This application is related to U.S. Patent Application No. 61/448,117 entitled APPARATUS AND SYSTEMS HAVING AN ENCASED ADSORBENT CONTACTOR AND SWING ADSORPTION PROCESSES RELATED THERETO, filed Mar. 1, 2011; U.S. Patent Application No. 61/448,120 entitled APPARATUS AND SYSTEMS HAVING A RECIPROCATING VALVE HEAD ASSEMBLY AND SWING ADSORPTION PROCESSES RELATED THERETO, filed Mar. 1, 2011; U.S. Patent Application No. 61/448,121 entitled METHODS OF REMOVING CONTAMINANTS FROM A HYDROCARBON STREAM BY SWING ADSORPTION AND RELATED APPARATUS AND SYSTEMS, filed Mar. 1, 2011; U.S. Patent Application No. 61/448,125 entitled APPARATUS AND SYSTEMS HAVING COMPACT CONFIGURATION MULTIPLE SWING ADSORPTION BEDS AND METHODS RELATED THERETO, filed Mar. 1, 2011, and U.S. Patent Application No. 61/594,824 entitled METHODS OF REMOVING CONTAMINANTS FROM A HYDROCARBON STREAM BY SWING ADSORPTION AND RELATED APPARATUS AND SYSTEMS, filed Feb. 3, 2012, each of which is herein incorporated by reference in its entirety.
The present application provides apparatus and systems having a rotary valve assembly and swing adsorption separation techniques related thereto.
Gas separation is important in many industries and can typically be accomplished by flowing a mixture of gases over an adsorbent that preferentially adsorbs one or more gas components while not adsorbing one or more other gas components. The non-adsorbed components are then recovered as a separate product.
An important type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA) or pressure swing adsorption (PSA). PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an adsorbent material when the gas is under pressure, i.e., the higher the gas pressure, the greater the amount readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed.
PSA processes may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent to different extents. If a gas mixture, such as natural gas, is passed under pressure through a vessel containing a polymeric or microporous adsorbent that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent, and the gas exiting the vessel is enriched in methane. When the adsorbent reaches the end of its capacity to adsorb carbon dioxide, it is regenerated by reducing the pressure, thereby releasing the adsorbed carbon dioxide. The adsorbent is then typically purged and repressurized and ready for another adsorption cycle.
TSA processes rely on the phenomenon that gases at lower temperatures are more readily adsorbed within the pore structure or free volume of an adsorbent material compared to higher temperatures, i.e., when the temperature of the adsorbent is increased, the adsorbed gas is released, or desorbed. By cyclically swinging the temperature of an adsorbent bed, TSA processes can be used to separate gases in a mixture when used with an adsorbent that is selective for one or more of the components of a gas mixture.
There remains a need in the industry for apparatus, methods, and systems are more efficient and that can be constructed and employed on a smaller footprint than conventional equipment. Compact designs are critical when the swing adsorption apparatus is to be deployed in remote locations, such as off-shore production platforms, arctic environments, or desert environments.
Provided are apparatus and systems having a rotary valve assembly and swing adsorption separation techniques related thereto. The rotary valve assembly includes a rotor/stator system comprised of multiple circumferential apertures deployed at a plurality of radial locations of a rotor/stator such that the result allows for synchronized fluid communication between regions of an adsorbent bed separated by pairs of the rotor/stator, the apertures are of effective size and effective shape to allow balancing of fluid flow while organizing the fluid flow in a predetermined cycle, and are governed by the relative rotational speed of the rotor/stator.
Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.
Other applications in the technical area include U.S. Patent Application Nos. 61/447,806, 61/447,812, 61/447,824, 61/447,848, 61/447,869, 61/447,835, and 61/447,877, each of which is herein incorporated by reference in its entirety.
The present invention relates to rotary gas separation devices, particularly to rotary pressure swing adsorption devices. Rotary pressure swing devices can include, for example, a rotor with a plurality of adsorbent beds, a stator with a plurality of conduits, and a rotary valve comprising a seal assembly positioned between the rotor and the stator.
The rotary valve apparatus of the present invention can be used for any type of swing adsorption process. Non-limiting swing adsorption processes for which the present invention can be used include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these processes such as pressure/temperature swing adsorption.
Conventional swing adsorption processes typically take place in a cylindrical vessel containing a plurality of adsorbent beds, each undergoing a different step in an adsorption cycle that usually includes an adsorption step, one or more depressurization/desorption steps, one or more blow-down steps, and one or more repressurization steps. The flow of fluid to and from each bed is controlled by use of either a poppet valve or a rotary valve assembly.
