve head, the flow area is increased for the valve assembly. Another advantage is a reduction in the number of actuators in that it provides an instant multi-valve port communication without having to independently actuate each separate valve port. The single dynamic poppet valve controls the total valve curtain area, which is comprised of both static and dynamic valve port apertures. This geometric configuration increases the flow area without the need to increase the number of poppet valves. Also, for a given valve body diameter, the flow area available is significantly increased over a conventional poppet valve assembly with the same valve body diameter.
The present invention may be used for process units that require multiple inlets and/or outlets of one or more fluids. As an example, the present invention may be used in a pressure swing adsorption (PSA) system for separating contaminants from a gaseous feed stream. Rapid switching between multiple feed, product, exhaust, and purge streams is required as each adsorbent bed in the PSA system undergoes a cycle to adsorb contaminants and subsequently regenerate the bed. Poppet valve assemblies according to the present invention may be used to coordinate the flows into and out of the adsorbent bed. For example, poppet valve assemblies may be installed on the head of a vessel containing an adsorbent bed, as shown in
The assembled apparatus may be engineered to operate at any given angle. The valve stem angle can be orientated between a vertical (90 degree) and a horizontal (0 degree) axial plane. The valve stem's movement can be actuated through a number of commercially demonstrated and available mechanized drive train systems. The valve stem preferably has a key or locking collar (not shown), which reliably ensures that stem rotation does not occur during the operating cycle.
The valve ports of the present invention may open or close at the same instant or may be designed to fully open or fully close with a delay feature. The valve port seat of the delayed port can have a longer taper angle, causing the port to fully open after the shorter taper has reached its limit. This feature is illustrated in
Further, the assembled apparatus of the present invention having a valve actuator system can be strategically positioned onto a: pressure vessel, process conduit, power producing engine or any mechanical embodiment that requires a compact, high throughput poppet valve service.
In certain embodiments, the poppet valve assemblies may include various components. The poppet valve assembly may comprise a dynamic stem element, or rod, extending to a location outside the poppet valve head. The dynamic stem may be surrounded by a bushing and/or valve guide, which provides support of the valve while allowing movement along a linear path to guide and, in some cases, seals the valve during operation. In some embodiments, a valve stem seal is associated with the valve stem, e.g., rod packing as is typically utilized in reciprocating compressors. For present purposes, in some instances a valve stem seal can be the same as a bushing or valve guide, although a separate valve seal is less susceptible to wear in use.
In addition, the dynamic poppet valve may comprise a plurality of ports within the poppet valve head or disk element connected to a dynamic valve stem. The poppet valve head has a surface facing the adsorbent bed and another surface that is attached to the stem, which are on opposite sides of the poppet valve head. The surface of the poppet valve head can be substantially round, for seating in a substantially round opening or port. For present purposes, the term “substantially round” can include ellipsoidal shapes, such as those found in certain high performance engines. This surface can also be flat or profiled. In certain embodiments wherein the poppet valve head may have a surface that is profiled inward or outwardly relative to the opening on which it operates. Also, as noted above, the poppet valve may include a variety of other geometries, as well. In addition, the poppet valve assembly may include a valve body along with static valves. These static vales may be cast as part of the valve body or may be coupled to the valve body by welding, screws, bolts or other suitable means. Further, the static valves may include a stem and static valve head attached to the stem. While the static valve head may be substantially flat in certain configurations, it may include various angles of tapering from the edges of the valve to a location along the stem. The dynamic poppet valve may also include this type of configuration for certain embodiments, as well. This type of configuration may be beneficial to disperse the pressure applied directly on the static valve head.
The present invention can better be understood with reference to the following example that is presented for illustrative purposes and not to be taken as limiting the invention.
In this example, poppet valve assemblies of the present invention illustrated for the swing adsorption vessel as shown in
Table 1 below summarizes these results, indicating the reduction in number of valves and the reduction in overall valve surface area.