Rotary valves are well known in the art and provide an efficient way of consolidating the multiple valves required for repetitive chemical processing cycles in a single vessel. Rotary valves can be particularly useful in chemical processing operations involving pressure swing apparatuses. In general, rotary valves are comprised of a stator and a rotor that is rotational about its axis relative to the stator. Both stator and rotor contain suitable sized location ports that function as multiple valves as a result of the rotation of the rotor. Via this rotation, the ports in the rotor come into and out of alignment with the ports of the stator, thus opening and closing the ports to fluid flow, and thereby serving as valves. Rotors and stators used in conventional rotary valve technology relating to swing adsorption equipment typically comprise a plurality of circular ports located around the port pitch circle of the rotor and stator. Further, multiple adsorbent beds in a single vessel are associated by a single rotor/stator pair and the rotor and stator are operated at different speeds of rotation. Such conventional systems are constrained because each port is dedicated to a separate adsorbent bed. A consequence of this is that adsorbent beds have to be rotated which further limits the flow rates that can be effectively processed because of bed weight/balance considerations. Exemplary rotary valve assemblies for use in swing adsorption processes can be found in U.S. Pat. Nos. 6,311,719 and 7,819,948 and U.S. Patent Application Nos. 2010/0059701 and 2010/0089241.
Cyclic adsorption processes are generally practiced in one or more adsorption vessels comprised of one or more adsorbent-filled vessels. Two or more vessels are optionally arranged in parallel and operated out of phase such that at least one vessel is in the adsorption mode while at least one other vessel is in the adsorbent regeneration mode. In each cycle of the process a series of sequential steps, such as adsorption, equalization and regeneration, are carried out in each vessel. To enable the various streams to flow to and from the vessels, the feed, product, and exhaust lines are typically provided with a rotary valve assembly that provides valving action to permit gas flow through these lines at the appropriate time in the adsorption cycle. The rotary valve assembly also permits communication between the inlet and outlet assembly/vessels to permit flow between the vessels during pressure equalization steps. Pressure equalization is the passage of gas from a first vessel that has just completed its adsorption step to a vented or evacuated vessel which has completed its adsorbent regeneration step.
Any suitable adsorption bed that can be used for the separation of a target gas form a gaseous mixture can be used with the rotary valve system of present invention. The adsorbent is usually comprised of an adsorbent material supported on a non-adsorbent support, or contactor. Non-limiting examples of the form of the adsorbent bed of the present invention include beds of beaded or pelletized adsorbent particles or an adsorbent material on a structured contactor, such as a parallel channel contactor. Such contactors contain substantially parallel flow channels wherein 20 volume percent, preferably 15 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in pores greater than about 20 angstroms and less than 1 micron (e.g., mesopores and macropores). A flow channel is taken to be that portion of the contactor in which gas flows, if a steady state pressure difference is applied between the point or place at which a feed stream enters the contactor and the point or place at which a product stream leaves the contactor. In a parallel channel contactor, the adsorbent is incorporated into the wall of the flow channel. Non-limiting examples of geometric shapes of parallel channel contactors include various shaped monoliths having a plurality of substantially parallel channels extending from one end of the monolith to the other; a plurality of tubular members, stacked layers of adsorbent sheets with and without spacers between each sheet; multi-layered spiral rolls, spiral wound adsorbent sheets, bundles of hollow fibers, as well as bundles of substantially parallel solid fibers. “Parallel channel contactors” are defined as a subset of adsorbent contactors comprising structured (engineered) adsorbents in which substantially parallel flow channels are incorporated into the adsorbent structure. Parallel flow channels are described in detail in United States Patent Publication Nos. 2008/0282892 and 2008/0282886, both of which herein incorporated by reference in their entirety. These flow channels may be formed by a variety of means and in addition to the adsorbent material, the adsorbent structure may contain items such as, but not limited to, support materials, heat sink materials, void reduction components, and heating/cooling passages.
Non-limiting examples of adsorbent materials that can be used with the rotary valve assembly of the present invention include high surface area (>10 m2/gm and preferably >75 m2/gm) alumina, microporous zeolites (preferably zeolites with particle sizes <1 mm), other microporous materials, mesoporous materials and ordered mesoporous materials. Nonlimiting examples of these materials include carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, ALPO materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), SAPO materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), MOF materials microporous and mesoporous materials comprised of a metal organic framework) and ZIF materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary and other non protogenic basic groups such as amidines, guanidines and biguanides.
The present invention can be better understood with reference to the figures herein.
As can be seen in
Another benefit of the present invention is that each rotor (feed or product) can be operated at a fixed or constant speed. However, the feed rotor need not have the same speed as the corresponding product rotor, which may operate independently or each other. Such fixed rotational speeds allow better control and mechanical set-up at faster rpms, particularly for rapid cycle swing adsorption processes. Such fixed rotational speeds also permit the use of just one motor to drive both rotors. In assemblies that are discussed below, multiple adsorbent beds can be used. In these embodiments, the rotors preferably operate at fixed speeds. Operating at fixed speed means that a single motor driver (e.g., motive force) can be used for more than one rotor in the overall vessel holding all adsorbent beds (and logically for all rotors). This greatly reduces the overall equipment footprint, that is significant for many applications such as offshore or subsea/down-hole natural gas processing and CO2 removal etc. Rotor speeds and ports/openings on each rotor/stator combination, which are of different sizes and shapes, can be synchronized to deliver any chosen cycle.