Certain benefits of the present invention are described in this example. The increased flow area provided through a single valve body is increased significantly compared to a conventional poppet valve. As a result, fewer poppet valve assemblies are required, providing the following benefits: decreasing the number of penetrations through the vessel head, decreasing the number of actuators, decreasing the number of interconnections with associated conduits, decreasing the number of attachment points to the vessel head, and decreasing the height of associated actuators extending above or below the process vessel. Structural integrity of the process vessel head is also improved relative to conventional poppet valves because the distance between adjacent valve penetrations is increased. Furthermore, the valve surface drag is decreased significantly as a result of the reduction in the total surface area of each poppet valve head. As discussed previously, the reduced valve surface drag results in reduced load on the poppet valve stem and actuator, improving reliability and design considerations.
The provided poppet valves described above are useful in swing adsorption processes, apparatus, and systems for development and production of hydrocarbons, such as gas and oil processing. Particularly, the provided processes, apparatus, and systems are useful for the rapid, large scale, efficient separation of a variety of target gases from gas mixtures. Non-limiting swing adsorption processes include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes such as pressure/temperature swing adsorption.
PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure, i.e., the higher the gas pressure, the greater the amount readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed.
PSA processes may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent to different extents. If a gas mixture, such as natural gas, is passed under pressure through a vessel containing a polymeric or microporous adsorbent that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent, and the gas exiting the vessel is enriched in methane. When the adsorbent reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. The adsorbent is then typically purged and repressurized and ready for another adsorption cycle.
TSA processes rely on the phenomenon that gases at lower temperatures are more readily adsorbed within the pore structure or free volume of an adsorbent material compared to higher temperatures, i.e., when the temperature of the adsorbent is increased, the adsorbed gas is released, or desorbed. By cyclically swinging the temperature of an adsorbent bed, TSA processes can be used to separate gases in a mixture when used with an adsorbent that is selective for one or more of the components of a gas mixture.
Swing adsorption processes typically take place in a vessel containing one or more adsorbent beds. In multi-bed systems each bed may undergo a different step in an adsorption cycle, such as an adsorption step, one or more depressurization/desorption steps, one or more blow-down steps, and one or more re-pressurization steps. The flow of fluid to and from each bed is typically controlled by either a poppet valve and/or a rotary valve assembly.
The provided processes, apparatus, and systems may be used to prepare natural gas products by removing contaminants and heavy hydrocarbons, i.e., hydrocarbons having at least two carbon atoms. The provided processes, apparatus, and systems are useful for preparing gaseous feed streams for use in utilities, including separation applications such as dew point control, sweetening/detoxification, corrosion protection/control, dehydration, heating value, conditioning, and purification. Examples of utilities that utilize one or more separation applications include generation of fuel gas, seal gas, non-potable water, blanket gas, instrument and control gas, refrigerant, inert gas, and hydrocarbon recovery. Exemplary “not to exceed” product (or “target”) gas specifications include: (a) 2 vol. % CO2, 4 ppm H2S, (b) 50 ppm CO2, 4 ppm H2S, or (c) 1.5 vol. % CO2, 2 ppm H2S.
The provided processes, apparatus, and systems may be used to remove acid gas from hydrocarbon streams. Acid gas removal technology becomes increasingly important as remaining gas reserves exhibit higher concentrations of acid gas, i.e., sour gas resources. Hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 vol. % acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves include concentrations of at least: (a) 1 vol. % H2S, 5 vol. % CO2, (b) 1 vol. % H2S, 15 vol. % CO2, (c) 1 vol. % H2S, 60 vol. % CO2, (d) 15 vol. % H2S, 15 vol. % CO2, and (e) 15 vol. % H2S, 30 vol. % CO2.
In each of these processes, one or more poppet valve assemblies may be utilized together, with one or more poppet valves providing the flow path for a first fluid, while other poppet valve assemblies provide a flow path for a second fluid. That is, different groups of poppet valve assemblies may be utilized for different streams. For example, a swing adsorbent vessel may include a first group of poppet valve assemblies and a second group of poppet valve assemblies. The first group of poppet valve assemblies may include one or more poppet feed valve assemblies at a first end of a swing adsorption vessel, one or more product poppet valve assemblies at a second end of the swing adsorption vessel, and a contractor disposed between the first and second ends. The second group of poppet valve assemblies may include one or more sweep poppet valve assemblies at a first end of a swing adsorption vessel, one or more waste poppet valve assemblies at a second end of the swing adsorption vessel. In this configuration, the different poppet valves may be utilized to manage the flow of fluids through various steps of a process. These various streams may be introduced using additional sets of the conduits, manifold and the like.
An exemplary hydrocarbon treating apparatus is shown in
Another feature of the apparatus shown in
One possible alternative embodiment is shown in
An individual adsorbent bed assembly is shown in
Each adsorbent bed assembly can be first fitted with the requisite reciprocating valves and then placed in the bed support structure 1801-1807 mounted on the skid 1810, which is shown in
The piping, valves, and headers for a complete skid as connected are shown in
One or more of the following Concepts A-O may be utilized with the processes, apparatus, and systems, provided above, to prepare a desirable product stream while maintaining high hydrocarbon recovery:
The processes, apparatus, and systems provided herein are useful in large gas treating facilities, such as facilities that process more than five million standard cubic feet per day (MSCFD) of natural gas, or more than 15 MSCFD of natural gas, or more than 25 MSCFD of natural gas, or more than 50 MSCFD of natural gas, or more than 100 MSCFD of natural gas, or more than 500 MSCFD of natural gas, or more than one billion standard cubic feet per day (BSCFD) of natural gas, or more than two BSCFD of natural gas.
Compared to conventional technology, the provided processes, apparatus, and systems require lower capital investment, lower operating cost, and less physical space, thereby enabling implementation offshore and in remote locations, such as Arctic environments. The provided processes, apparatus, and systems provide the foregoing benefits while providing high hydrocarbon recovery as compared to conventional technology.
Additional embodiments A-S are provided as follows:
a single dynamic poppet valve having a plurality of openings, wherein the plurality of static valves align and mate with the plurality of openings, the single dynamic poppet valve reciprocates to selectively open and close the plurality of static valves.