In a preferred embodiment, the swing adsorption process using the stator/rotor assembly of the present invention is rapidly cycled, in which case the processes are referred to as rapid cycle pressure swing adsorption (RCPSA), rapid cycle temperature swing adsorption (RCTSA), and rapid cycle partial pressure swing or displacement purge adsorption (RCPPSA). For RCPSA the total cycle times are typically less than 90 seconds, preferably less than 30 seconds, more preferably less than 15 seconds, and even more preferably less than 10 seconds. For RCTSA the total cycle times are typically less than 600 seconds, preferably less than 200 seconds, more preferably less than 100 seconds, and even more preferably less than 60 seconds. Conventional PSA cycle times are typically in excess of 2 to 4 minutes.
The assembly in accordance with
Further, it should be noted that the various stators and rotors may be configured to rotate independently of each other. That is, the master feed rotor and/or master feed stator may rotate at a different rate compared to the master product rotor and/or master product stator. Similarly, for each of the embodiments above, the respective feed rotor and/or feed stator may rotate at a different rate compared to the respective product rotor and/or product stator. The rotation of the rotors and stators may even vary from one bed to another within the same system.
Moreover, the time scale for the different processes may vary. For example, the time scale of the high frequency process may be of the order of seconds, e.g., from 1 to 20 or 1 to 10 seconds, while the time scale of the low frequency process may be of the order of months, e.g., 1 or 2 or 3 months. In this manner, the process may be managed more efficiently.
In one or more embodiments, the rotary valve assemble may be utilized to process hydrocarbons. The method may include passing a feed stream through one or more adsorbent bed for various steps in a cycle. These steps may include an adsorption step along with regeneration steps (e.g., one or more depressurization steps, purge steps and/or re-pressurization steps), which are performed in each vessel. To enable the various streams to flow to and from the adsorbent beds within the system, the feed and product rotor and stators may be configured with the master rotors and stators to manage the flow of streams in a specific sequence within the cycle. As an example, the cycle may include a Feed/Production step followed by two successive downward depression Equalization steps, a purge step, three successive blow-down or depressurization steps, two upward re-pressurization equalization steps followed by re-pressurization with feed. The resulting product may include methane and/or other hydrocarbons.
Adsorptive kinetic separation processes, apparatus, and systems, as described above, are useful for development and production of hydrocarbons, such as gas and oil processing. Particularly, the provided processes, apparatus, and systems are useful for the rapid, large scale, efficient separation of a variety of target gases from gas mixtures.
The provided processes, apparatus, and systems may be used to prepare natural gas products by removing contaminants and heavy hydrocarbons, i.e., hydrocarbons having at least two carbon atoms. The provided processes, apparatus, and systems are useful for preparing gaseous feed streams for use in utilities, including separation applications such as dew point control, sweetening/detoxification, corrosion protection/control, dehydration, heating value, conditioning, and purification. Examples of utilities that utilize one or more separation applications include generation of fuel gas, seal gas, non-potable water, blanket gas, instrument and control gas, refrigerant, inert gas, and hydrocarbon recovery. Exemplary “not to exceed” product (or “target”) gas specifications include: (a) 2 volume percent (vol. %) CO2, 4 parts per million (ppm) H2S, (b) 50 ppm CO2, 4 ppm H2S, or (c) 1.5 vol. % CO2, 2 ppm H2S.
The provided processes, apparatus, and systems may be used to remove acid gas from hydrocarbon streams. Acid gas removal technology becomes increasingly important as remaining gas reserves exhibit higher concentrations of acid gas, i.e., sour gas resources. Hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 vol. % acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves include concentrations of at least: (a) 1 vol. % H2S, 5 vol. % CO2, (b) 1 vol. % H2S, 15 vol. % CO2, (c) 1 vol. % H2S, 60 vol. % CO2, (d) 15 vol. % H2S, 15 vol. % CO2, and (e) 15 vol. % H2S, 30 vol. % CO2.
An exemplary hydrocarbon treating apparatus is shown in
Another feature of the apparatus shown in
One possible alternative embodiment is shown in
An individual adsorbent bed assembly is shown in
Each adsorbent bed assembly can be first fitted with the requisite reciprocating valves and then placed in the bed support structure 1101-1107 mounted on the skid 1110, which is shown in
The piping, valves, and headers for a complete skid as connected are shown in
One or more of the following Concepts A-O may be utilized with the processes, apparatus, and systems, provided above, to prepare a desirable product stream while maintaining high hydrocarbon recovery:
The processes, apparatus, and systems provided herein are useful in large gas treating facilities, such as facilities that process more than five million standard cubic feet per day (MSCFD) of natural gas, or more than 15 MSCFD of natural gas, or more than 25 MSCFD of natural gas, or more than 50 MSCFD of natural gas, or more than 100 MSCFD of natural gas, or more than 500 MSCFD of natural gas, or more than one billion standard cubic feet per day (BSCFD) of natural gas, or more than two BSCFD of natural gas.
Compared to conventional technology, the provided processes, apparatus, and systems require lower capital investment, lower operating cost, and less physical space, thereby enabling implementation offshore and in remote locations, such as Arctic environments. The provided processes, apparatus, and systems provide the foregoing benefits while providing high hydrocarbon recovery as compared to conventional technology.
Additional embodiments A-Y are provided as follows:
A rotary valve assembly comprising:
(a) a feed stator having at least two annular tracks, each of the annular tracks having at least one opening to permit fluid flow, e.g., gas or liquid, there through;
(b) a feed rotor connected to the feed stator, the feed rotor having at least two annular tracks, each of the annular tracks having an opening to permit fluid flow, e.g., gas or liquid, there through;
(c) a product rotor being in fluid communication with the bed, the product rotor having at least two annular tracks, each of the annular tracks having an opening to permit fluid flow there through; and
(e) a product stator having at least two annular tracks, each of the annular tracks having at least opening to permit fluid flow there through.
A swing adsorption separation rotary valve assembly comprising:
(a) a feed stator having at least two annular tracks, each of the annular tracks having at least one opening to permit fluid flow there through;
(b) a feed rotor connected to the feed stator, the feed rotor having at least two annular tracks, each of the annular tracks having an opening to permit fluid flow there through;
(c) a bed of adsorbent material being in fluid communication with the feed rotor;
(d) a product rotor being in fluid communication with the bed, the product rotor having at least two annular tracks, each of the annular tracks having an opening to permit fluid flow there through; and
(e) a product stator having at least two annular tracks, each of the annular tracks having at least one opening to permit fluid flow there through.
The rotary valve assembly of Embodiment A or B, wherein the openings in the feed rotor are symmetrically offset. As described above, “symmetrically offset” describes the configuration of multiple openings on two or more tracks. That is, the openings in the feed rotor are symmetrically offset for a stream between the at least two annular tracks. As an example, the openings 11 for the feed stream in the feed rotor 14 are symmetrically offset with respect to each other on the respective annular tracks 20, 22 and 24, as shown in
The rotary valve assembly of Embodiment C, wherein the angle of offset in the openings in the feed rotor is determined by dividing the number of tracks into 360 degrees. The resulting number is the number of degrees along a circle between the openings on the different tracks. For example, a three annular track rotor has openings separated by 120 degrees. Similarly, a six annular track rotor has openings separated by 60 degrees. Each opening is disposed on a different annular track and is symmetrically offset by the angle of offset between the different annular tracks on the respective annular tracks. See, e.g.,
The rotary valve assembly of any of Embodiments A-D, wherein the openings in the product rotor are symmetrically offset. Similar to the discussion of Embodiment C, the openings in the product rotor may be symmetrically offset for a stream between the at least two annular tracks. Please note this for other embodiments below.
The rotary valve assembly of Embodiment E, wherein the angle of offset in the openings in the product rotor is determined by dividing the number of tracks into 360 degrees. Similar to the discussion of Embodiment D, each opening is disposed on a different annular track and may be symmetrically offset by the angle of offset between the different annular tracks on the respective annular tracks. Please note this for other embodiments below.
An adsorption bed assembly comprising:
(a) a rotary valve assembly,
(b) a plurality of adsorption beds, each adsorption bed comprising:
(c) a master feed stator for each adsorption bed, the master feed stator having an opening to permit fluid flow there through;
(d) a master feed rotor connected to the master feed stator, the master feed rotor being connected to each adsorption bed, the master feed rotor having an opening to permit fluid flow there through;
(e) a master product rotor connected to each adsorption bed, the master product rotor having an opening to permit fluid flow there through; and
(f) a master product stator connected to the master product rotor, the master product stator having an opening to permit fluid flow there through.
The adsorption bed assembly of Embodiment G, wherein the openings in the feed rotor are symmetrically offset for one or more adsorption beds.
The adsorption bed assembly of Embodiment G, wherein the openings in the feed rotor are symmetrically offset for each adsorption bed.
The adsorption bed assembly of Embodiment H or I, wherein the angle of offset in the openings in the feed rotor is determined by dividing the number of tracks into 360 degrees.
The adsorption bed assembly of any of Embodiments G-J, wherein the openings in the product rotor are symmetrically offset for one or more adsorption beds.
The adsorption bed assembly of Embodiments J, wherein the angle of offset in the openings in the product rotor is determined by dividing the number of tracks into 360 degrees.
A method of processing hydrocarbons comprising the steps of:
(a) providing an apparatus comprising the rotary valve of any of embodiments A-L or the attached figures,
(b) recovering at least 5 million, or at least 15 million, or at least 25 million, or at least 50 million, or at least 100 million, or at least 500 million, or at least 1 billion, or at least 2 billion standard cubic feet per day (SCFD) of natural gas.
The method of Embodiment M, wherein one or more additional steps utilize a kinetic swing adsorption process selected from the group consisting of: pressure swing adsorption (PSA), thermal swing adsorption (TSA), calcination, partial pressure swing or displacement purge adsorption (PPSA), and combinations of these processes.
The method of Embodiment N, wherein one or more swing adsorption process utilizes rapid cycles.
The method of an of Embodiments M-O, wherein a gaseous feed stream is processed to achieve: (a) a desired dew point, (b) a desired level of detoxification, (c) a desired corrosion protection composition, (d) a desired dehydration level, (e) a desired gas heating value, (f) a desired purification level, or (g) combinations thereof.
A rotary valve assembly that permits at least two different swing adsorption processes to be conducted on an adsorbent material contained within the device, such that one swing adsorption has a high frequency of cycling the second swing adsorption has low frequency of cycling, such as for example the assembly shown in
The rotary valve assembly of Embodiment Q, wherein the time scale of the high frequency process is of the order of seconds, e.g., from 1 to 20 or 1 to 10 seconds, and the time scale of the low frequency process is of the order of months, e.g., 1 or 2 or 3 months.