Additional embodiments 1-16 are provided in the following paragraphs:
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 13/996,429, filed Jun. 20, 2013, which is the National Stage entry under 35 U.S.C. 371 of PCT/US2012/026799 that published as Intl. Patent Application No. 2012/118757 and was filed on 27 Feb. 2012, which claims the benefit of U.S. Patent Application No. 61/448,120 entitled APPARATUS AND SYSTEMS HAVING A RECIPROCATING VALVE HEAD ASSEMBLY AND SWING ADSORPTION PROCESSES RELATED THERETO, filed on Mar. 1, 2011, each of which is incorporated by reference herein, in its entirety, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1868138 | Fisk | Jul 1932 | A |
2600435 | Shapiro | Jun 1952 | A |
2614854 | Watson | Oct 1952 | A |
3124152 | Payne | Mar 1964 | A |
3142547 | Marsh et al. | Jul 1964 | A |
3219063 | Schumann | Nov 1965 | A |
3485441 | Eaton, Jr. | Dec 1969 | A |
3508758 | Strub | Apr 1970 | A |
3602247 | Bunn et al. | Aug 1971 | A |
3788036 | Lee et al. | Jan 1974 | A |
3967464 | Cormier et al. | Jul 1976 | A |
4207084 | Gardner | Jun 1980 | A |
4261815 | Kelland | Apr 1981 | A |
4324565 | Benkmann | Apr 1982 | A |
4325565 | Winchell | Apr 1982 | A |
4329162 | Pitcher, Jr. | May 1982 | A |
4340398 | Doshi et al. | Jul 1982 | A |
4374655 | Grodzka et al. | Feb 1983 | A |
4711968 | Oswald et al. | Dec 1987 | A |
4770676 | Sircar et al. | Sep 1988 | A |
4784672 | Sircar | Nov 1988 | A |
4790272 | Woolenweber | Dec 1988 | A |
4816039 | Krishnamurthy et al. | Mar 1989 | A |
4846211 | Scheffler et al. | Jul 1989 | A |
4872481 | Shaw | Oct 1989 | A |
4877429 | Hunter | Oct 1989 | A |
4977745 | Heichberger | Dec 1990 | A |
5110328 | Yokota et al. | May 1992 | A |
5125934 | Krishnamurthy et al. | Jun 1992 | A |
5169006 | Stelzer | Dec 1992 | A |
5174796 | Davis et al. | Dec 1992 | A |
5224350 | Mehra | Jul 1993 | A |
5234472 | Krishnamurthy et al. | Aug 1993 | A |
5286282 | Goodell et al. | Feb 1994 | A |
5292990 | Kantner et al. | Mar 1994 | A |
5306331 | Auvil et al. | Apr 1994 | A |
5331998 | Sperry | Jul 1994 | A |
5370728 | LaSala et al. | Dec 1994 | A |
5565018 | Baksh et al. | Oct 1996 | A |
5662727 | Castle et al. | Sep 1997 | A |
5700310 | Bowman et al. | Dec 1997 | A |
5750026 | Gadkaree et al. | May 1998 | A |
5792239 | Reinhold, III et al. | Aug 1998 | A |
5807423 | Lemcoff et al. | Sep 1998 | A |
5811616 | Holub et al. | Sep 1998 | A |
5827358 | Kulish et al. | Oct 1998 | A |
5833938 | Blazejewski | Nov 1998 | A |
5837205 | Bayer et al. | Nov 1998 | A |
5871349 | Johnson et al. | Feb 1999 | A |
5906673 | Reinhold, III et al. | May 1999 | A |
5924307 | Nenov | Jul 1999 | A |
5935444 | Johnson et al. | Aug 1999 | A |
5968234 | Midgett, II et al. | Oct 1999 | A |
5976221 | Bowman et al. | Nov 1999 | A |
5997617 | Czabala et al. | Dec 1999 | A |
6007606 | Baksh et al. | Dec 1999 | A |
6011192 | Baker et al. | Jan 2000 | A |