The rotary valve assembly of Embodiment Q or R, wherein the low frequency swing adsorption process employs a thermal swing adsorption cycle.
The rotary valve assembly of any of Embodiments Q-S, wherein the low frequency swing adsorption process is conducted on a number of adsorbent beds that is less than the number of adsorbent beds in the high frequency swing adsorption process.
The rotary valve assembly of any of Embodiments Q-T, wherein the number of adsorbent beds undergoing the low frequency swing process is an even number.
The rotary valve assembly of any of Embodiments Q-U, wherein the feed and product rotors of the high frequency adsorbent beds that are advancing into the low frequency swing are maintained at the same speed, for the duration of the low frequency swing.
The rotary valve assembly of any of Embodiments Q-V, wherein the feed and product rotors of the high frequency beds that are advancing into the low frequency swing are stopped based on a preset control sequence and held in a fixed position for the duration of the low frequency swing.
The rotary valve assembly of any of Embodiments Q-W, wherein a signal based on feed composition analysis is used to determine whether the high frequency swing beds should be advanced into the lower frequency swing, such as to facilitate immediate deep cleaning, such as when the feed composition analysis detects elevated, albeit temporary levels of trace contaminants, overriding any preset logic that may have been previously defined, thus providing flexibility to respond on-the-fly to upsets/slugs of bad actors that may only temporarily occur.
A hydrocarbon treating apparatus comprising:
an apparatus comprising the poppet valve of any of embodiments A-F or as shown in the attached Figures,
wherein the hydrocarbon treating apparatus capacity is at least 5 million, or at least 15 million, or at least 25 million, or at least 50 million, or at least 100 million, or at least 500 million, or at least 1 billion, or at least 2 billion standard cubic feet per day (SCFD) of natural gas.
The rotary valve assembly in accordance with claim 1, wherein the openings in the one or more of the feed stator and product stator are symmetrically offset. Similar to the discussion of Embodiment C, the openings in the product stator or feed stator may be symmetrically offset for a stream between the at least two annular tracks.
The rotary valve assembly in accordance with the Embodiments above, wherein the angle of offset in the openings in the one or more of the feed stator and product stator is determined by dividing the number of tracks into 360 degrees. Similar to the discussion of Embodiment D, each opening is disposed on a different annular track and may be symmetrically offset by the angle of offset between the different annular tracks on the respective annular tracks. Please note this for other embodiments below.
The rotary valve assembly in accordance with any one of the claims 1 to 7, comprising a drive means configured to rotate the one or more of the feed rotor, the product rotor, the feed stator, and the product stator.
The rotary valve assembly in accordance with any one of the claims 1 to 8, wherein two or more of the feed rotor, the product rotor, the feed stator, and the product stator. rotate at a different rates.
The rotary valve assembly in accordance with any one of the claims 1 to 9, further comprising: a master feed stator for each bed unit, the master feed stator having an opening to permit gas to flow there through; a master feed rotor connected to the master feed stator, the master feed rotor being connected to each bed unit, the master feed rotor having an opening to permit gas to flow there through; a master product rotor connected to each bed unit, the master product rotor having an opening to permit gas to flow there through; a master product stator connected to the master product rotor, the master product stator having an opening to permit gas to flow there through.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.
This application is the National Stage entry under 35 U.S.C. 371 of PCT/US2012/026802 that published as Intl. Patent Application Publication No. 2012/118759 and was filed on 27 Feb. 2012, which claims the benefit of U.S. Provisional Application No. 61/448,123, filed on 1 Mar. 2011, each of which is incorporated by reference, in its entirety, for all purposes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/026802 | 2/27/2012 | WO | 00 | 6/27/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/118759 | 9/7/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1868138 | Fisk | Jul 1932 | A |
2706532 | Dan Ringo et al. | Apr 1955 | A |
3124152 | Payne | Mar 1964 | A |
3131232 | Broughton et al. | Apr 1964 | A |
3142547 | Marsh et al. | Jul 1964 | A |
3508758 | Strub | Apr 1970 | A |
3602247 | Bunn et al. | Aug 1971 | A |
3788036 | Lee et al. | Jan 1974 | A |
3967464 | Cormier et al. | Jul 1976 | A |
4261815 | Kelland | Apr 1981 | A |
4324565 | Benkmann | Apr 1982 | A |
4325565 | Winchell | Apr 1982 | A |
4329162 | Pitcher, Jr. | May 1982 | A |
4340398 | Doshi et al. | Jul 1982 | A |
4705627 | Miwa et al. | Nov 1987 | A |
4711968 | Oswald et al. | Dec 1987 | A |
4784672 | Sircar | Nov 1988 | A |
4790272 | Woolenweber | Dec 1988 | A |
4816039 | Krishnamurthy et al. | Mar 1989 | A |
4877429 | Hunter | Oct 1989 | A |
5110328 | Yokota et al. | May 1992 | A |
5125934 | Krishnamurthy et al. | Jun 1992 | A |
5169006 | Stelzer | Dec 1992 | A |
5174796 | Davis et al. | Dec 1992 | A |
5224350 | Mehra | Jul 1993 | A |
5234472 | Krishnamurthy et al. | Aug 1993 | A |
5292990 | Kantner et al. | Mar 1994 | A |
5306331 | Auvil et al. | Apr 1994 | A |
5370728 | LaSala et al. | Dec 1994 | A |
5478475 | Morita et al. | Dec 1995 | A |
5565018 | Baksh et al. | Oct 1996 | A |
5700310 | Bowman et al. | Dec 1997 | A |
5750026 | Gadkaree et al. | May 1998 | A |
5792239 | Reinhold, III et al. | Aug 1998 | A |
5807423 | Lemcoff et al. | Sep 1998 | A |
5811616 | Holub et al. | Sep 1998 | A |
5827358 | Kulish et al. | Oct 1998 | A |
5906673 | Reinhold, III et al. | May 1999 | A |
5924307 | Nenov | Jul 1999 | A |
5968234 | Midgett, II et al. | Oct 1999 | A |
5976221 | Bowman et al. | Nov 1999 | A |
5997617 | Czabala et al. | Dec 1999 | A |
6007606 | Baksh et al. | Dec 1999 | A |
6011192 | Baker et al. | Jan 2000 | A |
6053966 | Moreau et al. | Apr 2000 | A |
6063161 | Keefer et al. | May 2000 | A |
6099621 | Ho | Aug 2000 | A |
6129780 | Millet et al. | Oct 2000 | A |
6136222 | Friesen et al. | Oct 2000 | A |
6147126 | DeGeorge et al. | Nov 2000 | A |
6171371 | Derive et al. | Jan 2001 | B1 |
6176897 | Keefer | Jan 2001 | B1 |
6179900 | Behling et al. | Jan 2001 | B1 |
6210466 | Whysall et al. | Apr 2001 | B1 |
6231302 | Bonardi | May 2001 | B1 |
6245127 | Kane et al. | Jun 2001 | B1 |
6284021 | Lu et al. | Sep 2001 | B1 |
6311719 | Hill et al. | Nov 2001 | B1 |
6345954 | Al-Himyary et al. | Feb 2002 | B1 |
6398853 | Keefer et al. | Jun 2002 | B1 |
6406523 | Connor et al. | Jun 2002 | B1 |
6436171 | Wang et al. | Aug 2002 | B1 |
6444012 | Dolan et al. | Sep 2002 | B1 |
6444014 | Mullhaupt et al. | Sep 2002 | B1 |
6444523 | Fan et al. | Sep 2002 | B1 |
6451095 | Keefer et al. | Sep 2002 | B1 |
6457485 | Hill et al. | Oct 2002 | B2 |
6471939 | Boix et al. | Oct 2002 | B1 |
6488747 | Keefer et al. | Dec 2002 | B1 |
6497750 | Butwell et al. | Dec 2002 | B2 |
6500241 | Reddy | Dec 2002 | B2 |
6500404 | Camblor Fernandez et al. | Dec 2002 | B1 |
6506351 | Jain et al. | Jan 2003 | B1 |
6517609 | Monereau et al. | Feb 2003 | B1 |
6531516 | Davis et al. | Mar 2003 | B2 |
6533846 | Keefer et al. | Mar 2003 | B1 |
6565627 | Golden et al. | May 2003 | B1 |
6565635 | Keefer et al. | May 2003 | B2 |
6565825 | Ohji et al. | May 2003 | B2 |
6572678 | Wijmans et al. | Jun 2003 | B1 |
6579341 | Baker et al. | Jun 2003 | B2 |
6593541 | Herren | Jul 2003 | B1 |
6595233 | Pulli | Jul 2003 | B2 |
6605136 | Graham et al. | Aug 2003 | B1 |
6607584 | Moreau et al. | Aug 2003 | B2 |
6630012 | Wegeng et al. | Oct 2003 | B2 |
6641645 | Lee et al. | Nov 2003 | B1 |
6651645 | Nunez Suarez | Nov 2003 | B1 |
6660065 | Byrd et al. | Dec 2003 | B2 |
6712087 | Hill et al. | Mar 2004 | B2 |