6039927 | Greco | Mar 2000 | A |
6053966 | Moreau et al. | Apr 2000 | A |
6063161 | Keefer et al. | May 2000 | A |
6086828 | Thompson | Jul 2000 | A |
6099621 | Ho | Aug 2000 | A |
6129139 | De Clerc | Oct 2000 | A |
6129780 | Millet et al. | Oct 2000 | A |
6136222 | Friesen et al. | Oct 2000 | A |
6147126 | DeGeorge et al. | Nov 2000 | A |
6171371 | Derive et al. | Jan 2001 | B1 |
6176897 | Keefer | Jan 2001 | B1 |
6179900 | Behling et al. | Jan 2001 | B1 |
6210466 | Whysall et al. | Apr 2001 | B1 |
6213758 | Tesar et al. | Apr 2001 | B1 |
6231302 | Bonardi | May 2001 | B1 |
6245127 | Kane et al. | Jun 2001 | B1 |
6261092 | Cash | Jul 2001 | B1 |
6284021 | Lu et al. | Sep 2001 | B1 |
6311719 | Hill et al. | Nov 2001 | B1 |
6321462 | Seidl et al. | Nov 2001 | B1 |
6336278 | Crawford et al. | Jan 2002 | B1 |
6345954 | Al-Himyary et al. | Feb 2002 | B1 |
6398853 | Keefer et al. | Jun 2002 | B1 |
6406523 | Connor et al. | Jun 2002 | B1 |
6436171 | Wang et al. | Aug 2002 | B1 |
6444012 | Dolan et al. | Sep 2002 | B1 |
6444014 | Mullhaupt et al. | Sep 2002 | B1 |
6444523 | Fan et al. | Sep 2002 | B1 |
6451095 | Keefer et al. | Sep 2002 | B1 |
6457485 | Hill et al. | Oct 2002 | B2 |
6471939 | Boix et al. | Oct 2002 | B1 |
6488747 | Keefer | Dec 2002 | B1 |
6497750 | Butwell et al. | Dec 2002 | B2 |
6500241 | Reddy | Dec 2002 | B2 |
6500404 | Camblor Fernandez et al. | Dec 2002 | B1 |
6506351 | Jain et al. | Jan 2003 | B1 |
6517609 | Monereau et al. | Feb 2003 | B1 |
6531516 | Davis et al. | Mar 2003 | B2 |
6533846 | Keefer et al. | Mar 2003 | B1 |
6565627 | Golden et al. | May 2003 | B1 |
6565635 | Keefer et al. | May 2003 | B2 |
6565825 | Ohji et al. | May 2003 | B2 |
6572678 | Wijmans et al. | Jun 2003 | B1 |
6576198 | Cash | Jun 2003 | B2 |
6579341 | Baker et al. | Jun 2003 | B2 |
6593541 | Herren | Jul 2003 | B1 |
6595233 | Pulli | Jul 2003 | B2 |
6605136 | Graham et al. | Aug 2003 | B1 |
6607584 | Moreau et al. | Aug 2003 | B2 |
6630012 | Wegeng et al. | Oct 2003 | B2 |
6641645 | Lee et al. | Nov 2003 | B1 |
6651645 | Lee et al. | Nov 2003 | B1 |
6660065 | Byrd et al. | Dec 2003 | B2 |
6669472 | Cash et al. | Dec 2003 | B1 |
6712087 | Hill et al. | Mar 2004 | B2 |
6736882 | Kanazirev et al. | May 2004 | B2 |
6746515 | Wegeng et al. | Jun 2004 | B2 |
6749815 | Cash | Jun 2004 | B2 |
6752852 | Jacksier et al. | Jun 2004 | B1 |
6783111 | Cash et al. | Aug 2004 | B2 |
6802889 | Graham et al. | Oct 2004 | B2 |
6835354 | Woods et al. | Dec 2004 | B2 |
6889710 | Wagner | May 2005 | B2 |
6892750 | Cash | May 2005 | B2 |
6899121 | Cash | May 2005 | B2 |
6916358 | Nakamura et al. | Jul 2005 | B2 |
6918953 | Lomax, Jr. et al. | Jul 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
6978977 | Cash et al. | Dec 2005 | B2 |
7025801 | Moereau | Apr 2006 | B2 |
7094275 | Keefer et al. | Aug 2006 | B2 |
7117669 | Kaboord et al. | Oct 2006 | B2 |
7144016 | Gozdawa | Dec 2006 | B2 |
7150446 | Cash et al. | Dec 2006 | B1 |
7160356 | Koros et al. | Jan 2007 | B2 |
7160367 | Babicki et al. | Jan 2007 | B2 |