6746515 | Wegeng et al. | Jun 2004 | B2 |
6752852 | Jacksier et al. | Jun 2004 | B1 |
6802889 | Graham et al. | Oct 2004 | B2 |
6835354 | Woods et al. | Dec 2004 | B2 |
6916358 | Nakamura et al. | Jul 2005 | B2 |
6918953 | Lomax, Jr. et al. | Jul 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
7025801 | Moereau | Apr 2006 | B2 |
7094275 | Keefer et al. | Aug 2006 | B2 |
7117669 | Kaboord et al. | Oct 2006 | B2 |
7144016 | Gozdawa | Dec 2006 | B2 |
7160356 | Koros et al. | Jan 2007 | B2 |
7160367 | Babicki et al. | Jan 2007 | B2 |
7166149 | Dunne et al. | Jan 2007 | B2 |
7189280 | Alizadeh-Khiavi et al. | Mar 2007 | B2 |
7250074 | Tonkovich et al. | Jul 2007 | B2 |
7276107 | Baksh et al. | Oct 2007 | B2 |
7311763 | Neary | Dec 2007 | B2 |
RE40006 | Keefer et al. | Jan 2008 | E |
7314503 | Landrum et al. | Jan 2008 | B2 |
7390350 | Weist, Jr. et al. | Jun 2008 | B2 |
7404846 | Golden et al. | Jul 2008 | B2 |
7449049 | Thomas et al. | Nov 2008 | B2 |
7527670 | Ackley et al. | May 2009 | B2 |
7578864 | Watanabe et al. | Aug 2009 | B2 |
7604682 | Seaton | Oct 2009 | B2 |
7637989 | Bong | Dec 2009 | B2 |
7641716 | Lomax, Jr. et al. | Jan 2010 | B2 |
7645324 | Rode et al. | Jan 2010 | B2 |
7651549 | Whitley | Jan 2010 | B2 |
7674319 | Lomax, Jr. et al. | Mar 2010 | B2 |
7687044 | Keefer et al. | Mar 2010 | B2 |
7713333 | Rege et al. | May 2010 | B2 |
7722700 | Sprinkle | May 2010 | B2 |
7731782 | Kelley et al. | Jun 2010 | B2 |
7740687 | Reinhold, III | Jun 2010 | B2 |
7744676 | Leitmayr et al. | Jun 2010 | B2 |
7763098 | Alizadeh-Khiavi et al. | Jul 2010 | B2 |
7819948 | Wagner | Oct 2010 | B2 |
7858169 | Yamashita | Dec 2010 | B2 |
7938886 | Hershkowitz et al. | May 2011 | B2 |
7947120 | Deckman et al. | May 2011 | B2 |
7959720 | Deckman et al. | Jun 2011 | B2 |
8034164 | Lomax, Jr. et al. | Oct 2011 | B2 |
8071063 | Reyes et al. | Dec 2011 | B2 |
8142745 | Reyes et al. | Mar 2012 | B2 |
8142746 | Reyes et al. | Mar 2012 | B2 |
8192709 | Reyes et al. | Jun 2012 | B2 |
8262783 | Stoner et al. | Sep 2012 | B2 |
8268043 | Celik et al. | Sep 2012 | B2 |
8272401 | McLean | Sep 2012 | B2 |
8361200 | Sayari et al. | Jan 2013 | B2 |
8444750 | Deckman et al. | May 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
8529663 | Reyes et al. | Sep 2013 | B2 |
8529664 | Deckman et al. | Sep 2013 | B2 |
8529665 | Manning et al. | Sep 2013 | B2 |
8545602 | Chance et al. | Oct 2013 | B2 |
8591627 | Jain | Nov 2013 | B2 |
8875483 | Wettstein | Nov 2014 | B2 |
20010047824 | Hill et al. | Dec 2001 | A1 |
20020124885 | Hill et al. | Sep 2002 | A1 |
20020162452 | Butwell et al. | Nov 2002 | A1 |
20030075485 | Ghijsen | Apr 2003 | A1 |
20030170527 | Finn et al. | Sep 2003 | A1 |
20030205130 | Neu et al. | Nov 2003 | A1 |
20030223856 | Yuri et al. | Dec 2003 | A1 |
20040099142 | Arquin et al. | May 2004 | A1 |
20040197596 | Connor et al. | Oct 2004 | A1 |
20040232622 | Gozdawa | Nov 2004 | A1 |
20050109419 | Ohmi et al. | May 2005 | A1 |
20050114032 | Wang | May 2005 | A1 |
20050129952 | Sawada et al. | Jun 2005 | A1 |
20050145111 | Keefer et al. | Jul 2005 | A1 |
20050150378 | Dunne et al. | Jul 2005 | A1 |
20050229782 | Monereau et al. | Oct 2005 | A1 |
20050252378 | Celik et al. | Nov 2005 | A1 |
20060048648 | Gibbs et al. | Mar 2006 | A1 |
20060049102 | Miller et al. | Mar 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060162556 | Ackley et al. | Jul 2006 | A1 |
20060165574 | Sayari | Jul 2006 | A1 |
20060169142 | Rode et al. | Aug 2006 | A1 |
20060236862 | Golden et al. | Oct 2006 | A1 |
20070084241 | Kretchmer et al. | Apr 2007 | A1 |
20070084344 | Moriya et al. | Apr 2007 | A1 |
20070222160 | Roberts-Haritonov et al. | Sep 2007 | A1 |
20070253872 | Keefer et al. | Nov 2007 | A1 |
20070283807 | Whitley | Dec 2007 | A1 |
20080051279 | Klett et al. | Feb 2008 | A1 |
20080072822 | White | Mar 2008 | A1 |
20080282883 | Rarig et al. | Nov 2008 | A1 |
20080282885 | Deckman et al. | Nov 2008 | A1 |
20080289497 | Barclay et al. | Nov 2008 | A1 |
20080314246 | Deckman et al. | Dec 2008 | A1 |
20090004073 | Gleize et al. | Jan 2009 | A1 |
20090037550 | Mishra et al. | Feb 2009 | A1 |
20090079870 | Matsui | Mar 2009 | A1 |
20090107332 | Wagner | Apr 2009 | A1 |
20090151559 | Verma et al. | Jun 2009 | A1 |
20090241771 | Manning et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090308248 | Siskin et al. | Dec 2009 | A1 |
20100059701 | McLean | Mar 2010 | A1 |
20100077920 | Baksh et al. | Apr 2010 | A1 |
20100089241 | Stoner et al. | Apr 2010 | A1 |
20100212493 | Rasmussen et al. | Aug 2010 | A1 |
20100251887 | Jain | Oct 2010 | A1 |
20100252497 | Ellison et al. | Oct 2010 | A1 |
20100263534 | Chuang | Oct 2010 | A1 |
20100282593 | Speirs et al. | Nov 2010 | A1 |
20110031103 | Deckman et al. | Feb 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110217218 | Gupta et al. | Sep 2011 | A1 |
20110277629 | Manning et al. | Nov 2011 | A1 |
20120024152 | Yamawaki et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120067216 | Corma-Canos et al. | Mar 2012 | A1 |
20120152115 | Gerds et al. | Jun 2012 | A1 |
20120222551 | Deckman | Sep 2012 | A1 |
20120222552 | Ravikovitch et al. | Sep 2012 | A1 |
20120222553 | Kamakoti et al. | Sep 2012 | A1 |
20120222554 | Leta et al. | Sep 2012 | A1 |
20120222555 | Gupta et al. | Sep 2012 | A1 |
20130602750 | Sundaram et al. | Sep 2012 | |
20120255377 | Kamakoti et al. | Oct 2012 | A1 |
20120308456 | Leta et al. | Dec 2012 | A1 |
20120312163 | Leta et al. | Dec 2012 | A1 |
20130061755 | Frederick et al. | Mar 2013 | A1 |
20130225898 | Sundaram et al. | Aug 2013 | A1 |
20140076164 | Monereau et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2 234 924 | Apr 1998 | CA |
2 224 471 | Jun 1998 | CA |
2 228 206 | Jul 1998 | CA |
2 297 590 | Aug 2000 | CA |
2 297 591 | Aug 2000 | CA |
2 237 103 | Dec 2001 | CA |
2 357 356 | Mar 2002 | CA |
102009003610 | Nov 2009 | DE |
0257493 | Feb 1988 | EP |
0426937 | May 1991 | EP |
1 004 341 | May 2000 | EP |
1004341 | May 2000 | EP |
1 018 359 | Jul 2000 | EP |
1018359 | Jul 2000 | EP |
1413348 | Aug 2002 | EP |
1577561 | Sep 2005 | EP |
1 203 610 | Dec 2005 | EP |
1203610 | Dec 2005 | EP |
1798197 | Jun 2007 | EP |
1045728 | Nov 2009 | EP |
2924951 | Jun 2009 | FR |
59-232174 | Dec 1984 | JP |
2000024445 | Aug 2001 | JP |
2002348651 | Dec 2002 | JP |
2006016470 | Jan 2006 | JP |
2006036849 | Feb 2006 | JP |
WO 9943418 | Sep 1999 | WO |
WO0035560 | Jun 2000 | WO |
WO2005032694 | Apr 2005 | WO |
WO2005070518 | Aug 2005 | WO |
WO2006017940 | Feb 2006 | WO |
WO2006074343 | Jul 2006 | WO |
WO 2007111738 | Oct 2007 | WO |
WO 2010123598 | Oct 2010 | WO |
WO 2010130787 | Nov 2010 | WO |
WO2011026732 | Mar 2011 | WO |
WO 2011139894 | Nov 2011 | WO |
WO2012118755 | Sep 2012 | WO |
WO2012118757 | Sep 2012 | WO |
WO2012118758 | Sep 2012 | WO |
WO2012118759 | Sep 2012 | WO |
WO2012118760 | Sep 2012 | WO |
WO2012161826 | Nov 2012 | WO |
WO2012161828 | Nov 2012 | WO |
WO2013022529 | Feb 2013 | WO |
Entry |
---|
Conviser, (1964) “Removal of CO2 from Natural Gas With Molecular Sieves,” Publication, pp. 1F-12F. |
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas. |
Farooq, et al. (1990) “Continuous Contercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314. |
FlowServe “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1. |
Herrmann, et al. (2008) “Curvelet-Based Seismic Data Processing: A Multiscale and Nonlinear Approach,” Geophysics, v73.1, pp. A1-A5. |
Hopper, et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symosium, pp. 73-95. |
Reyes, et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622. |
Sahni, et al. (2005) “Multiresolution Wavelet Analysis for Improved Reservoir Description,” SPE-87820, Soc. of Petroleum Eng.-Reservoir Evaluation & Engineering, pp. 53-69 (XP-002550569). |
Stahley, (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Realiability in Centrifugal Compressors.” |
Suzuki, (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73. |
(2008), “Rapid Cycle Pressure Swing Adsorption (RCPSA),” QuestAir, 4 pgs. |
(2008), “Rapid Cycle Pressure Swing Adsorption,” ExxonMobil Research and Engineering, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20130333571 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61448123 | Mar 2011 | US |