7166149 | Dunne et al. | Jan 2007 | B2 |
7189280 | Alizadeh-Khiavi et al. | Mar 2007 | B2 |
7250074 | Tonkovich et al. | Jul 2007 | B2 |
7276107 | Baksh et al. | Oct 2007 | B2 |
7297279 | Johnson et al. | Nov 2007 | B2 |
7311763 | Neary | Dec 2007 | B2 |
RE40006 | Keefer et al. | Jan 2008 | E |
7314503 | Landrum et al. | Jan 2008 | B2 |
7325562 | Cash | Feb 2008 | B2 |
7390350 | Weist, Jr. et al. | Jun 2008 | B2 |
7399346 | van der Maas | Jul 2008 | B2 |
7404846 | Golden et al. | Jul 2008 | B2 |
7449049 | Thomas et al. | Nov 2008 | B2 |
7527670 | Ackley et al. | May 2009 | B2 |
7578864 | Watanabe et al. | Aug 2009 | B2 |
7604682 | Seaton | Oct 2009 | B2 |
7608136 | van der Maas | Oct 2009 | B2 |
7637989 | Bong | Dec 2009 | B2 |
7641716 | Lomax, Jr. et al. | Jan 2010 | B2 |
7645324 | Rode et al. | Jan 2010 | B2 |
7651549 | Whitley | Jan 2010 | B2 |
7674319 | Lomax, Jr. et al. | Mar 2010 | B2 |
7687044 | Keefer et al. | Mar 2010 | B2 |
7713333 | Rege et al. | May 2010 | B2 |
7722700 | Sprinkle | May 2010 | B2 |
7731782 | Kelley et al. | Jun 2010 | B2 |
7740687 | Reinhold, III | Jun 2010 | B2 |
7744676 | Leitmayr et al. | Jun 2010 | B2 |
7763098 | Alizadeh-Khiavi et al. | Jul 2010 | B2 |
7766025 | Greco | Aug 2010 | B2 |
7814934 | Thelen | Oct 2010 | B2 |
7819948 | Wagner | Oct 2010 | B2 |
7846401 | Hershkowitz et al. | Dec 2010 | B2 |
7858169 | Yamashita | Dec 2010 | B2 |
7938886 | Hershkowitz et al. | May 2011 | B2 |
7947120 | Deckman, II et al. | May 2011 | B2 |
7959720 | Deckman et al. | Jun 2011 | B2 |
8034164 | Lomax, Jr. et al. | Oct 2011 | B2 |
8071063 | Reyes et al. | Dec 2011 | B2 |
8142745 | Reyes et al. | Mar 2012 | B2 |
8142746 | Reyes et al. | Mar 2012 | B2 |
8192709 | Reyes et al. | Jun 2012 | B2 |
8216343 | Ackley et al. | Jul 2012 | B2 |
8262783 | Stoner et al. | Sep 2012 | B2 |
8268043 | Celik et al. | Sep 2012 | B2 |
8272401 | McLean | Sep 2012 | B2 |
8319090 | Kitamura | Nov 2012 | B2 |
8361200 | Sayari et al. | Jan 2013 | B2 |
8444750 | Deckman et al. | May 2013 | B2 |
8485801 | Mohamed | Jul 2013 | B2 |
8512569 | Eaton et al. | Aug 2013 | B2 |
8524159 | Hershkowitz et al. | Sep 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
8529663 | Reyes et al. | Sep 2013 | B2 |
8529664 | Deckman et al. | Sep 2013 | B2 |
8529665 | Manning et al. | Sep 2013 | B2 |
8545602 | Chance et al. | Oct 2013 | B2 |
8591627 | Jain | Nov 2013 | B2 |
20010047824 | Hill et al. | Dec 2001 | A1 |
20020124885 | Hill et al. | Sep 2002 | A1 |
20020162452 | Butwell et al. | Nov 2002 | A1 |
20030075485 | Ghijsen | Apr 2003 | A1 |
20030170527 | Finn et al. | Sep 2003 | A1 |
20030205130 | Neu et al. | Nov 2003 | A1 |
20030221725 | Greco | Dec 2003 | A1 |
20030223856 | Yuri et al. | Dec 2003 | A1 |
20040016459 | Thompson | Jan 2004 | A1 |
20040099142 | Arquin et al. | May 2004 | A1 |
20040197596 | Connor et al. | Oct 2004 | A1 |
20040232622 | Gozdawa | Nov 2004 | A1 |
20050109419 | Ohmi et al. | May 2005 | A1 |
20050112038 | Stoll et al. | May 2005 | A1 |
20050114032 | Wang | May 2005 | A1 |
20050129952 | Sawada et al. | Jun 2005 | A1 |
20050145111 | Keefer et al. | Jul 2005 | A1 |
20050229782 | Monereau et al. | Oct 2005 | A1 |
20050252378 | Celik et al. | Nov 2005 | A1 |
20060048648 | Gibbs et al. | Mar 2006 | A1 |
20060049102 | Miller et al. | Mar 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060162556 | Ackley et al. | Jul 2006 | A1 |
20060165574 | Sayari | Jul 2006 | A1 |
20060169142 | Rode et al. | Aug 2006 | A1 |
20060236862 | Golden et al. | Oct 2006 | A1 |
20070084241 | Kretchmer et al. | Apr 2007 | A1 |
20070084344 | Moriya et al. | Apr 2007 | A1 |
20070222160 | Roberts-Haritonov et al. | Sep 2007 | A1 |
20070253872 | Keefer et al. | Nov 2007 | A1 |
20070283807 | Whitley | Dec 2007 | A1 |
20080051279 | Klett et al. | Feb 2008 | A1 |
20080072822 | White | Mar 2008 | A1 |
20080282883 | Rarig et al. | Nov 2008 | A1 |
20080282884 | Kelley et al. | Nov 2008 | A1 |
20080282885 | Deckman et al. | Nov 2008 | A1 |
20080282886 | Reyes et al. | Nov 2008 | A1 |
20080282887 | Chance et al. | Nov 2008 | A1 |
20080282892 | Deckman et al. | Nov 2008 | A1 |
20080289497 | Barclay et al. | Nov 2008 | A1 |
20080307966 | Stinson | Dec 2008 | A1 |
20080314246 | Deckman et al. | Dec 2008 | A1 |
20090004073 | Gleize et al. | Jan 2009 | A1 |
20090037550 | Mishra et al. | Feb 2009 | A1 |
20090079870 | Matsui | Mar 2009 | A1 |
20090107332 | Wagner | Apr 2009 | A1 |
20090151559 | Verma et al. | Jun 2009 | A1 |
20090211441 | Reyes et al. | Aug 2009 | A1 |
20090241771 | Manning et al. | Oct 2009 | A1 |
20090308248 | Siskin et al. | Dec 2009 | A1 |
20100059701 | McLean | Mar 2010 | A1 |
20100077920 | Baksh et al. | Apr 2010 | A1 |
20100089241 | Stoner et al. | Apr 2010 | A1 |
20100212493 | Rasmussen et al. | Aug 2010 | A1 |
20100251887 | Jain | Oct 2010 | A1 |
20100252497 | Ellison et al. | Oct 2010 | A1 |
20100263534 | Chuang | Oct 2010 | A1 |
20100282593 | Speirs et al. | Nov 2010 | A1 |
20100288704 | Amsden et al. | Nov 2010 | A1 |
20110031103 | Deckman et al. | Feb 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110217218 | Gupta et al. | Sep 2011 | A1 |
20110277629 | Manning et al. | Nov 2011 | A1 |
20110308524 | Brey et al. | Dec 2011 | A1 |
20120024152 | Yamawaki et al. | Feb 2012 | A1 |
20120026797 | Kim | Feb 2012 | A1 |
20120026799 | Lee | Feb 2012 | A1 |
20120026801 | Lee | Feb 2012 | A1 |
20120026802 | Confalonieri | Feb 2012 | A1 |
20120026803 | Lee | Feb 2012 | A1 |
20120026804 | Nagashima et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120067216 | Corma-Canos et al. | Mar 2012 | A1 |
20120152115 | Gerds et al. | Jun 2012 | A1 |
20120222551 | Deckman | Sep 2012 | A1 |
20120222552 | Ravikovitch et al. | Sep 2012 | A1 |
20120222553 | Kamakoti et al. | Sep 2012 | A1 |
20120222554 | Leta et al. | Sep 2012 | A1 |
20120222555 | Gupta et al. | Sep 2012 | A1 |
20120255377 | Kamakoti et al. | Oct 2012 | A1 |
20120308456 | Leta et al. | Dec 2012 | A1 |
20120312163 | Leta et al. | Dec 2012 | A1 |
20130061755 | Frederick et al. | Mar 2013 | A1 |
20130146021 | Hofbauer | Jun 2013 | A1 |
20130170887 | Gillum | Jul 2013 | A1 |
20130225898 | Sundaram et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2 234 924 | Apr 1998 | CA |
2 224 471 | Jun 1998 | CA |
2 228 206 | Jul 1998 | CA |
2 297 590 | Aug 2000 | CA |
2 297 591 | Aug 2000 | CA |
2 237 103 | Dec 2001 | CA |
2357356 | Mar 2002 | CA |
2423178 | Apr 2013 | CA |
0257493 | Feb 1988 | EP |
0426937 | May 1991 | EP |
1 004 341 | May 2000 | EP |
1004341 | May 2000 | EP |
1 018 359 | Jul 2000 | EP |
1413348 | Aug 2002 | EP |
1577561 | Sep 2005 | EP |
1 203 610 | Dec 2005 | EP |
1798197 | Jun 2007 | EP |
1045728 | Nov 2009 | EP |
58114715 | Jul 1983 | JP |
59-232174 | Dec 1984 | JP |
60-189318 | Dec 1985 | JP |
02-253818 | Oct 1990 | JP |
11280921 | Oct 1999 | JP |
2000024445 | Aug 2001 | JP |
2002348651 | Dec 2002 | JP |
2006036849 | Feb 2006 | JP |
2006016470 | Jun 2006 | JP |
2008272534 | Nov 2008 | JP |
WO 9943418 | Sep 1999 | WO |
WO0035560 | Jun 2000 | WO |
WO03-031328 | Apr 2003 | WO |
WO2005032694 | Apr 2005 | WO |
WO2005070518 | Aug 2005 | WO |
WO2006017940 | Feb 2006 | WO |
WO2006074343 | Jul 2006 | WO |
WO 2007111738 | Oct 2007 | WO |
WO2010-081809 | Jul 2010 | WO |
WO 2010123598 | Oct 2010 | WO |
WO 2010130787 | Nov 2010 | WO |
WO 2011139894 | Nov 2011 | WO |
WO2012118755 | Sep 2012 | WO |
WO2012118757 | Sep 2012 | WO |
WO2012118758 | Sep 2012 | WO |
WO2012118759 | Sep 2012 | WO |
WO2012118760 | Sep 2012 | WO |
WO2012161826 | Nov 2012 | WO |
WO2012161828 | Nov 2012 | WO |
WO2013022529 | Feb 2013 | WO |
Entry |
---|
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res., v. 34, pp. 255-262. |
U.S. Appl. No. 13/602,750, filed Sep. 4, 2012, Sundaram, N. et al. |
Conviser, (1964) “Removal of CO2 from Natural Gas With Molecular Sieves,” Publication, pp. 1F-12F. |
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas. |
Farooq, et al. (1990) “Continuous Contercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314. |
FlowServe “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1. |
Herrmann, et al. (2008) “Curvelet-Based Seismic Data Processing: A Multiscale and Nonlinear Approach,” Geophysics, v73.1, pp. A1-A5. |
Hopper, et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95. |
Reyes, et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622. |
Sahni, et al. (2005) “Multiresolution Wavelet Analysis for Improved Reservoir Description,” SPE-87820, Soc. of Petroleum Eng.—Reservoir Evaluation & Engineering, pp. 53-69 (XP-002550569). |
Stahley, (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” pp. 1-15. |
Suzuki, (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73. |
(2008), “Rapid Cycle Pressure Swing Adsorption (RCPSA),” QuestAir, 4 pgs. |
(2008), “Rapid Cycle Pressure Swing Adsorption,” ExxonMobil Research and Engineering, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20150276066 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61448120 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13996429 | US | |
Child | 14691291 | US |